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1. Introduction

Various social phenomena, for example, the allocation problem of expenditures and
the election problem have been analyzed in the framework of cooperative games defined by
characteristic functions, and some value functions have been presented for expressing the
influence power or the evaluation value for the game by each player. As representative values,
the followings are well-known : the Shapley value [9], the Banzhaf value [2] and the
Deegan-Packel value [5]. Here it must be attended that the characteristic function is defined
for each coalition of players and means the max-min payoff of the coalition. In the case that
only two alternatives “Yes” or “No” are considered, there is no problem, but in the case of more
than two alternatives, the max-min payoff is seemed to be more pessimistic than the actual
payoff depended on the situation of other coalitions. Then a multi-alternative game should be
considered in other frameworks. Bolger [3] considers a multi-alternative game by a
generalized chafacteristic function defined for an arrangement, namely, a set of coalitions,
and presents a new power value for multi-alternative games, which is a generalization of the
Shapley value. The multi-alternative Banzhaf value (the MBZ value) [8] is a generalization of
the Banzhaf value. The M-N index presented by Masuya and Nakai [6] is a generalized

- Deegan-Packel index for multi-alternative voting games. Furthermore Masuya and Nakai [7]
presents the generalized multi-alternative Deegan-Packel value (the GMDP value) for
general multi-alternative games.

Most of traditional cooperative games with characteristic functions treat crisp coalitions
only. However there are many actual situations where some players participate partially in a
coalition. For considering such a phenomenon Aubin [1] started the theory of cooperative
fuzzy games. In this recent literature, Tsurumi et al. [10] proposes a fuzzy Shapley function
using Choquet integral.

Furthermore most of traditional values are considered under the assumption that all

coalitions are formed by equal probabilities, that is, under the homogeneity among players.
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But in many actual social phenomena, this assumption is not always satisfied. Then some
’values permitting the non-homogeneity among players have been presented.

However, a value permitting all of three generalizations, multi-alternatives, fuzziness
and non-homogeneity have not been developed as far as we know. _

In this paper, inspired by these works, we develop fuzzy games with n players and r
alternatives called multi-alternative fuzzy games and propose a new value permitting all of
three generalizations, multi-alternatives, fuzziness and non-homogeneity. Multi-alternative
fuzzy games are first defined by Tsurumi et al. [11]. The value they proposed is defined on
multi-alternative “crisp” games. In this paper, we will first develop a value which is
- defined on multi-alternative fuzzy games. Then we develop multi-alternative fuzzy games
which differ from those by Tsurumi et al. [11] and a value function on the games.

In Section 2, we formulate multi-alternative fuzzy games which are based on
multi-alternative games and cooperative fuzzy games. In Section 3, we propose a new value
function for multi-alternative crisp games. In Section 4, we propose a new value function for a
class of multi-alternative fuzzy games and prove that it is the unique one satisfying a certain
axioms system. In Section 5, we give a numerical example called “Three Alternative Job
Game” and compare the new function with other values for traditional multi-alternative
games. ‘ '

2. Development of multi-alternative fuzzy games

First, we provide a definition of characteristic function form games. An 7 -person
cooperative game is a pair (N,v) where N is a set of n players and the function
v:2" > R satisfies v(¢)=0.

We consider cooperative fuzzy games with the set of players N ={1,2,.--,n}. A fuzzy
coalition is a fuzzy subset of N, which is identified with a function from N to [0,1]. Then
for a fuzzy coalition S and playei' i,8(i) indicates the membership grade of i in §, i.e.,
the rate of i* player’s participation inS . For a fuzzy coalition S, the level set is denoted by

[S)],={ieN|S(@)2h} forvhe[0,]] , and the support is denoted by

SuppS ={ie NtS(i) > 0}.

Next, we develop a multi-alternative fuzzy game. First, we develop a multi-alternative
crisp game which is a special case of a multi-alternative fuzzy game. |

There are n players and r alternatives. Let N ={1,2,---,n} be the set of players and
R={1,2,---,r} be the set of alternatives. Each player chooses one of the r alternatives or
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chooses none of them. Let T” ; be the set of players who choose the alternative je€ R. The set

I'=(,,[,,-,',) is called a crisp arrangement. That is, each crisp arrangement I
satisfies I''U---Ul', c NandI',"\I',=¢(Vk#I). For any Sel', we call (S,[) an
embedded coalition(ECL). Let EC(N,R) be the set of ECLs on N and R.Let CA(N,R)

be the set of crisp arrangements on N and R . Then the function .
v:EC(N,R)—>R, ={ze]R|zZO} is called a multi-alternative crisp game on N with r

alternatives provided v(4,I)=0. Let MG,(N,R) be the set of multi-alternative crisp

gameson N and R. These games are essentially equivalent to extended multi-alternative
games by Tsurumi et al. [11].

Let S, be the fuzzy coalition which chooses the alternative je R. Then we will call

§=(S,,8,,---,S,) a fuzzy arrangement. A fuzzy arrangement is a generalization of a crisp .
arrangement which is presented above. In multi-alternative fuzzy games, we assume that
each player can not belong to more than one coalition simultaneously. That is, each fuzzy
arrangement S satisfies Supp S, "Supp S, =@¢(Vk=l). If TeS, we call (T,S) an
embedded fuzzy coalition(EFC). Let FA(N,R) be the set of fuzzy arrangementson N and R.
That is, FA(N, R) is the set of fuzzy arrangements which satisfy that each element of a
fuzzy arrangement is a fuzzy subset of N.Let EF(N,R) be the set of EFCs on N and R.

Then the function v:EF(N,R)—> R, is called a multi-alternative fuzzy game on

N with r alternatives provided v(#,S)=0. Let MG(N,R) be the set of multi-alternative
fuzzy gameson N and R. Clearly, MG,(N,R)c MG(N,R) holds. Traditional cooperative
fuzzy games are multi-alternative fuzzy games in case of r =1.

In the rest of this section, we give some concepts which are used for following sections.

Definition 1. A membership grade matrix (grade matrix) is defined as follows:

U=[u,] (i=l-,nj=1--r)
where 0su; <1 for Vi, j.

u; means the rate of “potential” participation of player i to the coalition which chooses the

j"' alternative. The j"’ column of U is denoted by U ;e Let N, be the grade matrix with
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u, =1 for Vi,vj.

Definition 2. For a grade matrix U, the set of level arrangement [[U]], and the support
Supp[U] are defined as follows:

[[U]), ={T € CA(N,R)|i €T, = u, 2 h VieN,Vj € R} forVhe[0,1]

Supp[U]={T € CA(N,R)|ieT, =>u, >0Vie N,VjeR} .

[[U]], is the set of crisp arrangements in which the rate of potential participation of players

is no less than A.

Definition 3. For a fuzzy arrangement S, the level arrangement [S], is defined as follows:
[STh =S Js+++[8,14) forVh €[0,1].

[S], is a crisp arrangement in which the rate of participation of each player for the coalition
which chooses each alternative is no less than 4.

The class of all fuzzy subsets of a fuzzy set U g N, is denoted by L(U). Particularly,
L(N,R) denotes the class of all fuzzy subsets of N,. P(W) denotes the class of all crisp
subsets of a set of crisp arrangements W . Particularly, P(N,R) denotes the family of sets of

crisp arrangementson N and R.

3. The new value for multi-alternative crisp games and its axioms system

First, we develop the new function on MG,(N,R). We permit the non-homogeneity
among players in the new function. This means that each crisp arrangement is not always

formed uniformly. Then we introduce a probability distribution on the set of crisp
arrangements p : CA(N, R) —[0,1]

( Z p(I)=1) . p is an arbitrary discrete probability distribution and means a
TeCA(N,R)

probability of forming the crisp arrangement.

Definition 4. Given W € P(N,R), W, ; (i€ N, j€R) is defined as follows:

W,,={CeWl|iel }.
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Then we define the new function f~ : MGy(N,R) = (R7) ™R (j=1,--.,r) as follows:

r.,.I
Fom- V(Ifjl) e ®
s W) =18 /
0 otherwise.

W is the set of crisp arrangements which can be formed. 7'{(v)(W) means the expectation

of payoffs of player i for the alternative j inthe game v on W.

Definition*5. Given W e P(N,R),ve MG,(N,R)and je R, we define v,(W) and v,(W)
as followsf |

viW)=Y pCW(T,,T)

FeW

Vi)=Y pCWT,,T)
TeW
iel y}

v j(W) is the expectation of the payoffs which the coalition choosing j” alternative gets

when W is the set of arrangements which can be formed.

Definition 6.(j-zero player on multi-alternative crisp games)

Let ve MG,(N,R),W € P(N,R) satisfying W,,#¢ for an alternative jeR, and let p

be a probability distribution on CA(N,R).If ;;(W) =0 holds, i iscalled a j-zeroplayer
on W . |

Definition 7. Let W € P(N,R) and two players i,ke N . and let p be a probability
distribution on CA(N,R).Interchanging i with k£ inany I"e W, we make the new crisp
arrangement I' . Two players i and k are called symmetric in the set (W,v,j,p) if and
only if

pCW(,,I)=p@WT,T) (TeW). @
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Definition 8. Given v,we MG (N,R) the sum game v+w is defined as follows.

@+WT,.D)=vT,,T)+wT,,[) V(,I)eECN,R)

In the following, we give a new axioms system which a value for multi-alternative crisp

games should satisfy. Let 7 be a function from MG,(N,R) into (R7)’™®  (j=1,...,r).

Note that for any v,we MG,(N,R), v+we MG,(N,R) holds.

Axiom MC,. Given ve MG,(N,R),W € P(N,R) and a probability distribution p on
CA(N,R), the following holds.

> 7 )W) =v,(F)

ieN

T WW)=0 if W, =4

Axiom MC, means that the sum of the power of each player for an alternative coincides with

the expectation of the payoffs which the coalition choosing the alternative gets. This axiom is
different from that of the Bolger value or the MBZ value.

Axiom MC, . Given ve MG,(N,R),W € P(N,R) such that W, ;#¢ and a probability

distribution p on CA(N,R), the following holds.
7 (VW)=0<i isa jzeroplayeron W
Axiom MC, is also different from that of the Bolger value or the MBZ value as well as Axiom

MC,. The Bolger value and the MBZ value give the value O for j-null players.

A j-null player makes a contribution to a game more than a j-zero player.

Axiom MC,. Let ve MG,(N,R),W € P(N,R) and i,ke N, and let p be a probability
distribution on CA(N,R).If i and k are symmetric in the set (W,v,j,p), the following
holds.

7 W) = T (W)

Axiom MC, is a generalized axiom as that of the Bolger value or the MBZ value which is
called the symmetry axiom.
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Axiom MC, (linearity). Given v,,v, € MG,(N,R) and W € P(N,R), the following holds.

71 (49, ) ) = 7 () ) + 71 (5)F)
For Axiom MC, , the same discussion is valid with Axiom MC, .

Theorem 1. The new function 1~ : MG)(N,R) > (R})"™® defined by (1) is the unique

function which satisfies Axiom J\IC1 through MC,.

4. The new value for multi-alternative fuzzy games and its axioms system

Generally speaking, it is not easy to give the éxplicit form of the new function on any class
of fuzzy games. Tsurumi et al. [10] introduces a class G.(N) which is the set of fuzzy games
with Choquet integral forms and proves that any veG.(N) is both monotone

nondecreasing and continuous with regard to rates of players’ participation. Then we use this
concept. We define a generalization of G.(N) which is denoted by MG,(N,R).

Definition 9. For S € FA(N,R), we put

- O(8)={S,()|S,())>0,ie N, j € R} . We write the elements of Q(S) in the increasing order

as M <---<h,, where ¢(S) is the cardinality of the set ((S) . Then a game

ve MG(N,R) is called to be a multi-alternative fuzzy game ‘with Choquet integral form’ if
and only if the following holds:
(s
w(S,,8) = t)v'([Sj],,,,[S],,,)-(h, -h_) VSeFA(N,R) @
1=l ' ‘
whereh, =0,v'e MG (N, R). '

Let MG.(N,R) be the set of all multi-alternative fuzzy games with Choquet integral forms.

Finally, we define the new value function on MG_.(N, R)

f1 i MG.(N,R) = (R")*¥R (j=1,....r) as follows: -
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. 0,
Sl o) = G{Z, SiOXUTL,)- (B —hy). @

=1

where _7',1 is defined by the equation (1). U is a grade matrix which is defined on Section 2.

Note that (5) is a Choquet integral of the function U with regard to 7,1 ).

We give some definitions before proposing an axioms system.

Definition 10. Given U e L(N,R)and k,le N, for any Se€ L(U) we define a new grade
matrix Fy[S] asfollows: its (i,/) element is given by |
s, fi=kij=L.r
PH[S](isj)= sh‘ ifi‘_'l;j:l"”sr (i=19"'9n;j=1:"'9r)
s, otherwise
, that is, the matrix B,[S] is obtained by exchanging the k" low for the /" low in the

grade matrix S.

Definition 11. Given U € L(N,R),ve MG(N,R)and j € R, we define v,(U) and v;(U)as

follows:

- U
v,U)= ﬁf > p@W(T,,I)h~h,) ()

1=l Te{{U]},

-
=S T pOwE, Dt -k
I=] I'iel}_U]],,‘

Note that the equation (6) denotes a Choquet integral of the function U with regard to an
expectation of v.

Definition 12. ( jzero player on multi-alternative fuzzy games) Let U e L(N,R) and

ieSuppU,, and let p be a probability distribution on CA(N,R). When v;(U)=0
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whenever U (i) = max U ,(h), player i is called a j-zero playeron U .
heN je

Definition 13. Let ve MG.(N,R)and U € L(N,R). If the following holds, i and k are
called symmetricin the set (U,v,J, p).

Vvi(S)=v;(BISD) (VSeLU))

In the following, we give an axioms system which a value for multi-alternative fuzzy .
games should satisfy. Let 7’/ be a function from MG,(N,R) into (R")*¥® (j=1,---,r).

Note that for any v,we MG.(N,R), v+we MG_.(N,R) holds. It can be proved that Axiom
MF, through MF, is a generalization of Axiom MC, through MC, to multi-alternative
fuzzy games respectively. Thus, the same interpretation is valid for Axiom MF| through MF,
as that of Axiom MC, through MC, respectively.

Axiom MF . Given ve MG.(N,R),U € L(N,R) and a probability distribution p on
CA(N, R), the following holds.

> 7 )U) =v,U)
ieN

7/ ()U)=0 ifieSuppU,

Axiom MF,. Given ve MG (N,R),U € L(N,R),ie SuppU,, player i is a j-zero playeron

U ifand only if 7/ (W)U)=0.

Axiom MF,. Let ve MG.(N,R)andU € L(N,R),and let p be a probability distribution
on CA(N,R).If ie N and ke N are symmetricin the set (U,v, j, p), the following holds.

7! (WNU) = 7 ()U)
Axiom MF,. Forany v,,v, €e MG.(N,R)and U € L(N,R), the following holds.

&' W+, )U) =7/ )U) + 7 (v, }U)

Theorem 2. The function f?:MG.(N,R) - (R")*™® defined by (5) is the unique function

which satisfies Axiom MF, through MF,.
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Proposition1. Let ve MG.(N,R), U =[u,], U’ =[uy]e L(N, R) where u, {:} “u

if (k.1) {:}G, J)-Then /MUY > f1G)U).

5. The Comparison of the New Value with the Others

Evaluating the influence power of each player in a numerical example which is called
“Three Alternative Job Game”, we compare the new function with the MDP value by Masuya
et al. [7], the Bolger value and the MBZ value.

Three Alternative Job Game -

There are three working students A, B and C. There are three jobs 1, 2 and 3 and they are
about to perform one job respectively. If each student performs a different job each other,
student A gets payoff 8 and student B gets payoff 6 and student C gets payoff 4. If student A
performs a job by himself and student B, C perform their jobs together, student A gets payoff 5
and the group of students B, C gets payoff 18. If student B performs a job by himself and
student A, C perform their jobs together, student B gets payoff 3 and the group of students A,
C gets payoff 25. If student C performs a job by himself and student A, B perform their jobs
together, student C gets payoff 1 and the group of students A, B gets payoff 30. If all students
perform their jobs together, the group of students A, B and C gets payoff 50.

This game can be represented by a multi-alternative crisp game v as follows:
N={4,B,C},R={1,2,3},
v({4},({4},{B},{C})) =8, v({ B}, ({4},{B},{C})) = 6, v({C}, ({4},{B}.{C})) = 4,
v({4},({4}.{B,C}.{¢})) =5, v({B,C},({4},{B,C},{¢})) =18,
v({B},({B},{4,C},{¢})) =3, v({4,C},({B},{4,C},{#})) = 25,

V({C}, ({C}. {4, B}, {#})) =1, v({4, B}, ({C}, {4, B}, {¢})) = 30,
v({4,B,C},({4, B,C},{¢#},{#})) =50 ,w(T,I') =0 foreach(T,I)if T = ¢,
v(I';,I)=v(T;, P(I')) where P(I') is an arbitrary permutation of I",

e.g. v({4},({4},{B},{C})) = v({4},({B},{C}. {4})).

We assume that players are homogeneous in this game. Furthermore, we assume that the

crisp arrangement satisfying I, U, UT'; €N is not formed because we would like to

compare the new function with other values which is defined on traditional multi-alternative
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games. Then the probability distribution of crisp arrangements p is assumed to be
uniformed as follows:
1
— ifr,ur,ul,=N
p(r) = 27 f 1 2 3
0 otherwise.

Also, we assume the grade matrix U is given by

1 1 1
U=|1 05 05|
1 05 0.25

Each participation rate represents each player’s rate of not loafing on his job if he performs
the job. That is to say, we assume that player B and C decrease their participation rate for the
coalition choosing alternative 2 and 3.

In this situation, how much influence power does each student have ?

In Tablel, 2, 3, we show the value for each player in each solution with respect to
alternative 1, 2 and 3 respectively. In order to compare them we normalize each solution. The

grade matrix U for the crisp game in Table 1, 2, and 3 can be regarded to [u,]=1 Vi, Vj.

Tablel. The value of each solution for each player for alternative 1

Value
Player Fuzzy Crisp
NEW MDP Bolger MBZ
Player A 0.3236 0.3906] 0.4166; 0.417
Player B 0.3397 0.3306 0.3266 0.327
Player C 0.3365 0.2786 0.2566 0.2547
Total 1 1 1 1

Table2. The value of each solution for each player for alternative 2

Value
Player Fuzzy Crisp
NEW MDP Bolger MBZ
Player A 0.4602] 0.3906] 0.4166| 0.417
Player B 0.2717 0.3306 0.3266 0.3273
Player C 0.2679 0.2786 0.2566 0.2547
Total 1 1 1 1
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Table3. The value of each solution for each player for alternative 3

Value
Player | Fuzzy ~ Crisp
NEW MDP Bolger MBZ
Player A 0.4496) 0.3906; 0.4166| 0.417
Player B 0.3589 0.3306 0.3266 0.327
Player C 0.1913] 0.2786| 0.2566| 0.2547
Total 1 1 1 1

We compare the new function with the MDP value, the Bolger value and the MBZ value
from Tablel, 2 and 3. These four values evaluate player B at the similar level. That is to say,
difference among these four values is shown by the difference among powers of player A and C.
The comparison of the value of A and C for the MDP value, the Bolger value and the MBZ
value has been completed in our previous paper [7]. Then we compare the new function with
the MDP value because the new function is proportional to the MDP value when the game is
crisp and the probability distribution is a uniform distribution. The MDP value evaluates
player A better than player C. On the other hands, the new value evaluates C better than A
for alternative 1. For alternative 2, the new value evaluates B and C lower than the MDP
value. For alternative 3, the new value evaluates player C much lower than the MDP value.

In traditional cooperative fuzzy games, when the rate of participation of a player for his
coalition decreases, his influence power decreases too. However, this example shows that by
decreasing the rate of participation for coalitions which choose particular alternatives, a
player can increase his influence power for other alternatives. Then his influence power
decreases for the alternative for which he decreases the rate of participation for the coalition.
These phenomena are not observed in the framework of traditional cooperative games. It is
seemed to be very interesting result. |

6. Conclusion

We developed fuzzy games with n players and r alternatives called multi-alternative
fuzzy games. Furthermore, we propose a new value on a class of multi-alternative fuzzy
games. The new value considers players’ non-homogeneity. Furthermore, we show an axioms
system on which the new value is based. The numerical example shows interesting results
which are not observed in the framework of traditional cooperative games.
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