Mackey functor and cohomology of finite groups

Akihiko Hida Faculty of Education, Saitama University (飛田明彦 埼玉大学教育学部)

1 Composition factors of Mackey functors

Let G be a finite group and k a field of characteristic p > 0. P. Symonds [4] determined the comoposition factors of the cohomology as a cohomological Mackey functor for G. We consider more deteiled structure of $H^*(-,k)$.

First, we recall the definition of the Mackey functor for G.

Definition A cohomological Mackey functor M for G is the following specification.

- k-vector space M(H) for $H \leq G$.
- k-linear map

$$I_K^H: M(K) \longrightarrow M(H)$$

 $R_K^H: M(H) \longrightarrow M(K)$

$$c_g: M(H) \longrightarrow M({}^gH)$$

for $K \leq H \leq G$, $g \in G$ such that

(i) I_H^H , R_H^H , c_h $(h \in H)$: identity maps on M(H).

(ii)

$$\begin{split} I_K^H I_J^K &= I_J^H, \ R_J^K R_K^H = R_J^H, \ c_g c_h = c_{gh} \\ I_{gK}^{gH} c_g &= c_g I_K^H, \ R_{gK}^{gH} c_g = c_g R_K^H \end{split}$$

for $J \leq K \leq H \leq G$, $g, h \in G$.

(iii)

$$R_J^H I_K^H = \sum_{x \in J \backslash H/K} I_{J \cap {}^x K}^J R_{J \cap {}^x K}^{x K} c_x$$

for $J, K \leq H \leq G$.

(iv)

$$I_K^H R_K^H = |H:K|$$

for $K \leq H$.

A global Mackey functor is a functor defined on all finite groups. Its restriction to a finite group G is a Mackey functor for G (see [7]).

Example (1) Let M be a kG-module. Then $H^n(-, M)$ is a cohomological Mackey functor for G.

(2) $H^n(-,k)$ is a global cohomological Mackey functor.

We can consider simple (global) Mackey functors and composition factors of Mackey functors. Simple cohomological Mackey functors for G are classified by Yoshida [8], Thévenaz-Webb [5]. They are parameterized by the pairs (P, V), where P is a p-subgroup of G and V is a simple $kN_G(P)/P$ -module (up to iso. and conjugation). Let $S_{P,V}^G$ be the simple cohomological Mackey functor corresponding to the pair (P, V).

On the other hand, simple cohomological global Mackey functors are classified by Webb [7]. They are parameterized by the pairs (P, V), where P is a p-group and V is a simple $k(\mathrm{Out}(P))$ -module (up to iso.).

Symonds [4] determines the composition factors of $H^*(-, k)$ as a (global) Mackey functor.

Theorem 1.1 ([4]) $H^*(-,k)$ contains every simple global cohomological Mackey functor as a composition factor.

Let P be a p-subgroup of G. If V be a simple $k(N_G(P)/PC_G(P))$ - module, then $N_G(P)/PC_G(P)$ is a subgroup of Out(P) and there exists a simple k(Out(P))-module W such that the restriction of W to $N_G(P)/PC_G(P)$ contains V as a composition factor. So we have the following corollary.

Corollary 1.2 Let P be a p-subgroup of G and V a simple $k(N_G(P)/P)$ -module. Then $H^*(-,k)$ contains the simple cohomological Mackey functor $S_{P,V}^G$ (for G) as a composition factor if and only if $C_G(P)$ acts trivially on V.

Remark (1) For Theorem 1.1, we need a result from topology:

$$A(P,P) \longrightarrow \{(BP_+)_p^{\wedge}, (BP_+)_p^{\wedge}\} \otimes k \longrightarrow \operatorname{End}(H^*(P,k))$$

has nilpotent kernel, see [2].

(2) For Corollary 1.2, we have algebraic proofs (see [1], [3]).

2 Indecomposable direct summands of cohomology as a Mackey functor

Let G be a finite group. Cohomological Mackey functors for G are equivalent to the modules for a certain finite dimensional algebra, called cohomological Mackey algebra (see [6], [8]). We consider indecomposable direct summands of $H^n = H^n(-,k)$

as a cohomological Mackey functor for G.

Example 2.1 (1) Let G be a cyclic p-group. Then

$$H^n \simeq H^{n+2}$$

for n > 0.

(2) Assume that p=2. Let G be a cyclic group of order 4. Then every conjugation is trivial and H^n is a module for the finite dimensional algebra Λ defined by the following quiver and relations:

$$0 \xrightarrow{\frac{\alpha}{\beta}} 1, \qquad \alpha\beta = \beta\alpha = 0.$$

Then,

$$H^{2n-1}\simeq inom{S_1}{S_0}, \qquad H^{2n}\simeq inom{S_0}{S_1}$$

for n > 0, where S_i is a simple Λ -module corresponding to the vertex i.

Example 2.2 Let p=2 and $G=C_2\times C_2$. Then every conjugation and every transfer are trivial, so H^n (n>0) is a module for the path algebra kQ,

$$Q = \begin{pmatrix} 0 \\ \downarrow \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

The cohomology algebra $H^*(G, k)$ is a polynomial algebra

$$H^*(G,k)=k[x_1,x_2]$$

where deg $x_i = 1$. Let H_j (j = 1, 2, 3) be the subgroups of order 2. Then

$$H^*(H_j,k) = k[y_j]$$

where $\deg y_i = 1$. The restrictions from G to H_j are as follows:

$$H^{3} \qquad \downarrow \qquad x_{1}^{3} + x_{1}^{2}x_{2} \qquad x_{1}^{2}x_{2} \qquad x_{1}x_{2}^{2} + x_{2}^{3} \qquad x_{1}^{2}x_{2} + x_{1}x_{2}^{2}$$

$$H^{3} \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$y_{1}^{3} \qquad y_{2}^{3} \qquad y_{3}^{3} \qquad 0$$

$$x_{1}^{4} + x_{1}^{3}x_{2} \qquad x_{1}^{3}x_{2} \qquad x_{1}x_{2}^{3} + x_{2}^{4} \qquad x_{1}^{3}x_{2} + x_{1}^{2}x_{2}^{2} \qquad x_{1}^{2}x_{2}^{2} + x_{1}x_{2}^{3}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$y_{1}^{4} \qquad y_{2}^{4} \qquad y_{3}^{4} \qquad 0 \qquad 0$$

Let S_i $(0 \le i \le 3)$ be simple kQ-modules. We have the following kQ-module structure of H^n .

$$H^{1} \simeq \begin{pmatrix} S_{0} & S_{0} \\ S_{1} & S_{2} & S_{3} \end{pmatrix}$$

$$H^{2} \simeq \begin{pmatrix} S_{0} \\ S_{1} \end{pmatrix} \bigoplus \begin{pmatrix} S_{0} \\ S_{2} \end{pmatrix} \bigoplus \begin{pmatrix} S_{0} \\ S_{3} \end{pmatrix}$$

$$H^{3} \simeq H^{2} \bigoplus S_{0}$$

$$H^{4} \simeq H^{2} \bigoplus S_{0} \bigoplus S_{0}$$

Definition Let Λ be a finite dimensional k-algebra and M_n $(n \geq 0)$ finitely generated Λ -modules. Let $\operatorname{Ind}(\bigoplus M_n)$ be the set of isomorphism classes of the indecomposable direct summands of M_n $(n \geq 0)$. Namely

$$\operatorname{Ind}(\bigoplus M_n) = \{ \text{ indec. direct summands of } \bigoplus M_n \} / \simeq .$$

Remark To show that $\operatorname{Ind}(\bigoplus H^n)$ is a finite set for a finite group G, we may assume that k is a finite field.

The fact that $\operatorname{Ind}(\bigoplus H^n)$ is a finite set for the elementary abelian 2-group of order 4 (Example 2.2) is explained by the following Lemma.

Lemma 2.3 Let k be a finite field and Λ a finite dimensional k-algebra. Let $N_n \subseteq M_n$, $(n \ge 0)$ be finitely generated Λ -modules. Suppose that $\operatorname{Ind}(\bigoplus (M_n/N_n))$ is finite and there is d > 0 such that $\dim N_n \le d$ for any n. Then $\operatorname{Ind}(\bigoplus M_n)$ is a finite set.

Using this Lemma and its dual, we have the following.

Example 2.4 Let $G = C_p \times C_p$ or $G = C_p \times C_p \times C_p$. Then $\operatorname{Ind}(\bigoplus H^n)$ is a finite set.

In this example, we do not know the explicit structure of H^n . On the other hand, for elementary abelian p-groups of arbitrary rank, we do not know even whether $\operatorname{Ind}(\bigoplus H^n)$ is a finite set or not.

Question If G is an elementary abelian p-group, then $\operatorname{Ind}(\bigoplus H^n)$ is a finite set?

References

- [1] A. Hida, Control of fusion and cohomology of trivial source modules, J. Algebra 317 (2007) 462-470.
- [2] M. Kameko, Modular representation theory and stable decomposition of classifying spaces, RIMS Kokyuroku 1466 (2006) 9-20, (in Japanese).
- [3] T. Okuyama, Cohomology isomorphisms and control of fusion, preprint, 2005.
- [4] P. Symonds, Mackey functors and control of fusion, Bull. London Math. Soc. 36 (2004) 623-632.
- [5] J. Thévenaz and P. J. Webb, Simple Mackey functors, Proc. of the Second International Group Theory Conference (Bressanone, 1989), Rend. Circ. Mat. Palermo (2) Suppl. 23 (1990) 299-319.
- [6] J. Thévenaz and P. J. Webb, The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995) 1865-1961.
- [7] P. J. Webb, Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces, J. Pure and Appl. Algebra 88 (1993) 265-304.
- [8] T. Yoshida, On G-functors (II): Hecke operators and G-functors. J. Math. Soc. Japan 35(1) (1983) 179-190.