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Abstract

It was reported that a vaccination program against avian influenza executed in
China eradicated a dominant avian flu virus but led to a prevalenoe of predominant
avian flu virus. Interestingly, the change of the prevalence could occur in other
countries where the vaccination program was not executed. The mechanism for the
emergence and prevalence of predominant virus is still unknown. In this study, we
construct and analyze a mathematical model to investigate the mechanism.

1 Introduction
In China, despite acompukory program for the vaccination of all poultry commencing,
$H5N1$ influenza virus has caused outbreaks in poultry in 12 provinces. Epidemiological
analysis showed that $H5N1$ influenza viruses were continued to be perpetuated in poultry
in each of the provinces taeted, mainly in domestic duck and geese. Interestingly, genetic
analysis revealed that $\bm{t}H6N1$ influenza variant (Fujit-like) had emerged $\bm{t}d$ become
prevalent variant in each of the provinces, replacing those previously established multiple
sublineages in different regions of southern China. Some data idicate that seroconversion
rates are still low and that poultry are poorly immunized against $FJ$-like viruses, which
suggests that the poultry vaccine currently used in China may only generate very low
neutralizing antibodies to $FJ$-like viruses in comparison to other previously cocirculating
$H5N1$ sublineages ([9]). This situation can help to select for the FJ-like sublineage in
poultry. To investigate the change of prevalent strain we propose the following simple
mathematical model:

$X_{1}’=(1-p)c-(b+e)X_{1}-(\omega_{1}Y_{1}+\phi_{1}Z_{1})X_{1}$,
$V_{1}’=pc-(b+e)V_{1}-\sigma\phi_{1}Z_{1}V_{1}$ ,

(1)
$Y_{1}’=\omega_{1}Y_{1}X_{1}-(b+m_{y})Y_{1}$ ,
$Z_{1}’=\phi_{1}Z_{1}(X_{1}+\sigma V_{1})-(b+m_{z})Z_{1}$ .
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In the model, $X_{1},$ $V_{1},$ $Y_{1}$ and $Z_{1}$ denote susceptible birds, vaccinated birds against domi-
nant strain, infected birds with dominant avian flu strain and infected bird with predom-
inant avian flu strain, respectively. The parameter $c$ is the rates at which new birds are
born. At the beginning of vaccination program, $X_{1}$ directly moves to $V_{1}$ by the vaccina-
tion to susceptible birds. However, after some vaccinated period, the direct movement
may vanish because almost all birds are vaccinated. Thereafter, the vaccination is only
administered to the new born birds. In order to simplify the vaccination program we
consider only the vaccination to the new born birds because the direct movement by the
vaccination program can be expressed by some cholce of initial value. The new bom bIrds
are vaccinated at the rate $0\leq p\leq 1$ and the vaccinated individuals can completely pro-
$tecthom$ the dominant strain $\bm{t}d$ partial protect from the predominant strain at the rate
$0\leq 1-\sigma\leq 1$ (for example, $\sigma=0$ represents complete cross immunity against dominant
and predominrt strains). The parameter $b$ is the natural death rate and $e$ is the dispersal
or export rate. We consider that only susceptible $\bm{t}d$ vaccinated birds can be dispersed
or exported bmause the avlan flu viruses can cause severe illness and high mortality in
poultry. Further $m_{y}$ and $m_{z}$ are the additional death rate mediated by avian flu. The
parameters $\omega_{1}\bm{t}d\phi_{1}$ are the transmission rate of dominant $\bm{t}d$ predominant avian flu
straio, respectively. For $in8tance$ , we can consider that the dominrt avit flu strain
represents current vaccine strain in poultry and the predominant avit flu strain repre-
sents FJ-like $virus\infty$ which has emerged and are selected when the vaccination program
is executed ([9]).

Rrther the FJ-like viruses have already trtsmitted to Hong Kong, Laos, Malaysia
and Thailand, resulting in anew trtsmission $\bm{t}d$ outbreak wave in Southeast Asia. It
is strange that the FJ-like viruses become prevalent strain in $n\not\in vaccinated$ area because
the dominant strain prevailed before the initiation of the vaccination program executed
in other areas. The mechanism for the emergenoe and prevalence of the FJ-like virus over
alarge geographical region within ashort period is still unknown. It is sald that one
possibility is $\bm{t}$ effect of carrier wild birds: Origins could be traced by $u$sing probes of
various regioo of the new isolates and this analysis indicated many contained regions that
traced back to wild bird isolates in Hong Kong in 2003, or isolates from northern China
in 2003. These data indicate wild bir&are responsible for the transport and transmission
of the evolving $H5N1$ . However, in this paper, we investigate the another possibility of
the emergence and prevalence by amathematical model. Based on concerns about highly
pathogenic avian influenza $H5N1$ virus and its potential to cause illness in humans, CDC
and the U.S. Department of Agriculture have taken steps to prevent importation of birds
and unprocessed bird products Bom countries with the virus in domestic poultry ([4]).
However it is impossible for government to control the importation completely because
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Area1 Area 2

Figure 1: Model schematic showing the vaccination program and the illegal trade or dispersal
in poultry Bom Area 1 to Area 2

of some smuggler. For example, in some outbreaks, the tendency to hide or smuggle
especially valuable birds, such as fighting cocks, can also help maintain the virus in the
environment or contribute to its further geographical spread ([10]). Therefore, we have
to consider the effect of the export or dispersal of domestic poultry. Remember that only
susceptible and vaccinated birds can be dispersed or exported because the avian flu viruses
can cause severe illness and high mortality in poultry. We assume that the vaccination
program is executed in Area 1 (such as China) but the program is not executed in Area
2 (such as Malaysia, Vietnam and Thailand) and both susceptible and vaccinated birds
export or disperse from Area 1 to Area 2 (see Fig. 1). These assumptions lead to the
following mathematical model:

$X_{1}’=(1-p)c-(b+e)X_{1}-(\omega_{1}Y_{1}+\phi_{1}Z_{1})X_{1}$ ,
$V_{1}’=pc-(b+e)V_{1}-\sigma\phi_{1}Z_{1}V_{1}$ ,
$Y_{1}’=\omega_{1}Y_{1}X_{1}-(b+m_{y})Y_{1}$ ,
$Z_{1}’=\phi_{1}Z_{1}(X_{1}+\sigma V_{1})-(b+m_{z})Z_{1}$ ,

(2)
$X_{2}’=c+eX_{1}-bX_{2}-(\omega_{2}Y_{2}+\phi_{2}Z_{2})X_{2}$ ,
$V_{2}=eV_{1}-bV_{2}-\sigma\phi_{2}Z_{2}V_{2}$ ,
$Y_{2}^{j}=\omega_{2}Y_{2}X_{2}-(b+m_{y})Y_{2}$ ,
$Z_{2}’=\phi_{2}Z_{2}(X_{2}+\sigma V_{2})-(b+m_{z})Z_{2}$ .

In the model, $X_{1},$ $V_{i},$ $Y_{1}$ and $Z_{i}$ denote susceptible birds, vaccinated birds against dominant
strain, infected birds with dominant avian flu strain and infected bird with predominant
avian flu strain in Area $i(i=1,2))$ respectively. The parameters $w_{i}$ and $\phi_{i}$ are the
transmission rate of dominant and predominant avian flu strains in Area $i$ , respectively.
Further the meaning of the other parameters is the same as (1). For more detailed
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discussion of this model, see [8].

2 Mathematical properties

In order to investigate the change of prevalence strain in Area 1 and 2 by the vaccination
program we have to demonstrate the mathematical properties of model (2). We remark
that the dynamics in Area 1 are independent of those in Area 2. Therefore we can obtain
the dynamical properties in Area 1 from only model (1). Once we obtain the properties
in Area 1, we can easily understand those in Area 2 by a similar method in $Theo7em$ A. $l$

of [5].

2.1 The disease transmission in Area 1

To understand the dynamics of the disease transmission in Area 1 we firstly analyze model
(1) and divide the analysis into three situations concerned with the vaccination rate as
follows;

$(a)$ No vaccination program; $p=0$ in Area 1
If the vaccination rate $p=0$ (No vaccination program), then model (1) is

$X_{1}’=c-(b+e)X_{1}-(\omega_{1}Y_{1}+\phi_{1}Z_{1})X_{1}$ ,
$V_{1}’=-(b+e)V_{1}-\sigma\phi_{1}Z_{1}V_{1}$ ,

(3)
$Y_{1}’=\omega_{1}Y_{1}X_{1}-(b+m_{y})Y_{1}$ ,
$Z_{1}’=\phi_{1}Z_{1}(X_{1}+\sigma V_{1})-(b+m_{z})Z_{1}$ .

It is clear that $\lim_{tarrow\infty}V_{1}(t)=0$ and this syst$em$ has the following three possible equilibria:

$E_{1}^{n0}=(X_{1}^{n0},0,0,0)$ , where $X_{1}^{n0}= \frac{c}{b+e}$ ;

$E_{1}^{nd}=,$ $(X_{1}^{nd}, 0, Y_{1}^{nd}, 0)$ , where $X_{1}^{nd}= \frac{b+m_{y}}{\omega_{1}},$ $Y_{1}^{nd}= \frac{c-(b+e)X_{1}^{nd}}{w_{1}X_{1}^{nd}}$ ;

$E_{1}^{\mathfrak{n}p}=(X_{1}^{np}, 0,0, Z_{1}^{np})$ , where $X_{1}^{np}= \frac{b+m_{z}}{\phi_{1}},$ $Z_{1}^{np}= \frac{c-(b+e)X_{1}^{np}}{\phi_{1}X_{1}^{np}}$ .

Note that model (3) is typical competitive system for multiple infectious strains which
leads to competitive exclusion $([1]-[3], [7])$ . The dynamics of (3) are completely determined
by the so-called basic reproductive number of the dominant and predominant strains,

respectively ([7]):
$R_{1}^{\mathfrak{n}d}= \frac{w_{1}}{b+m_{y}}X_{1}^{n0}$, $R_{1}^{np}= \frac{\phi_{1}}{b+m_{z}}X_{1}^{n0}$ .
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Clearly $E_{1}^{n0}$ always exists, $E_{1}^{nd}$ exists iff $R_{1}^{nd}>1$ and $E_{1}^{np}$ exists iff $R_{1}^{np}>1$ . Further, to
simply understand a concept of competition between the strains we introduce the another
basic reproductive numbers ([6]):

$\overline{R}_{1}^{nd}=\frac{\omega_{1}}{b+m_{\nu}}X_{1}^{np}$, $\overline{R}_{1}^{np}=\frac{\phi_{1}}{b+m_{z}}X_{1}^{nd}$ .

We remark that $R_{1}^{\mathfrak{n}d}(R_{1}^{\mathfrak{n}p})$ represents an average number of the infected birds with the
dominant (predominant) avian flu by a single infected bird with the dominant (predomi-
nant) strain under the condition that all birds are susceptible, but $\overline{R}_{1}^{nd}(\overline{R}_{1}^{np})$ is the basic
reproduction number after a spread of predominant (dominant) strain in the bird world.
Note that $\overline{R}_{1}^{nd}\overline{R}_{1}^{\mathfrak{n}p}=1$ . Further these basic reproductive numbers have the following
relations:

Remark 2.1. $ffi_{1}>R_{1}^{np}(R_{1}^{np}>R_{1}^{nd})$ is equivalent to $\overline{R}_{1}^{np}<1(\overline{R}_{1}^{nd}<1)$ and $\overline{R}_{1}^{nd}<1$

$(\overline{R}_{1}^{np}<1)$ is equivalent to $\overline{R}_{1}^{np}>1(\overline{R}_{1}^{nd}>1)$ .
The dynamical properties of model (3) are given by the following theorem:

Theorem 2.1. (i) If $R_{1}^{nd}\leq 1$ and $R_{1}^{np}\leq 1$ , then $E_{1}^{\mathfrak{n}0}$ is globally asymptotically sta-
ble (GAS) which means that the orbit converges to the equilibrium as $tarrow\infty$ for
arbitrary initial point.

(ii) If $R_{1}^{nd}>1$ and $\overline{R}_{1}^{np}<1$ , then $E_{1}^{nd}$ is GAS.

(iii) If $R_{1}^{np}>1$ and $\overline{R}_{1}^{\mathfrak{n}d}<1$ , then $E_{1}^{np}$ ,is GAS.

The proofs of this Theorem are given in [7] (see its Theorem 3.1.).

$(b)$ Complete vaccination program: $p=1$ in Area 1
If the vaccination rate $p=1$ (Complete vaccination program), then model (1) is

$X_{1}’=-(b+e)X_{1}-(\omega_{1}Y_{1}+\phi_{1}Z_{1})X_{1}$ ,
$V_{1}’=c-(b+e)V_{1}-\sigma\phi_{1}Z_{1}V_{1}$ ,

(4)
$Y_{1}’=\omega_{1}Y_{1}X_{1}-(b+m_{y})Y_{1}$ ,
$Z_{1}’=\phi_{1}Z_{1}(X_{1}+\sigma V_{1})-(b+m_{z})Z_{1}$ .

It is clear that $\lim_{tarrow\infty}X_{1}(t)=0$ and $\lim_{tarrow\infty}Y_{1}(t)=0$ and this system has the following
two equilibria:

$E_{1}^{\omega}=(0, V_{1}^{\infty},0,0)$ , where $V_{1}^{c0}= \frac{c}{b+e}$ ;

$E_{1}^{\varphi}=(0, V_{1}^{\varphi},0, Z_{1}^{\varphi})$ , where $V_{1}^{\varphi}= \frac{b+m_{z}}{\sigma\phi_{1}},$ $Z_{1}^{\varphi}= \frac{c-(b+e)V_{1}^{\varphi}}{\sigma\phi_{1}V_{1}^{\varphi}}$ .
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This system (4) is essentially 2-dimensional and the dynamics is clear ([5]). The basic
reproductive number of predominant strain is given by

$R_{1}^{\varphi}= \frac{\sigma\phi_{1}}{b+m_{l}}V_{1}^{c0}$.

Clearly $E_{1}^{c0}$ always exists and $E_{1}^{q}$ exists iff $R_{1}^{\varphi}>1$ . The dynamical properties of model
(4) are given by the following theorem:

Theorem 2.2. (i) If $R_{1}^{\varphi}\leq 1$ , then $E_{1}^{\text{\’{a}})}$ is GAS.

$(i,i)$ If ROP $>1$ , then $E_{1}^{\varphi}$ is GAS.

The proofs of this Theorem are given in [5] (see its Theorems 3.1.).

$(c)$ Incomplete vaccination $pr^{\backslash }ogmm;0<p<1$ in Area 1
If the vaccination rate $0<p<1$ (Incomplete vaccination program), then we have to
consider system (1) directly. This system has the following four possible equilibria:

$E_{1}^{i0}=(X_{1}^{i0}, V_{1}^{i0},0,0)$ , where $X_{1}^{i0}= \frac{(1-p)c}{b+e},$ $V i^{0}=\frac{pc}{b+e}$ ;

$E_{1}^{u}=(X_{1}^{u}, V_{1}^{id}, Y_{1}^{id}, 0)$ , where $X_{1}^{id}= \frac{b+m_{y}}{\omega_{1}},$ $V_{1}^{id}= \frac{pc}{b+e},$ $Y\dot{i}^{d}=\frac{(1-p)c-(b+e)X_{1}^{id}}{w_{1}X\dot{i}^{d}}$ ;

$E_{1}^{ip}=(X_{1}^{ip}, V_{1}^{ip}, 0,\dot{Z}_{1}^{p})$ , where $X_{1}^{1p}= \frac{(1-p)c}{b+e+\phi_{1}Z_{1}^{ip}},$ $V_{1}^{1p}= \frac{pc}{b+e+\sigma\phi_{1}Z\dot{i}^{p}}$

and $Z_{1}^{ip}$ is the unique root of the following equation:

$\frac{\phi_{1}(1-p)c}{b+e+\phi_{1}Z_{1}}+\frac{\sigma\phi_{1}pc}{b+e+\sigma\phi_{1}Z_{1}}=b+m_{z}$ ; (5)

$Ei^{+}=(X_{1}^{i+}, V_{1}^{i+}, Y_{1}^{i+}, Z_{1}^{i+})$ , where $X_{1}^{i+}= \frac{b+m_{y}}{\omega_{1}}$ , $V_{1}^{1+}= \frac{1}{\sigma}(\frac{b+m_{z}}{\phi_{1}}-\frac{b+m_{y}}{w_{1}})$ ,

$Y_{1}^{i+}= \frac{1}{w_{1}}\{\frac{(1-p)c-(b+e)X_{1}^{i+}}{X_{1}^{i+}}-\phi_{1}z_{1}^{i+}\},$ $Z_{1}^{i+}= \frac{pc-(b+e)V\dot{i}^{+}}{\sigma\phi_{1}V_{1}^{i+}}$ .

We also introduce the two basic reproductive numbers of dominant and predominant
strains;

$R_{1}^{1d}= \frac{w_{1}}{b+m_{\nu}}X_{1}^{i0}$, $R_{1}^{ip}= \frac{\phi_{1}}{b+m_{z}}X_{1}^{i0}+\frac{\sigma\phi_{1}}{b+m_{z}}V_{1}^{i0}$,

$\overline{R}_{1}^{u}=\frac{\omega_{1}}{b+m_{y}}X_{1}^{1p}$ , $\overline{R}_{1}^{1p}=\frac{\phi_{1}}{b+m_{z}}X_{1}^{u}+\frac{\sigma\phi_{1}}{b+m_{z}}V_{1}^{1d}$ .
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The meaning of these numbers is the same as $R_{1}^{nd},$ $R_{1}^{np},\overline{R}_{1}^{nd}$ and $\overline{R}_{1}^{np}$ in $(a)$ . It is clear that
$E_{1}^{i0}$ always exists and $E_{1}^{id}$ exists iff $R_{1}^{id}>1$ . From equation (5), the existence condition
of $E_{1}^{ip}$ is given by

$b+m_{z}< \frac{\phi_{1}(1-p)c+\sigma\phi_{1}pc}{b+e}\Leftrightarrow 1<R_{1}^{ip}$.

Further, let $F$ be the following function of $X_{1}$ :

$F(X_{1})=(b+e) \phi_{1}(1-\frac{1}{\sigma})X_{1}^{2}-\{(b+e)(b+m_{z})(1-\frac{1}{\sigma})+\phi_{1}c\}X_{1}+(1-p)c(b+m_{z})$ .

Then we obtain the following existence condition of $E_{1}^{i+}$ ;

$\frac{b+m_{z}}{\phi_{1}}-\frac{pc\sigma}{b+e}<X_{1}^{i+}<\frac{b+m_{z}}{\phi_{1}},$ $0<F(X_{1}^{i+})$ .

Since $0<F(O),$ $0>F( \frac{b+m}{\phi_{1}})$ and $F”(X_{1})<0$ we can obtain the following relation;

$\frac{b+m_{z}pc\sigma}{\phi_{1}b+e}<X_{1}^{i+}<\frac{b+m_{z}}{\phi_{1}},$ $0<F(X_{1}^{i+}) \Leftrightarrow\max\{0,$ $\frac{b+m_{z}}{\phi_{1}}-\frac{pc\sigma}{b+e}\}<x\dot{i}^{+}<X_{1}^{*}$

where $xi$ is the larger root of $F(X_{1})=0$ . Fhrom straightforward but tedious calculations,
we can evaluate $X_{1}^{*}=x\dot{i}^{p}$ . This implies that

$\max\{0,$ $\frac{b+m_{z}}{\phi_{1}}-\frac{pc\sigma}{b+e}\}<x\dot{i}^{+}<X_{1}^{*}\Leftrightarrow 1<\overline{R}_{1}^{u},1<\overline{R}_{1}^{1p}$.

In this way, we can conclude the existence conditions of these equilibria in the following
lemma.

Lemma 2.1. (i) $E_{1}^{i0}$ always enists in $\mathbb{R}_{+}^{4}$ .

(ii) $E_{1}^{u}$ exists in $\mathbb{R}_{+}^{4}$ iff $1<R_{1}^{u}$ .

(iii) $E_{1}^{ip}$ exists in $\mathbb{R}_{+}^{4}$ iff $1<R_{1}^{ip}$ .

(iv) $E_{1}^{i+}$ exists in $\mathbb{R}_{+}^{4}$ iff $1<\overline{R}_{1}^{u}$ and $1<\overline{R}_{1}^{1p}$ .

Here we have to note the relation between the basic reproductive numbers in the
following Lemma 2.2.

Lemma 2.2. $\overline{\dot{H}}_{1}^{d}<1<R_{1}^{u}$ and $\overline{R}_{1}^{ip}<1<R_{1}^{ip}$ can not hold simultaneously.

Remark 2.2. Lemma 2.2 can be proved directly by tedious and complex analysis but it
will be clear in Theorem 2. $S$ .

The dynamical properties of model (1) are given by the following theorem:
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Theorem 2.3. (i) If $R_{1}^{id}\leq 1$ and $R_{1}^{ip}\leq 1$ , then $E_{1}^{i0}$ is GAS.

(ii) If $R_{1}^{id}>1$ and $\overline{R}_{1}^{ip}\leq 1$ , then $E_{1}^{u}$ is GAS.

(iii) If $R_{1}^{ip}>1$ and $\overline{R}_{1}^{id}\leq 1$ , then $E_{1}^{1p}$ is GAS.

(iv) If $\overline{R}_{1}^{u}>1$ and $\overline{R}_{1}^{ip}>1$ , then $\dot{p}_{1}+$ is GAS.

Proof. (i) Let us consider the Lyapunov function

$V_{0}=X_{1}-X\dot{i}^{0}\log X_{1}+V_{1}-V_{1}^{10}$ log $V_{1}+Y_{1}+Z_{1}$ .

.We have

$\dot{V}_{0}=(X_{1}-X_{1}^{i0})t\frac{(1-p)c}{X_{1}}-(b+e)-\omega_{1}Y_{1}-\phi_{1}z_{1}\}+(V_{1}-V_{1}^{10})t\frac{pc}{V_{1}}-(b+e)-\sigma\phi_{1}z_{1}\}$

$+Y_{1}\{w_{1}X_{1}-(b+m_{y})\}+Z_{1}\{\phi_{1}(X_{1}+\sigma V_{1})-(b+m_{z})\}$

$=(1-p)c(2- \frac{X_{1}^{10}}{X_{1}}-\frac{X_{1}}{X_{1}^{10}})+pc(2-\frac{V_{1}^{i0}}{V_{1}}-\frac{V_{1}}{V_{1}^{i0}})+w_{1}Y_{1}(X_{1}|0-\frac{b+m_{y}}{\omega_{1}})$

$+ \phi_{1}Z_{1}(X_{1}^{i0}+\sigma V\dot{i}^{0}-\frac{b+m_{z}}{\phi_{1}})$ .

We remark that $X_{1}^{i0}-(b+m_{y})/\omega_{1}\leq 0$ iff $\dot{R}_{1}^{d}\leq 1$ and $x\dot{i}^{0}+\sigma V\dot{i}^{0}-(b+m_{z})/\phi_{1}\leq 0$ iff
$R_{1}^{ip}\leq 1$ . Further it is clear that

$2- \frac{X_{1}^{l0}}{X_{1}}-\frac{X_{1}}{X_{1}^{i0}}\leq 0$ , $2- \frac{V_{1}^{\dot{|}0}}{V_{1}}-\frac{V_{1}}{V_{1}^{i0}}\leq 0$

because the arithmetic mean is larger than, or equals to the geometric mean. Therefore
$\dot{V}_{0}\leq 0$ because $R_{1}^{id}\leq 1$ and $R\dot{i}^{p}\leq 1$ , and we can conclude that by the Lyapunov-LaSalle’s
invariance principle, all the trajectories of (1) converges to $E_{1}^{i0}$ .

(ii) Let us consider the Lyapunov function

$V_{d}=X_{1}-X_{1}^{u}$ log $X_{1}+V_{1}-V_{1}^{id}\log V_{1}+Y_{1}-Y_{1}^{u}$ log $Y_{1}+Z_{1}$ .

Then

$\dot{V}_{d}=(X_{1}-X_{1}^{1d})\{\frac{(1-p)c}{X_{1}}-(b+e)-w_{1}Y_{1}-\phi_{1}z_{1}\}+(V_{1}-V_{1}^{id})t^{\frac{pc}{V_{1}}-(b+e)-\sigma\phi_{1}Z_{1}}\}$

$+(Y_{1}-Y_{1}^{u})\{w_{1}X_{1}-(b+m_{y})\}+Z_{1}\{\phi_{1}(X_{1}+\sigma V_{1})-(b+m_{z})\}$.
Since $b+e=(1-p)c/X_{1}^{u}-w_{1}Y_{1}^{u}=pc/V_{1}^{u}$ and $b+m_{y}=w_{1}X_{1}^{u}$ , we can evaluate

$\dot{V}_{d}=(1-p)c(2-\frac{X_{1}^{id}}{X_{1}}-\frac{X_{1}}{X_{1}^{id}})+pc(2-\frac{V_{1}^{u}}{V_{1}}$ 一 $\frac{V_{1}}{V_{1}^{id}})$

$+ \phi_{1}Z_{1}(X_{1}^{u}+\sigma V_{1}^{u}-\frac{b+m_{z}}{\phi_{1}})$ .
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We remark that $\phi_{1}(X_{1}^{id}+\sigma V_{1}^{id})-(b+m_{z})\leq 0$ iff $\overline{R}_{1}^{ip}\leq 1$ . In the similar manner, we can
show that $\dot{V}_{d}\leq 0$ because $\overline{R}_{1}^{ip}\leq 1$ . This completes the proof.

(iii) Let us consider the Lyapunov function

$V_{p}=X_{1}-X_{1}^{1p}$ log $X_{1}+V_{1}-V_{1}^{ip}$ log $V_{1}+Y_{1}+Z_{1}-Z_{1}^{ip}$ log $Z_{1}$ .

We have

$\dot{V}_{p}=(X_{1}-X_{1^{p}}^{j})t\frac{(1-p)c}{X_{1}}-(b+e)-\omega_{1}Y_{1}-\phi_{1}z_{1}\}+(V_{1}-V_{1}^{1p})t\frac{pc}{V_{1}}-(b+e)-\sigma\phi_{1}z_{1}\}$

$+Y_{1}\{\omega_{1}X_{1}-(b+m_{y})\}+(Z_{1}-Z_{1}^{ip})\{\phi_{1}(X_{1}+\sigma V_{1})-(b+m_{z})\}$ .

Since $b+e=(1-p)c/X_{1}^{ip}-\phi_{1}Z\dot{i}^{p}=pc/Vi^{p}-\sigma\phi_{1}^{f\dot{f}_{1}^{p}}$ and $b+m_{z}=\phi_{1}(X\dot{i}^{p}+\sigma Vi^{p})$ , we
can evaluate

$\dot{V}_{p}=(1-p)c(2-\frac{X_{1}^{ip}}{X_{1}}-\frac{X_{1}}{x\dot{i}^{p}})+pc(2-\frac{V_{1}^{ip}}{V_{1}}-\frac{V_{1}}{V_{1}^{ip}})+w_{1}Y_{1}(X_{1}^{ip}-\frac{b+m_{\nu}}{w_{1}})$.

We remark that $\omega_{1}X_{1}^{ip}-(b+m_{y})\leq 0$ iff $\overline{R}_{1}^{u}\leq 1$ . In the similar manner, we can show
that $\dot{V}_{p}\leq 0$ because $\overline{R}_{1}^{u}\leq 1$ . This completes the proof.

(iv) Let us consider the Lyapunov function

$V_{+}=X_{1}-X_{1}^{1+}\log X_{1}+V_{1}-V_{1}^{i+}\log V_{1}+Y_{1}-Yi^{+}$ log $Y_{1}+Z_{1}-Z\dot{i}^{+}\log Z_{1}$ .

Then

$\dot{V}_{+}=(X_{1}-X_{1}^{1+})\{\frac{(1-p)c}{X_{1}}-(b+e)-\omega_{1}Y_{1}-\phi_{1}z_{1}\}+(V_{1}-V_{1}^{i+})\{\frac{pc}{V_{1}}-(b+e)-\sigma\phi_{1}z_{1}\}$

$+(Y_{1}-Y_{1}^{i+})\{w_{1}X_{1}-(b+m_{\nu})\}+(Z_{1}-Z_{1}^{1+})\{\phi_{1}(X_{1}+\sigma V_{1})-(b+m_{z})\}$ .

Since $b+e=(1-p)c/X_{1}^{i+}-w_{q}Y_{1}^{i+}-\phi_{1}Z_{1}^{i+}=pc/V\dot{i}^{+}-\sigma\phi_{1}\dot{Z}_{1}^{+},$ $b+m_{y}=\omega_{1}X\dot{i}^{+}$ and
$b+m_{z}=\phi_{1}(X\dot{i}^{+}+\sigma V_{1}^{1+})$ , we can evaluate

$\dot{V}_{+}=(1-p)c(2-\frac{X_{1}^{1+}}{X_{1}}-\frac{X_{1}}{x\dot{i}^{+}})+pc(2-\frac{V\dot{i}^{+}}{V_{1}}$ 一 $\frac{V_{1}}{V\dot{i}^{+}})\leq 0$.

This completes the proof. $\square$

We can completely classify the dynamics of model (1) by the basic reproductive num-
bers. Table 1 summarizes the existence and stability conditions of the equilibria in model
(1).
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Equilibrium Existence conditions Stability conditions

$(a)p=0$ $E_{1}^{n0}$ Always $R_{1}^{nd}\leq 1$ and $R_{1}^{np}\leq 1$

$E_{1}^{nd}$ $1<R_{1}^{nd}$ $R_{1}^{np}<1$

$E_{1}^{np}$ $1<R_{1}^{np}$ $\overline{R}_{1}^{nd}<1$

$(b)p=1$ $E_{1}^{c0}$ Always ROP $\leq 1$

$E_{1}^{\varphi}$ $1<R_{1}^{\varphi}$ Always

$(c)0<p<1$ $E_{1}^{i0}$ Always $\dot{H}_{1}^{d}\leq 1$ and $R_{1}^{ip}\leq 1$

$E_{1}^{u}$ $1<R_{1}^{d}$ $\overline{R}_{1}^{ip}\leq 1$

$f\dot{f}_{1}^{p}$ $1<R_{1}^{ip}$ $\overline{R}_{1}^{u}\leq 1$

$E_{1}^{\dot{2}+}$ $1<\overline{R}_{1}^{u}$ and $1<\overline{R}_{1}^{ip}$ Always

Table 1: The existence and stability condition of the equilibria in model (1)

2.2 The disease transmission in Area 2

From the classification of the dynamics of model (1) in Table 1, we can easily understand
those in Area 2 by analyzing model (2). From the convergence theorem (see Theorem A.l
of [5]), the global behavior of model (2) is determined by the reduced system;

$X_{2}’=c+eX_{1}^{l}-bX_{2}-(w_{2}Y_{2}+\phi_{2}Z_{2})X_{2}$ ,
$V_{2}’=eV_{1}^{*}-bV_{2}-\sigma\phi_{2}Z_{2}V_{2}$ ,

(6)
$Y_{2}’=\omega_{2}Y_{2}X_{2}-(b+m_{y})Y_{2}$ ,
$Z_{2}’=\phi_{2}Z_{2}(X_{2}+\sigma V_{2})-(b+m_{z})Z_{2}$ ,

where $X_{1}^{*}$ and $V_{1}^{*}$ represent a corresponding equilibrium in model (1). Let $a_{1}=c+eX_{1}^{l}$

and $a_{2}=eV_{1}^{*}$ , and consider $a_{1},$ $a_{2}$ as any nonnegative constants. Then model (6) can be
considered as a special case of model (1) with $c=a_{1}+a_{2},$ $p=a_{2}/(a_{1}+a_{2})$ and $e=0$ .
We also divide the analysis into three situations concerned with the vaccination rate as
follows;
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$(a)$ No vaccination program: $p=0$ in Area 1
If the vaccination rate $p=0$ (No vaccination program) in Area 1, then model (6) is

$X_{2}’=c+eX_{1}^{*}-bX_{2}-(\omega_{2}Y_{2}+\phi_{2}Z_{2})X_{2}$ ,
$V_{2}’=-bV_{2}-\sigma\phi_{2}Z_{2}V_{2}$ ,

(7)
$Y_{2}’=\omega_{2}Y_{2}X_{2}-(b+m_{y})Y_{2}$ ,
$Z_{2}’=\phi_{2}Z_{2}(X_{2}+\sigma V_{2})-(b+m_{z})Z_{2}$ .

It is clear that $\lim_{tarrow\infty}V_{2}(t)=0$ and this system has the foUowing three possible $e$quilibria:

$E_{2}^{n0}=(X_{2}^{n0},0,0,0)$ , where $X_{2}^{n0}= \frac{c+eX_{1}^{*}}{b};$

$E_{2}^{nd}=(X_{2}^{nd}, 0, Y_{2}^{nd},0)$ , where $X_{2}^{nd}= \frac{b+m_{y}}{\omega_{2}},$ $Y_{2}^{nd}= \frac{c+eX_{1}^{*}-bX_{2}^{nd}}{\omega_{2}X_{2}^{nd}}$ ;

$E_{2}^{np}=(X_{2}^{np},0,0, Z_{2}^{np})$ , where $X_{2}^{np}= \frac{b+m_{z}}{\phi_{2}}$ , $Z_{2}^{np}= \frac{c+eX_{1}^{*}-bX_{2}^{np}}{\phi_{2}X_{2}^{np}}$ .

Here $X_{1}^{*}$ represents a corresponding one of $X_{1}^{n0},$ $X_{1}^{nd}$ or $X_{1}^{np}$ . IFMrther this model is
essentially same as model (3) and the dynamics can be completely decided by the following
basic reproductive numbers:

$R_{2}^{nd}= \frac{w_{2}}{b+m_{y}}X_{2}^{n0}$ , $R_{2}^{np}= \frac{\phi_{2}}{b+m_{z}}X_{2}^{n0}$ , $\overline{R}_{2}^{nd}=\frac{w_{2}}{b+m_{y}}X_{2}^{np}$ , $\overline{R}_{2}^{np}=\frac{\phi_{2}}{b+m_{z}}X_{2}^{nd}$ .

Clearly $E_{2}^{n0}$ always exists, $E_{2}^{nd}$ exists iff $R_{2}^{nd}>1$ and $E_{2}^{np}$ exists iff $R_{2}^{np}>1$ .
The dynamical properties of model (7) are given by the following theorem:

Theorem 2.4. (i) If $R_{2}^{nd}\leq 1$ and $R_{2}^{np}\leq 1$ , then $E_{2}^{n0}$ is GAS.

(ii) If $R_{2}^{nd}>1$ and $\overline{R}_{2}^{np}<1$ , then $E_{2}^{nd}$ is GAS.

(iii) If $R_{2}^{np}>1$ and $\overline{R}_{2}^{nd}<1$ , then $E_{2}^{np}$ is GAS.

The proofs of this $Th\infty rem$ are given in [7] (see its Theorem 3.1.).

$(b)$ Complete vaccination program: $p=1$ in Area 1
If the vaccination rate $p=1$ (Complete vaccination program) in Area 1, then model (6)
is

$X_{2}’=c-bX_{2}-(w_{2}Y_{2}+\phi_{2}Z_{2})X_{2}$,
$V_{2}’=eV_{1}^{*}-bV_{2}-\sigma\phi_{2}Z_{2}V_{2}$ ,

(8)
$Y_{2}’=w_{2}Y_{2}X_{2}-(b+m_{y})Y_{2}$ ,
$Z_{2}’=\phi_{2}Z_{2}(X_{2}+\sigma V_{2})-(b+m_{z})Z_{2}$ .
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This system has the following four possible equilibria:

$E_{2}^{c0}=(X_{2}^{c0}, V_{2}^{c0},0,0)$ , where $X_{2}^{\theta}= \frac{c}{b},$
$V_{2}^{\theta}= \frac{eV_{1}^{*}}{b};$

$E_{2}^{cd}=(X_{2}^{d}, V_{2}^{cd},Y_{2}^{cd}, 0)$ , where $X_{2}^{cd}= \frac{b+m_{\nu}}{\omega_{2}},$ $V_{2}^{cd}= \frac{eV_{1}^{*}}{b},$ $Y_{2}^{cd}= \frac{c-bX_{2}^{cd}}{w_{2}X_{2}^{cd}}$ ;

$E_{2}^{\varphi}=(X_{2}^{\varphi}, V_{2}^{\varphi},0, Z_{2}^{\varphi})$ , where $X_{2}^{q}= \frac{c}{b+\phi_{2}Z_{2}^{\varphi}},$ $V_{2}^{\varphi}= \frac{eV_{1}^{*}}{b+\sigma\phi_{2}Z_{2}^{\varphi}}$

and $Z_{2}^{\varphi}$ is the unique root of the following equation:

$\frac{\phi_{2}c}{b+\phi_{2}Z_{2}}+\frac{\sigma\phi_{2}eV_{1}^{*}}{b+\sigma\phi_{2}Z_{2}}=b+m_{z}$ ;

$E_{2}^{c+}=(X_{2}^{c+}, V_{2}^{c+},Y_{2}^{c+}, Z_{2}^{c+})$ , where $X_{2}^{c+}= \frac{b+m_{y}}{\omega_{2}},$ $V_{2}^{c+}= \frac{1}{\sigma}(\frac{b+m_{z}}{\phi_{2}}-\frac{b+m_{\nu}}{\omega_{2}})$ ,

$Y_{2}^{c+}=\frac{1}{\omega_{2}}(\frac{c-bX_{2}^{c+}}{X_{2}^{c+}}-\phi_{2}z_{2}^{c+}),$ $Z_{2}^{c+}= \frac{eV_{1}^{l}-bV_{2}^{c+}}{\sigma\phi_{2}V_{2}^{c+}}$ .

Here $V_{1}^{*}$ represents a corresponding one of $V_{1}^{\infty}$ or $V_{1}^{q}$ . This model is also essentially
same as model (1) and the dynamics can be completely decided by the following basic
reproductive numbers:

$R_{2}^{d}= \frac{\omega_{2}}{b+m_{\nu}}X_{2}^{\theta}$ , $R_{2}^{q}= \frac{\phi_{2}}{b+m_{z}}X_{2}^{\omega}+\frac{\sigma\phi_{2}}{b+m_{z}}V_{2}^{\theta}$,

$\overline{R}_{2}^{d}=\frac{w_{2}}{b+m_{\nu}}X_{2}^{\varphi}$ , $\overline{R}_{2}^{\wp}=\frac{\phi_{2}}{b+m_{z}}X_{2}^{cd}+\frac{\sigma\phi_{2}}{b+m_{l}}V_{2}^{d}$ .

We can also conclude the existence conditions of these equilibria as same as model (1) in
the following lemma.

Lemma 2.3. (i) $E_{2}^{d1}$ always exists in $\mathbb{R}_{+}^{4}$ .

(ii) $E_{2}^{d}$ exists in $\mathbb{R}_{+}^{4}$ iff $1<R_{2}^{d}$ .

(iii) $E_{2}^{\varphi}em\dot{s}ts$ in $\mathbb{R}_{+}^{4}$ iff $1<R_{2}^{\varphi}$ .
(iv) $E_{2}^{c+}e$ vists in $\mathbb{R}_{+}^{4}$ iff $1<\overline{R}_{2}^{d}$ and $1<\overline{R}_{2}^{\varphi}$ .

Further we also remark that $\overline{R}_{2}^{d}<1<R_{2}^{d}$ and $\overline{R}_{2}^{\varphi}<1<\ovalbox{\tt\small REJECT}$ can not hold simulta-
neously and the dynamical properties of model (8) are given by the following theorem:

Theorem 2.5. (i) If $oe\leq 1$ and $R_{2}^{\varphi}\leq 1$ , then $E_{2}^{\infty}$ is GAS.

(ii) If $oe>1$ and $\overline{R}_{2}^{\varphi}\leq 1$ , then $E_{2}^{d}$ is GAS.

(iii) If $R_{2}^{\wp}>1$ and $\overline{R}_{2}^{d}\leq 1$ , then $E_{2}^{\varphi}$ is GAS.
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(iv) If $\overline{R}_{2}^{d}>1$ and $\overline{R}_{2}^{\varphi}>1$ , then $E_{2}^{c+}$ is GAS.

The proofs of this Theorem are essentially the same as Theorems 2. 3..

$(c)$ Incomplete vaccination progmm: $0<p<1$ in Area 1
If the vaccination rate $0<p<1$ (Incomplete vaccination program), then we have to
consider system (6) directly. This syst$em$ has the following four possible equilibria:

$\dot{F}_{2}^{0}=(X_{2}^{10}, V_{2}^{i0},0,0)$ , where $X_{2}^{10}= \frac{c+eX_{1}^{l}}{b},$ $V_{2}^{O}= \frac{eV_{1^{l}}}{b}$ ;

$f\dot{f}_{2}^{d}=(X_{2}^{u}, V_{2}^{u}, Y_{2}^{u},0)$, where $X_{2}^{id}= \frac{b+m_{y}}{\omega_{2}},$ $V_{2}^{id}= \frac{eV_{1}^{*}}{b},$ $Y_{2}^{u}=\frac{c+eXi-bX_{2}^{u}}{w_{2}X_{2}^{u}}$ ;

$E_{2}^{jp}=(X_{2}^{1p}, V_{2}^{ip}, 0, Z_{2}^{1p})$ , where $X_{2}^{1p}= \frac{c+eX_{1}^{l}}{b+\phi_{2}Z_{2}^{ip}},$ $V_{2}^{ip}= \frac{eVi}{b+\sigma\phi_{2}Z_{2}^{1p}}$

and $Z_{2}^{ip}$ is the unique root of the following equation:

$\frac{\phi_{2}(c+eX_{1}^{*})}{b+\phi_{2}Z_{2}}+\frac{\sigma\phi_{2}eV_{1}^{*}}{b+\sigma\phi_{2}Z_{2}}=b+m_{z}$;

$\dot{p}_{2}+=(X_{2}^{1+}, V_{2}^{i+}, Y_{2}^{i+}, Z_{2}^{1+})$ , where $X_{2}^{i+}= \frac{b+m_{y}}{w_{2}},$ $V_{2}^{i+}= \frac{1}{\sigma}(\frac{b+m_{z}}{\phi_{2}}-\frac{b+m_{y}}{\omega_{2}})$ ,

$Y_{2}^{1+}=\frac{1}{w_{2}}(\frac{c+eX_{1}^{*}.-bX_{2}^{1+}}{X_{2}^{1+}}-\phi_{2}z_{2}^{1+}),$ $Z_{2}^{i+}= \frac{eV_{1}^{*}-bV_{2}^{i+}}{\sigma\phi_{2}V_{2}^{1+}}$ .

Here $X_{1}^{*}$ and $V_{1}^{*}$ represents a corresponding pair of $X_{1}^{i0}$ and $V_{1}^{i0},$ $X_{1}^{id}$ and $V_{1}^{id},$ $X_{1}^{ip}$ and
$V_{1}^{ip}$ or $X_{1}^{i+}$ and $V\dot{i}^{+}$ . This model is also essentially same as model (1) and the dynamics
can be completely decided by the following basic reproductive numbers:

$R_{2}^{u}= \frac{\omega_{2}}{b+m_{y}}X_{2}^{i0}$ , $R_{2}^{ip}= \frac{\phi_{2}}{b+m_{l}}X_{2}^{10}+\frac{\sigma\phi_{2}}{b+m_{l}}V_{2}^{i0}$,

$\overline{R}_{2}^{u}=\frac{w_{2}}{b+m_{y}}X_{2}^{1p}$ , $\overline{R}_{2}^{1p}=\frac{\phi_{2}}{b+m_{z}}X_{2}^{u}+\frac{\sigma\phi_{2}}{b+m_{z}}V_{2}^{id}$ .

We can also conclude the existence conditions of these equilibria as same as model (1) in
the following lemma.

Lemma 2.4. (i) $E_{2}^{:0}$ always exists in $\mathbb{R}_{+}^{4}$ .

(ii) $E_{2}^{u}$ exists in $\mathbb{R}_{+}^{4}$ iff $1<R_{2}^{u}$ .

(iii) $f\dot{f}_{2}^{p}$ nists in $\mathbb{R}_{+}^{4}$ iff $1<R_{2}^{1p}$ .

(iv) $\dot{p}_{2}+e\dot{r}sts$ in $\mathbb{R}_{+}^{4}$ iff $1<\overline{R}_{2}^{u}$ and $1<\overline{R}_{2}^{1p}$ .
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Further we also remark that $\overline{R}_{2}^{id}<1<R_{2}^{u}$ and $\overline{R}_{2}^{ip}<1<R_{2}^{ip}$ can not hold simulta-
neously and the dynamical properties of model (6) are given by the following theorem:

Theorem 2.6. (i) If $R_{2}^{id}\leq 1$ and $R_{2}^{ip}\leq 1$ , then $E_{2}^{i0}$ is GAS.

(ii) If $R_{2}^{id}>1$ and $\overline{R}_{2}^{1p}\leq 1$ , then $E_{2}^{u}$ is GAS.

(iii) If $R_{2}^{ip}>1$ and $\overline{\mathfrak{B}}^{d}\leq 1$ , then $E_{2}^{ip}$ is GAS.

(iv) If $\overline{R}_{2}^{u}>1$ and $\overline{R}_{2}^{ip}>1$ , then $\dot{g}_{2}+is$ GAS.

The proofs of this Theorem ar$e$ essentially the sam$e$ as Theorems 2. S..
We can completely classify the dynamics of model (6) by the basic reproductive num-

bers. Table 2 summarizes the existence and stability conditions of the equilibria in model
(6). Therefore, from Table 1 and Table 2, we can obtain the completely classification of
the dynamics of model (2).

Equilibrium Existence conditions Stability conditions

$(a)p=0$ $E_{2}^{n0}$ Always $1\psi\leq 1$ and $R_{2}^{np}\leq 1$

$E_{2}^{nd}$ $1<\mathfrak{B}^{d}$ $\overline{R}_{2}^{np}<1$

$E_{2}^{np}$ $1<R_{2}^{np}$ $\overline{R}_{2}^{nd}<1$

$(b)p=1$ $E_{2}^{\theta}$ Always $R_{2}^{d}\leq 1$ and $R_{2}^{\varphi}\leq 1$

$E_{2}^{d}$ $1<R_{2}^{i}$ $\overline{R}_{2}^{\varphi}\leq 1$

$E_{2}^{\varphi}$ $1<R_{2}^{\varphi}$ $\overline{R}_{2}^{cd}\leq 1$

$E_{2}^{c+}$ $1<o\overline{e}$ and $1<\overline{R}_{2}^{\varphi}$ Always

$(c)0<p<1$ $E_{2}^{i0}$ Always $R_{2}^{u}\leq 1$ and $R_{2}^{ip}\leq 1$

$E_{2}^{:d}$ $1<\dot{\mathfrak{B}}^{d}$ $\overline{R}_{2}^{ip}\leq 1$

$E_{2}^{1p}$ $1<R_{2}^{ip}$ $\overline{R}_{2}^{u}\leq 1$

$E_{2}^{1+}$ $1<\overline{R}_{2}^{u}$ and $1<\overline{R}_{2}^{ip}$ Always

Table 2: The existence and stability condition of the equilibria in model (6)
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