Title
On Plane Curve Which Has Similar Caustic (Modeling and Complex analysis for functional equations)

Author(s)
Heng, Thai

Citation
数理解析研究所講究録 (2008), 1582: 63-69

Issue Date
2008-02

URL
http://hdl.handle.net/2433/81454

Type
Departmental Bulletin Paper
On Plane Curve Which Has Similar Caustic

Thai Heng
National Institute of Education, Cambodia

1. What is a caustic?

A caustic is the envelope of rays reflected by a curve. For example, if we put a coffee cup on the table and we make parallel light rays on the coffee cup, then we will see a caustic on the surface of coffee. See Figure 1.

![Figure 1](image1.png)

Figure 1

The contents of this paper are as follows: In Section 2, we study how we calculate the caustic from a given curve. As examples, we show that the caustic of a half circle is an epicycloid and that the caustic of a cycloid is also a cycloid whose size is a half of the original cycloid. In Section 3, we study how we calculate the original curve from a given caustic. As an example, we show that, if the caustic is a cycloid, the original curve is also a cycloid. In Section 4, we prove that the cycloid is the unique curve whose caustic is similar to the original curve.

2. Parametrization by angle

Consider a smooth curve on xy-plane. Assume that light rays are parallel to the y-axis. Let θ be the angle between the y-axis and the tangent line of the curve at a point P. Assume that θ is increasing from 0 to π as P varies from end to end of the curve. So we can express the point P by θ. Let $\alpha(\theta) = (x(\theta), y(\theta))$ be a parametrization of a given curve.
How can we find the caustic from a given curve? By the definition of θ, we have
\[
\frac{y'(\theta)}{x'(\theta)} = \cot \theta. \tag{1}
\]
Therefore, the equation of reflected ray from $P(x(\theta), y(\theta))$ is given by
\[
y = \cot 2\theta (x - x(\theta)) + y(\theta). \tag{2}
\]
By differentiating both sides with respect to θ and using (1), we have
\[
y'_{\theta} = -\frac{2}{\sin^2 2\theta} (x - x(\theta)) - \cot 2\theta x'(\theta) + y'(\theta)
\]
\[
= \frac{-2}{\sin^2 2\theta} (x - x(\theta)) - \frac{\cos 2\theta}{\sin 2\theta} x'(\theta) + \frac{\cos \theta}{\sin \theta} x'(\theta)
\]
\[
= \frac{-2}{\sin^2 2\theta} (x - x(\theta)) + \frac{1}{\sin 2\theta} x'(\theta).
\]
Setting $y'_{\theta} = 0$ gives the envelope. By setting $y'_{\theta} = 0$, we have
\[
x = x(\theta) + \frac{1}{2} \sin 2\theta x'(\theta) = x(\theta) + \sin \theta \cos \theta x'(\theta).
\]
By putting it to (2), we have
\[
y = y(\theta) + \frac{1}{2} \cos 2\theta x'(\theta) = y(\theta) + \frac{1}{2} \frac{\sin \theta (\cos^2 \theta - \sin^2 \theta)}{\cos \theta} y'(\theta).
\]
Therefore, if we put
Then \(\beta(\theta) = (u(\theta), v(\theta)) \) is the caustic of \(\alpha(\theta) \). By the definition of \(\theta \), we have
\[
\frac{v'(\theta)}{u'(\theta)} = \cot 2\theta.
\] (5)

Example 1. When \(\alpha(\theta) = (-\cos \theta, \sin \theta) \), find its caustic \(\beta(\theta) \).

Solution. Since \(\alpha(\theta) \) satisfies (1), we can apply our formulas to this example. By using (3) and (4), we have
\[
u(\theta) = \sin \theta + \frac{1}{2} \cos 2\theta \sin \theta = \frac{3}{4} \sin \theta + \frac{1}{4} \sin 3\theta.
\]
Thus we have \(\beta(\theta) = \left(-\frac{3}{4} \cos \theta - \frac{1}{4} \cos 3\theta, \frac{3}{4} \sin \theta + \frac{1}{4} \sin 3\theta \right) \). Therefore the caustic of a half circle is an epicycloid.

Example 2. When \(\alpha(\theta) = (2\theta - \sin 2\theta, 1 - \cos 2\theta) \), find its caustic \(\beta(\theta) \).

Solution. Since \(\alpha(\theta) \) satisfies (1), we can apply our formulas to this example. By using (3) and (4), we have
\[
u(\theta) = 1 - \cos 2\theta + \frac{1}{2} \cos 2\theta(2 - 2\cos 2\theta) = \left(1 - \cos 2\theta \right) = \frac{1}{2}(1 - \cos 4\theta).
\]
Thus we have \(\beta(\theta) = \left(\frac{1}{2}(4\theta - \sin 4\theta), \frac{1}{2}(1 - \cos 4\theta) \right) \). Therefore the caustic of a cycloid is also a cycloid.

3. **Inverse problem**

From (3), we have
\[
x'(\theta) + \frac{1}{\sin \theta \cos \theta} x(\theta) = \frac{u(\theta)}{\sin \theta \cos \theta}
\]
The above equality is equivalent to
\[\{x(\theta) \tan \theta\}' = \frac{u(\theta)}{\cos^2 \theta}. \] (6)

When \(0 < \theta < \frac{\pi}{2} \), by integrating (6), we have

\[x(\theta) \tan \theta = \int_0^\theta \frac{u(\phi)}{\cos^2 \phi} \, d\phi. \]

When \(\frac{\pi}{2} < \theta < \pi \), by integrating (6), we have

\[-x(\theta) \tan \theta = \int_\theta^\pi \frac{u(\phi)}{\cos^2 \phi} \, d\phi. \]

Therefore we obtain

\[
\begin{cases}
 u(0) & (\theta = 0) \\
 \cot \theta \int_0^\theta \frac{u(\phi)}{\cos^2 \phi} \, d\phi & (0 < \theta < \frac{\pi}{2}) \\
 u \left(\frac{\pi}{2} \right) & (\theta = \frac{\pi}{2}) \\
 -\cot \theta \int_\theta^\pi \frac{u(\phi)}{\cos^2 \phi} \, d\phi & (\frac{\pi}{2} < \theta < \pi) \\
 u(\pi) & (\theta = \pi)
\end{cases}
\]

(7)

Example 3. When \(\beta(\theta) = \left(\frac{1}{2}(4\theta - \sin 4\theta), \frac{1}{2}(1 - \cos 4\theta) \right) \), find the original curve \(\alpha(\theta) \).

Solution. Since \(\beta(\theta) \) satisfies (5), we can apply our formula to this example. When

0 < \(\theta < \frac{\pi}{2} \), by using (7), we have

\[
x(\theta) = \cot \theta \int_0^\theta \frac{(4\phi - \sin 4\phi)}{2\cos^2 \phi} \, d\phi
= \frac{1}{2} \cot \theta \left(\int_0^\theta \frac{4\phi}{\cos^2 \phi} \, d\phi - \int_0^\theta \frac{\sin 4\phi}{\cos^2 \phi} \, d\phi \right)
= \frac{1}{2} \cot \theta \left(\int_0^\theta \frac{4\phi}{\cos^2 \phi} \, d\phi - \int_0^\theta \frac{4\sin \phi \cos \phi (\cos^2 \phi - \sin^2 \phi)}{\cos^2 \phi} \, d\phi \right)
= \frac{1}{2} \cot \theta \left(4\theta \tan \theta - 4 \int_0^\theta \tan \phi \, d\phi - 8 \int_0^\theta \sin \phi \cos \phi \, d\phi + 4 \int_0^\theta \tan \phi \, d\phi \right)
= \frac{1}{2} \cot \theta \left(4\theta \tan \theta - 4\sin^2 \theta \right) = 2\theta - \sin 2\theta.
\]
When $\frac{\pi}{2} < \theta < \pi$, by using (7), we have

\[
x(\theta) = -\cot \theta \int_{\theta}^{\pi} \frac{4\phi - \sin 4\phi}{2\cos^2 \phi} d\phi
\]

\[
= -\frac{1}{2} \cot \theta \left(\int_{\theta}^{\pi} \frac{4\phi}{\cos^2 \phi} d\phi - \int_{\theta}^{\pi} \frac{4\sin \phi \cos \phi (\cos^2 \phi - \sin^2 \phi)}{\cos^2 \phi} d\phi \right)
\]

\[
= -\frac{1}{2} \cot \theta \left(-4\theta \tan \theta - 4\int_{\theta}^{\pi} \tan \phi d\phi - 8\int_{\theta}^{\pi} \sin \phi \cos \phi d\phi + 4\int_{\theta}^{\pi} \tan \phi d\phi \right)
\]

\[
= -\frac{1}{2} \cot \theta (-4\theta \tan \theta + 4\sin^2 \theta) = 2\theta - \sin 2\theta.
\]

Therefore we have $x(\theta) = 2\theta - \sin 2\theta$. By using (1), we have

\[
y'(\theta) = \cot \theta x'(\theta) = 2 \cot \theta \cdot (1 - \cos 2\theta) = 2 \sin 2\theta.
\]

Therefore we have

\[
y(\theta) = 2\int_{0}^{\theta} \sin 2\phi d\phi = 1 - \cos 2\theta.
\]

Thus we obtain $\alpha(\theta) = (2\theta - \sin 2\theta, 1 - \cos 2\theta)$.

4. **On plane curve which has similar caustic**

Example 2 says that the caustic of cycloid is also a cycloid. So a question arises: "Is there another curve which is similar to its caustic?" The following theorem is an answer of this problem.

Theorem. Suppose that a curve $\alpha(\theta)$ $(0 \leq \theta \leq \pi)$ with $\alpha(0) = (0, 0)$, $\alpha(\pi) = (2\pi, 0)$ has a caustic $\beta(\theta)$ which consists of two curves both similar to $\alpha(\theta)$ in ratio $\frac{1}{2}$, that is,

\[
\beta(\theta) = \begin{cases}
\frac{1}{2} \alpha(2\theta) & (0 \leq \theta \leq \frac{\pi}{2}) \\
(\pi, 0) + \frac{1}{2} \alpha(2\theta - \pi) & (\frac{\pi}{2} \leq \theta \leq \pi),
\end{cases}
\]

then $\alpha(\theta) = (2\theta - \sin 2\theta, 1 - \cos 2\theta)$.

Proof. Put $\alpha_0(\theta) = (x_0(\theta), y_0(\theta)) = (2\theta - \sin 2\theta, 1 - \cos 2\theta)$. In Example 2, we already proved that $\alpha_0(\theta)$ satisfies the assumption of the theorem. We assume that there is a curve
\(\alpha_i(\theta) = (x_i(\theta), y_i(\theta)) \) which also satisfies the assumption. Then by (7), both \(x_0(\theta) \) and \(x_1(\theta) \) satisfy

\[
x_i(\theta) = \begin{cases}
0 & (\theta = 0) \\
\cot \theta \int_0^\theta \frac{x_i(2\phi)}{2\cos^2 \phi} \, d\phi & (0 < \theta < \frac{\pi}{2}) \\
\pi & (\theta = \frac{\pi}{2}) \\
\pi - \cot \theta \int_\theta^{\frac{\pi}{2}} \frac{x_i(2\phi - \pi)}{2\cos^2 \phi} \, d\phi & (\frac{\pi}{2} < \theta < \pi) \\
2\pi & (\theta = \pi).
\end{cases}
\]

Put \(M = \max_{0 \leq \theta \leq \pi} |x_1(\theta) - x_0(\theta)| \). Then we can calculate as follows:

\[
\sup_{0 \leq \theta \leq \frac{\pi}{2}} |x_1(\theta) - x_0(\theta)| = \sup_{0 \leq \theta \leq \frac{\pi}{2}} \left| \cot \theta \int_0^\theta \frac{x_i(2\phi)}{2\cos^2 \phi} \, d\phi - \cot \theta \int_0^\theta \frac{x_0(2\phi)}{2\cos^2 \phi} \, d\phi \right|
\leq \sup_{0 \leq \theta \leq \frac{\pi}{2}} \left\{ \cot \theta \int_0^\theta \frac{1}{2\cos^2 \phi} |x_i(2\phi) - x_0(2\phi)| \, d\phi \right\}
\leq \sup_{0 \leq \theta \leq \frac{\pi}{2}} \left\{ \cot \theta \int_0^\theta \frac{M}{2\cos^2 \phi} \, d\phi \right\} = \frac{M}{2},
\]

\[
\sup_{\frac{\pi}{2} \leq \theta \leq \pi} |x_1(\theta) - x_0(\theta)| = \sup_{\frac{\pi}{2} \leq \theta \leq \pi} \left| \pi - \cot \theta \int_\theta^{\frac{\pi}{2}} \frac{x_i(2\phi - \pi)}{2\cos^2 \phi} \, d\phi + \cot \theta \int_\theta^{\frac{\pi}{2}} \frac{x_0(2\phi - \pi)}{2\cos^2 \phi} \, d\phi \right|
\leq \sup_{\frac{\pi}{2} \leq \theta \leq \pi} \left\{ \cot \theta \int_\theta^{\frac{\pi}{2}} \frac{1}{2\cos^2 \phi} |x_i(2\phi - \pi) - x_0(2\phi - \pi)| \, d\phi \right\}
\leq \sup_{\frac{\pi}{2} \leq \theta \leq \pi} \left\{ \cot \theta \int_\theta^{\frac{\pi}{2}} \frac{M}{2\cos^2 \phi} \, d\phi \right\} = \frac{M}{2}.
\]

Therefore we have \(M \leq \max \left\{ 0, \frac{M}{2}, 0, \frac{M}{2} \right\} = \frac{M}{2} \). Thus we have \(M = 0 \), that is,

\(x_i(\theta) = x_0(\theta) \) for every \(\theta \). Since \(\frac{y_i'(\theta)}{x_i'(\theta)} = \frac{y_0'(\theta)}{x_0'(\theta)} = \cot \theta \), we have \(y_i'(\theta) = y_0'(\theta) \).

Since we have \(y_i(0) = y_0(0) \), we obtain \(y_i(\theta) = y_0(\theta) \) for every \(\theta \). Thus \(\alpha_0(\theta) \) is the only curve satisfying the assumption.

Acknowledgement. The author would like to thank Professor Kenzi Odani who helps him during this paper work.
References

Department of Mathematics
National Institute of Education
Corner Preah Sihanouk Boulevard / Preah Norodom Boulevard, Sangkat Chey Chum Neas, Khan Daun Penh, Phnom Penh 12207, Cambodia