0000000000
0 15820 2008 0 135-143 135

Inverse eigenvalue problems for nonlinear

ordinary differential equations

IRBRE « RFEBRLFEHFEH LLHEMARS (Tetsutaro Shibata)
Graduate School of Engineering

Hiroshima University

1 Introduction

We consider the following problem

(1.1) —u"(t) + f(u(t)) = Mu(t), tel,
(1.2) | u(t) > 0, tel,
- (1.3) u(0) = u(1)=0,

where I := (0,1) and A > 0 is a parameter. We a.ssuﬁxe the following conditions.
(A.1) f(u) is a function of C? for u > 0 satisfying f(0) = f'(0) = 0.

(A.2) g(u) := f(u)/u is strictly increasing for u > 0 (g(0) := 0).

(A.3) g(u) — oo as u — oo.

The typical examples of f(u) are as follows.

flu) = (p>1),
f(u) = uPlog(u+1) (p>1),

fw = w(1-=)  >10>1),

flu) = uz(l—u;‘le‘“),
flu) = ' (p>1).
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The equation (1.1)-(1.3) has been studied by many authors. We refer to the papers in
the references. We know that for any given o > 0, there exists a unique solution pair
of (1.1)~(1.3) (\,u) = (Ma),ua) € Ry x C*(I) such that ||Jus|lz = a. Moreover, the set
{(M(a),us) : a > 0} gives all solutions of (1.1)-(1.3), which is an unbounded C*-bifurcation
curve emanating from (72, 0) in R, x L2(I), and A(e) is C* and strictly increasing for a > 0.
We know that for any given A > 72, there exists a unique solution uy € C?(I). Further, for
A>1,

(1.4) , A = g(lluall=) + O(1).

For instance, let f(u) = u?. Then since g(u) = f(u)/u = vw?~}, for A > 1,
(1.5) A= fluallgst +O(1).

More precisely, we know that as A — oo

A= ”u‘\”gl + ,\e-—\/(p—l)l\(1+o(1))/2.

Further, we know that as A — oo

(1.6) uA(t)

g7 (A)
uniformly on any compact set in I. Therefore,

—1

o = luale=([a )" (1+o(1) = g )1+ of0).

Then in many cases, we have
1.7 . | Aa) = g(@) + o(g()).

For instance, if f(u) = u?, then for o > 1
(1.8) Ma) = o' + o(a”™?).

We here consider L?-inverse spectral problems. More precisely, it is valid that the L*-
bifurcation curve A(a) is determined by the nonlinear term f(u). Our problem here is,
conversely, to investigate whether we determine f(u) by the asymptotic formula for Aa) as
a — 00 or not.

We know the following fact.
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Theorem 1 [16]. Let f(u) = u” (p > 1). Then for any fized n € Ny, as a — oo

Ma) = P! + Cra®-D/2 4 Z": - “k(ﬁlﬂ CR+2RA-R/2 4 o(onl1-P)/2)
k=0 -

where

sptlds

p—1
C,=(p+3 / P= _ g
1=(p )I p+1 8+p+1
and ai(p) (deg ax(p) < k + 1) is a polynomial determined by ag = 1,4y, -+, ax1.
Motivated by Theorem 1, we consider the following Problems.

‘Problem A. Assume that the following asymptotic formula is valid as o — oo.
(1.9) Ma) = o1 + CoaP~172 4 o(aP~1/2),

~ Then does f(u) = uP hold ?

Problem B. Assume that the following asymptotic formula is valid as a — oo.
(1.10) Ma) = o} + Ca®172 4 ;i—lof +o(1).

Then does f(u) = uP hold ?

Problem C. Assume that the asymptotic formula in Theorem 1 with-some p > 1 is valid

for anyn € N as a — oo. Then can we conclude f(u) = uP ¢

Theorem 2. For p,q > 1, let

f(“)="p(1_1+1uq)'

(i) Assume that (p —1)/2 < qg<p+ 1. Then (1.9) holds as o — 0.
(it) Assume thatp —1 < qg<p+1. Then (1.10) holds as o — oo.

Theorem 3. Assume that

flu) = u? (1 -z ; 46"‘) :
Then the asymptotic formula for A\(a) in Theorem 1 with p =2 holds for any n € N.

Therefore, unfortunately, we find that the assumptions in Problem A-C are not sufficient
to obtain the desired results for L?-inverse problems. The next problem we have to consider

is to find the suitable setting for nonlinear inverse eigenvalue problems.
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2 New and direct proof of Theorem 1

The proofs of Theorems 2 and 3 are variant of those used in [16]. We here introduce a new

and direct proof of Theorem 1. We consider (A, u,) for A 3> 1. We put

12 _2 4 —1(1 _ b+l
Ry(s) == 1-3s p—+1/\ flualBst@ — s2+1),

= - 2 (1 ¥
S(s) = 1—3s p+1(1 sPH.

Lemma 2.1. For A > 1
uallZ, = lluall3 = A2)lun]%,(Cz + Uy).

Here,

1— g2

1
o= 2/0 V1= -2(1-e*)/(p+ 1)ds’

Py g CORD. 1) N
V@S (/Rale) + /5 )

Proof. For 0 <t <1,

& [3807 - @ + D] =0
Then
1 ! 2 1 1 2 ' 1 1 2
()" — ur(t)f* + SAua(t)* = constant = TPl lualles™ + S A luallc:
We put
M\©6) = Mlluallz - 6) ~ e T (| = 6747).
Then for 0 <t < 1/2,
(2.1) u(t) =  Ma(ua(t)).
Then
foal, = ol = 2 [ (Gl ~ )2 B
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llualioo 2 _ p2 1
= 2 [ (2, - 67 T

1_.2
= sds

= A2y, /01 m
= AV2|y,)2 (2 /0 1 \1/;(_‘:«1”%)

= AV3|u, |2, (C2a + Uy).

dé

Thus the proof is complete. g

Lemma 2.2, For A\ >» 1
[UA < CA~ 2=V =D+aW)/(2V3),

The proof of Lemma 2.2 is long and tedious. So we omit the proof here. By using

Lemmas 2.1 and 2.2, we casily obtain Theorem 1.

3 New example

In this section, we consider new example of f(u). Let f(u) = uPe® (» > 1)..

Theorem 4. Assume that f(u) = uPe* (p > 1) in (1.1). Then as a — oo

Ma) = aPle® + %a(”“me"‘”(l +o(1)).

To prove Theorem 4, we begin with the fundamental properties of A(a). We know

£ (Jtaloo) Flluallos) , -
luale =M@ S T T

Ua(t) = llualleo(1 + 0(1)) = (1 +0(1)), t e,

’

ua(t) = ua(l - t)) 0 S t S 17

1
e ('2') = fax ua(t) = [[allo,

L (t) > 0, 0_<_t<%.
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Lemma 3.1. Fora > 1

2 _ 2T ualloo 2
“ua“oo a 2(1+ ( )) (” a“oo)” 0=”

Proof. Put
‘ F(u) := /0 f(8)ds.
Then for0 <t <1,

& [3ua(0? = Flua(®) + gA@ua(t)’] =

Therefore, for 0 <t <1,

L (07 — F(ua() + 3N (@)ua(t)? = constant = ~F(uale) + 5A(0) el
We put
Mol8) = N@)(ltallo = ) — 2(F(tall) = F(O))
Quls) = A@)uallZ(1 = &) = 2F (ftale) — Flsluallo)))
Then for 0 <t < 1/2
) yt) = Y Malal®).

By putting 8 := u4(t), s = 6/||talle
uy(t)

2 _ g% = 1/2 2 2
Juall% 2 [ (luells — va(e) st

= 2 [ ualz, - 9=

— (o)do
o lualll

1-— g2

\/A(a / \/Zza.(s)/u(a)lwann )

Then we can show that as a — oo

/ 1-4 ds~/1v1—s2ds;1.
0 1/Qa(8)/(Ma)luallZ) 0 4

Lemma 3.2. Fora>1

(8.2) ”ua“oc o= (1+ o(1)) ( )
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Proof. By Lemma 3.1, for a > 1,

wlt (1-7 fualle ) _ .2
el (l el f<||uanm)) o

By this and Taylor expansion, for o > 1

F(llualleo

el
= e (1 +0e "“”\l f(llruallw))
« (1 + 30+ o)y f(uu‘i"n‘;)) ‘

(3.3) f(llnalleo) = f(@)(1+ 0(1))

el = a(1_£(1+o<1» el )’
afloo D) )

i

For a > 1, we can show

Lemma 3.3. Fora>1

f(lalle) = £(@) = G (o 5251 + (1)),
Proof. For a > 1, we have
(3.4) f(ltalle) = f/(@)(1 +0(1))

Then

f(lualleo) = £(a)

]

flla)([uallo — @)
f,(“ua"oo)("ua“oo - a)

r e |2
T+ o) (@ay 7
f(@)(llalleo — <)
f(@)(llualles — @)

™ ’ 2]
(o) (@ay /5.

IN

f(lualleo) — f(a)

v
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Proof of Theorem 4. By Taylor expansion, for o 3> 1

Since for a > 1,

aa) = L) L o0

llalleo
fla@) + {f(@)aye/fla)(1 + 0(1))

a(1+ §y/a/ f(@)(1 +o(1)) W

= (f(a) + = f’(a)a‘/— 1+ 0(1))) ( @ )(1 + 0(1))) +0(1).
f ey < @y

by this, we obtain Theorem 4. §
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