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Asymptotic forms of slowly decaying
positive solutions of second-order
quasilinear ordinary differential equations
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1 Introduction
Let us consider the quasilinear ODE
(a(®)w|* ') + b(t)|ul*u = 0, near+ oo (A)

where we assume that & > 0 and A > 0 are constants, a(t) and b(t) are positive continuous
functions satisfying [* a(¢)~Y/*dt < co. Every positive solution u of (A) satisfies one of
the following three asymptotic properties as ¢ — o0o:

u(t) ~c; for some constantc; > 0; (1.1)
o0
u(t) ~ ¢z /t‘ ‘a(s)~Y/2ds for some constant c; > O; (1.2)
and
u(t) - 0 and ) — 00. (1.3)

I a(s)~Yeads

Asymptotic properties of solutions u satisfying either (1.1) or (1.2) were widely inves-
tigated. For example, necessary and sufficient conditions of existence of such solutions
were established in [4, 7]. On the other hand there seems to be less information about
qualitative properties of solutions u satisfying (1.3). Motivated by this fact, in the article
we will discuss about asymptotic behavior of solutions u satisfying (1.3); in particular, we
try to find exact asymptotic forms of such solutions near +o0o. In what follows we refer
solutions u satisfying (1.3) as slowly decaying solutions.

Remark 1. When [* a(t)~V/®dt = 0o, Eq (A) reduces to the simpler one of the form
(1e/|*" ') + b(t)|u|*'u =0 near + oo,

where E(t) is a positive continuous function. Studies of this equation were, for example, the
main objective of [6]; and asymptotic properties of solutions have been fully established
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2 Preparatory observations and results

Asymptotic forms of slowly decaying solutions may be strongly affected by those of
coefficient functions a(t), b(t) and the exponents a and X. Therefore let us consider the
following ODE, which has more restrictive appearance than Eq (A):

Pl * W) + (1 +e®)|u*tu =0 near + oc. (E)

In the sequel we assume the next conditions:

(A1) a, 8, X and o are constants satisfying A > a > 0 and 8 > «;
(Az) &(t) is a continuous (or C*-)function defined near +oco satisfying lim, . £(t) = 0.

Additional conditions will be given later.
Since we can regard Eq (E) as a “perturbed equation” of the ODE
Pl |* ') +t°|ul*'u =0 near + oo, (Eo)

we conjecture that slowly decaying solutions of Eq (E) and those of Eq (Eg) may have
the same asymptotic behavior near +o00 in some sense, if (¢) is sufficiently small. It is
easily seen that Eq (E,) has an exact slowly decaying solution ug given by

up(t) = Ct 7, (2.1)
where
k=1t "/\“_(ﬁ ~)  and G = k(B — alk + 1)}
if , ]\ :
(ﬁ-—-a)—1<a<a(ﬂ—a)—~1. (2.2)

Below we always assume (2.2). We can show that our conjecture is true in various cases:

Theorem 1. Leta<land B—alk+1)—k#0. If

2
either /oo E—(?—dt <oo or /oo |e'()]dt < oo, (2.3)

then every slowly decaying positive solution u of Eq (E) satisfies u(t) ~ uo(t) as t — oo,
where up(t) is given by (2.1).

Theorem 2. Leta>1and B —a(k+1) -k #0. If
(e <]
lim te'(t) =0 and f I€'(@)]dt < oo, (2.4)

then every slowly decaying positive solution u of Eq (E) satisfies u(t) ~ uo(t) as t — oo.
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Theorem 3. Let o > 1 and o(2k+1)~ 3 < 0. If (2.3) holds, then every slowly decaying
positive solution u of Eq (E) satisfies u(t) ~ uo(t) as t — oo.

Example 1. Let N > m > 1 and N > 2. Consider radial solutions u = u(|z|) of the
following quasilinear PDE in an exterior domain of R¥ :

div(|Du|™2Du) + |z|(1 + |z|™®)|u/* 'u =0 near oo,

where A\>m—-1,/€eR,0>0,and —-m< £ < —rh—?‘_—f(N—m) — N. We know that u solves
the ODE
(TN_llul|m—2u')’ +,,.N—1+t(1 +r"’)|u|’\'1u =0 near + oo.

By Theorems 1 and 2, if A # (mN — N + mf)/(N — m), then every slowly decaying
positive solution u of this equation satisfies

u(r) ~ Ar~Em/O-mtl) g p 400,

where A is a positive constant given by

pemir _ [_£+m \"T NA—Nm+ N —mf—m)+¢
T \l-m+1 A—-m+1 )

Remark 1. For the autonomous equation div(|Du|™2Du) + |u|*~'u = 0, the assertion
of Example 1 was established in [1] based on the theory of autonomous dynamical systems.
Related results are found in [3, 5].

3 Sketches of the proof of the results

We give the outline of the proof of Theorems 1 and 2. We begin with several auxiliary
results.

Lemma 1. Let u(t) be a slowly decaying positive solution of (E). Then
u(t) = O(uo(t)) and u'(t) = O(lug(t)]) as t— oo. (3.1)
Proof. An integration of the both sides of Eq (E) on [to,t] gives
t
18(—u/())® > f r?(1 + e(r))udr,
to
where ?; is a sufficiently large number. Since u is a decreasing function, we have

/(1) > u(e) [ “ro(1 + e(r))dr;
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that is,
—(E)u(t) Ve > (t-ﬂ / (14 e(r))dr) .

One more integration of the both sides gives the estimates for u in (3.1).
To get the estimates for v/, it suffices to notice the inequality

' t
P (~w/()* < G [ rou(r)dr,
to :
where C; > 0 is a constant. Note that , to get this inequality, we must use the property

lim; o0 tP(—0'(£))® = o0.

Lemma 2. Let u(t) be a slowly decaying positive solution of (E). Put t = e* and
u/uo = v. Then

(i) v, and v are bounded, and v — kv < 0 near +00, where - = d/ds;

(ii) v satisfies the ODE

{(kv = 9)°} + {8 ~ a(k + 1)}(kv — 9)* = C**{1 4+ 6(s)}»* =0 near +o0, (3.2)

where 6(s) = e(e®).
The proof of this lemma is based on direct computations; hence we omit it.

Remark 2. Equation (3.2) can be rewritten as
U+ (g -2k - 1) v—k (g —-k- 1) v+ C {1+ 8(s)}* =0. (3.3)

.~ Lemma 3. Let f(s) be a C*-function near +oo satisfying f(s) = O(1) as s — co and
T f(s)%ds < 0o. Then lim, o f(s) = 0.

The proof of this lemma will be found in [6].

Proof of Theorem 1. By the change of variables (¢,u) — (s,v) introduced in Lemma
2, we obtain Eq (3.2). We note that the integral conditions indicated in (2.3) are equivalent
to

/oo 3(s)%ds < o0 (3.4)

and o
/ 16(s)|ds < o0, (35)

respectively.
Step 1. We show that [*°1(s8)%ds < co. We multiply Eq (3.2) by ¥, and integrate the

resulting equation on [so, s] to obtain

[ {Gkv =) odr + {8 - alk + )} [ (kv - 5)sdr



A—a s
—f+ 1v’\+1 - QX _/;o 6(r)v*vdr = const,.

Since integral by parts implies that

/, (kv — )7} vdr = — / {(kv = 0)*) (kv — 0)dr + & / "{(kv — ©)*} vdr

a
a+1l
we obtain from (3.6)

(kv — 9)°* + ku(kv — ©)° — k / " (kv — 5)%%dr + const,
S0

a
a+1

(kv — 8)°*! + kv(kv — 9)° + {8 — a(k + 1) — k} / " (kv — 9)*0dr

A

A—-ar. N 8
M1 Cr-a / §(r)v*vdr = const.
80 '

TA+1
The boundedness of v and © shown in Lemma 2 imply that

{B—a(k+1)—k} /‘(kv — 9)*0dr — @ /’ §(r)v*vdr = 0O(1) as s — oo.

30

Now, since 0 < a < 1, the inequality
(X =Y )X -Y) 2 coX -Y)) (X +Y)*!

forall X,Y>0 with X+Y >0

holds for some constant ¢y > 0. Therefore we obtain
{(kv)* = (kv — 9)°}0 2 co((kv) + (kv — ))* 0%

that is,
(kv — )% < —¢19% + k%v®0,
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(3.6)

(3.7)

(3.8)

(3.9)

‘where ¢; > 0 is a constant. Let B —a(k+1) -k > 0. From (3.7) and (3.9) we find that

—e{f = alk+1) ~ k} [ idr+ {8 alk+1) - k}a-%%vw

> A« /‘ 5(r)v*vdr + O(1) as s — oo.
80

(3.10)

Suppose [®e(t)%dt/t < oo, that is, (3.4) holds. Schwarz’s inequality and (3.10) imply

that , ,
c /a V2dr < c3 — ¢4 / 5(r)viodr
0

30

<cs+ecs ( /a : 6(r)2dr) 7 ( /., : i)2d7‘) i
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with some positive constants ¢, 3, c4 and cs. We therefore obtain [* 9%dr < co. Suppose
next [*°|e(t)|dt < oo, that is, (3.5) holds. We find from (3.10) that

s A1\
) _ $ v
Cg[sovdTS63 04,/,05(T)<A+1) dr

_ G A1 _ % oAl Y
< cg T 16(s)v 67/.90 o(r)v™dr < cg +ng;o |0(r)|dr,

where cg, 7, cg and cg are some positive constants. Hence we obtain [ 92dr < co. The
case where # — a(k + 1) — k < 0 can be treated similarly.

Since we have shown [* 9%dr < 00, and & < 1, Eq (3.3) shows that & = O(1) as s — oo.
Therefore by Lemma 3 we find that lim, o, 9(s) = 0.

Step 2. We show that liminf,_,., v(s) > 0. To see this by contradiction, we will derive
a contradiction by assuming lim inf, ,., v(s) = 0. The argument is divided into the two
cases:

Case (a): v(s) monotonically decreases to 0 (and so, ¥(s) < 0);

Case (b): 9(s) changes the sign in any neighborhood of +o0.

Let case (a) occur. Put v = z; and ¥ = z,, and z = (z;,z;). Then, z satisfies the
binary system

= Az + f(s,z), (3.11)
where
Ao 0 1
- (k(g—k—l) —(§—2k-—1) )
and ’

0
flaz) = ( —EL+ 8(8)}klaal + [zl ) |

Here we have used the fact that v(s) > 0 and ¥(s) < 0. Since
(klza| + |22)' |21 < (max{1, k})'™* (|21 + [22])**+,

and (v(s),v(s)) corresponds to a solution z(s) of system (3.11) satisfying lim,_., z(s) = 0,
by [2, Chapter 3, Theorem 5] we have

lim 1_"3_”_2’@‘_' —A | (3.12)

8—00

where A is the real part of an eigenvalue of A. All the eigenvalues of A are k and
—(B/a — k — 1); the former is positive and the latter negative. Since ||z(s)|| — 0, we
have A = —(8/a — k — 1). By the assumption (2.2) we find a small > 0 satisfying
0+ AM—B/a+ 1) + An < —1. By (3.12) we obtain

v(s) < el~(B/a—k-1+nks  negr 4 oo,
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This means that u(t) < ¢~4/+147 near +o00. Then

t
tﬁ(_ul(t))a < cl/ rd+A(—ﬁ/a+1)+Andr = 0(1) ast — oo.
ta

This contradicts the property of slowly decaying solution lim;_,., t3(—u/(t))* = 0o. Hence
Case (a) never occurs. As in the proof of [6, Theorem 1.3}, we can show that Case (b)
never occurs. Hence we have liminf, .., v(s) > 0. ‘

The remainder of the proof of the fact lim,_,, v(8) = 1 procceeds as in the proof of [6,
Theorem 1.3]. We leave them to the reader.

Proof of Theorem 2. As in the proof of Theorem 1, we will show that lim,_,., v(s) =
1, where v(s) is introduced in Lemma 2. Define

w = (kv —v)*. (3.13)
By Eq (3.2) we know that
W+ {8 —a(k+1)}w—C**{1+6(s)}*=0.
Let us rewrite this equation as
W+ aw — b{1 + §(s)}v* = 0, (3.14)
where we have put 8 — a(k + 1) = a and C*~* = b. We therefore find that
v = b1+ 6(s)) (W + aw)/?,
and w satisfied the ODE
(14 6(8)) (1 + aw) ) — k(1 + 8(s)) Y (w0 + aw)/* + b wl/* = 0.  (3.15)

We note, by the definition (3.13), (3.14), and Lemma 2, that w,w = O(1) as s — co. By
putting (1 + 8(s))~Y/* = h(s),1/A = p, and 1/a = -, we can rewrite (3.15) simply as

(h(s)(w + aw)?)' — kh(s)(w + aw)? + bPw?/* = 0. (3.16)
We note that our assumptions (2.4) are equivalent to
lim 4(s) =0 (3.17)
8—00

and -
/ 16(s)|ds < oo. (3.18)

It should be emphasized that Eq (3.16) is equivalent to

v _k h(s) ] . E@_ w ¥ 1-p7 = 3.19
w+[a p+ph(s)]w+p[h(s) k] +ph(8)(w+aw) w =0 (3.19)
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By using (3.18) and computing as in the proof of Theorem 1, we find from Eq (3.16)v that
8

(a—k) / h(r)( + aw)Piodr = O(1) as s — oo. (3.20)
80

Notice that the assumption @ — a(k + 1) — k % 0 means that a — k # 0. Since o > 1 and
A > a, we have p < 1. So inequality (3.8) implies, as before, that '

{( + aw)? — (aw)”) o > co®{|w + aw| + |aw(}Y;
that is,
h(r)(w + aw)P > aPh(r)w + cih(r)w?

for some constant ¢; > 0. Hence by (3.20) and the fact that h(co) = 1, we find that
c2 /’ h(r)wPidr + c3 /8 widr = O(1) as s— +o0o.
80 80

By integral by parts and by using this relation, we find that [*?ds < co. Moreover,
since p < 1, we find that lim,_,,, w(s) = 0 as in the proof of Theorem 1.

We want to show that liminf, ., w(s) > 0. The proof is done by a contradiction.
Firstly suppose that w(s) decreases to 0 as s — 0o. Then, as in the proof of Theorem 1,
we know by [2, Chapter 3, Theorem 5] that for every n > 0

w(s) < elBralkslms g5 g o0, ©(3.21)

The definition (3.13) is equivalent to (e~*%v)" = —e~**w'/*; and so
o0

v(s) = ek / e~*rul/ady. (3.22)

Here we have employed the fact that lim, ., v(s)/e** = 0. Combining (3.21) with (3.22),
we get the estimate t%|u’(t)| = O(1). Recall that this yields a contradiction.

Next, let liminf, ..o w(s) = 0 and w change the sign in any neighborhood of +oo.
Define the auxiliary function H(s) by

i(s) ]"-’% |

H(s) = k* [1_97(37

Then, in the region 0 < w < H(s), we have & > 0. On the other hand in the region
w > H(s), we have W < 0. Hence, we can find out two sequences {£,} and {n,} satisfying

€n <M < nt1 <Th41 < -*- ;ﬂILIEOEn = nli_'lgonn = o0
and

w(nm) = 0, w(én) =H(&) —k* as n—oo and w<O on[g,,,ﬁ,.]. (3.23)
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Multiplying (3.19) by w and integrating the resulting equation on [én, 1), we have

in h(r) W2

1, . 2 _ .. k ™
0t =) + (a= 2 ) [T+ [ 20

ak a h(r) .
—‘é;(w(ﬂn)z"w(fn)z)"'; e B(r) ) wdr + — /,. R(r )(w+aw) “Pwdr = 0

Noting the facts w(oo) = 0 and [*° w%dr < oo, we have as n — oo

o) + 2 [" X0 i~ o) - )

ﬂ

h(r) al=?p m 1 .
wdr wlt"Pydr < 0. 3.24
ple BT T S A S (324
Now, let us estimate each term of the above. We have firstly
" h(r) wdr| < Cp sup |h|/ wldr =o(1) as n — oo;
én [€n1°°
and
i h(r) h(cn) h(cn) 2 N
e R(r) ) wdr| = hen) Je. wwdr_ 2h(c, )(w(g,,) —w(nm)*)|=0(1) as n — oo.

Here Cy > 0 is a constant, and we have used a variant of the mean value theorem for
integrals; that is c, is a number satisfying &, < ¢, < 7,. Finally, we obtain

™ 1 14y~p, ¢ _ n .—1 _ l4y—-p,; 1 2+y—p __ 24v—p
[ Py = /e [h(r)~! = 1w Pidr + 2+7_p(w(nn) w(En)?1-?)
= (h(dn)™* = 1) / W Pudr + e GO ko @+1=0))
1 ke(2+v-p)
= O( ) - m as n — oQ.

Here dy, is a number satisfying £, < dy, < n,. Therefore (3.24) can be simplified into

ak2a+1 (1) < al—pbpka(2+~/—p)
+o0 < as n— oo.
p(2+~—p)
This gives a contradiction. Hence we find that lim inf, ., v(s) > 0.
Arguing as in the proof of Theorem 1, we will show that lim, .., v(s) = 1. The details

are left to the reader.

To see Theorem 3, we will show that lim, .., v(s) = 1, where v(s) is introduced by
Lemma 2, as before. However, we can not help omitting the proof for the lack of space.
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