Title
Additive indecomposability of submodular set functions and its generalization (Information and mathematics of non-additivity and non-extensivity: contacts with nonlinearity and non-commutativity)

Author(s)
Murofushi, Toshiaki; Fujimoto, Katsushige; Sawata, Yoshinari

Citation
数理解析研究所講究録 (2008), 1585: 115-119

Issue Date
2008-02

URL
http://hdl.handle.net/2433/81513

Right

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Additive indecomposability of submodular set functions and its generalization*

Toshiaki Murofushi (Tokyo Institute of Technology)
Katsushige Fujimoto (Fukushima University)
Yoshinari Sawata (Tokyo Institute of Technology)

1 Introduction

This paper deals with a decomposition of a submodular set function into a sum of submodular set functions on subdomains and its generalization. Submodular set functions have an important role in mathematical programming [3], and a supermodular set function, which is the conjugate of a submodular set function (see Section 2), also is an important concept called a convex game in cooperative game theory [6]. Therefore, the additive decomposition of submodular set functions has broad application possibilities.

This paper is organized as follows. Section 2 explains basic concepts such as inclusion-exclusion family, submodularity, and (weak) k-monotonicity. Section 3 shows the results on additive decompositions of set functions we have obtained so far. Section 4 gives the main results, that is, conditions for additive indecomposability, which provide a foothold for further investigation of additive decompositions.

2 Preliminaries

For a finite set X, the number of elements of X is denoted by $|X|$, the power set of X by 2^X, and, for an integer k such that $0 \leq k \leq |X|$, the family of k-element subsets of X is denoted by $\binom{X}{k}$, i.e.,

$$\binom{X}{k} \triangleq \{Y \in 2^X | |Y| = k\}.$$

Throughout this paper, E is assumed to be a finite set.

A family \mathcal{A} of subsets of E is called an antichain if $A, A' \in \mathcal{A}$ and $A \subseteq A'$ together imply $A = A'$. For antichains \mathcal{A} and \mathcal{B}, we write $\mathcal{A} \subseteq \mathcal{B}$ if for every $A \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $A \subseteq B$; then \subseteq is a partial ordering on the class of all antichains over E, and the class forms a lattice with the following meet:

$$\mathcal{A} \cap \mathcal{B} = \operatorname{Max}\{A \cap B | A \in \mathcal{A}, B \in \mathcal{B}\},$$

*This work is partially supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, the 21st Century COE Program “Creation of Agent-Based Social Systems Sciences” and Grant-in-Aid for Scientific Research (C), 19510136, 2007.
where, for a family \mathcal{F} of sets, $\operatorname{Max}\mathcal{F}$ is defined by

$$\operatorname{Max}\mathcal{F} \overset{\text{def}}{=} \{M \in \mathcal{F} \mid M \text{ is maximal in } \mathcal{F} \text{ with respect to set inclusion } \subseteq \}.$$

A function $f : 2^E \to \mathbb{R}$ satisfying $f(\emptyset) = 0$ is called a set function on E. An antichain \mathcal{A} of subsets of E is called an inclusion-exclusion family, or an inclusion-exclusion antichain, with respect to a set function f on E if $\langle \text{IE} \rangle$ below holds:

$$\langle \text{IE} \rangle: \quad f(X) = \sum_{B \subseteq A, B \neq \emptyset} (-1)^{|B|+1} f \left(X \cap \bigcap B \right) \quad \text{for all } X \subseteq E.$$

If an antichain \mathcal{A} contains a subset A such that $f(X) = f(X \cap A)$ for every $X \subseteq E$, then \mathcal{A} is an inclusion-exclusion family with respect to f, and \mathcal{A} is called a trivial inclusion-exclusion family; for example, $\{E\}$ is a trivial inclusion-exclusion family with respect to any set function on E. For antichains \mathcal{A} and \mathcal{B}, if $\mathcal{A} \subseteq \mathcal{B}$, and if \mathcal{A} is an inclusion-exclusion family with respect to a set function f, then so is \mathcal{B}. If \mathcal{A} and \mathcal{B} are inclusion-exclusion antichains with respect to a set function f, then so is $\mathcal{A} \cap \mathcal{B}$. Therefore, every set function has its least (with respect to \subseteq) inclusion-exclusion antichain.

For a set function f on E, the sign inversion $-f$ of f and the conjugate, or dual, $f^\#$ of f are defined as follows [3]:

$$(-f)(X) \overset{\text{def}}{=} -f(X), \quad f^\#(X) \overset{\text{def}}{=} f(E) - f(E \setminus X)$$

for every $X \subseteq E$. For any set function f_A on $A \subseteq E$, we regard f_A as a set function on E by defining $f_A(X) = f_A(X \cap A)$ for every $X \in 2^E \setminus 2^A$. Let $\mathcal{A} \subseteq 2^E$ and $\{f_A\}_{A \in \mathcal{A}}$ be a collection of set functions f_A on $A \in \mathcal{A}$. Then the following holds:

$$f = \sum_{A \in \mathcal{A}} f_A \iff -f = \sum_{A \in \mathcal{A}} (-f_A) \iff f^\# = \sum_{A \in \mathcal{A}} f^\#_A;$$

note that, for every set function f_A on $A \subseteq E$, the conjugate $f_A(A) - f_A(A \setminus \cdot)$ over A coincides, as a set function on E, with the conjugate $f_A(E) - f_A(E \setminus \cdot)$ over E.

A set function f is said to be submodular if the following inequalities hold [3]:

$$f(X \cup Y) + f(X \cap Y) \leq f(X) + f(Y) \quad \text{for all } X, Y \subseteq E.$$

A set function f is said to be supermodular if $f^\#$ is submodular.

The difference function $\bigwedge f : 2^E \times \mathbb{N}^{(2^E)} \to \mathbb{R}$ of a set function f on E is defined recursively as follows [2]:

$$\bigwedge f(X, \emptyset) \overset{\text{def}}{=} f(X),$$

$$\bigwedge f(X, \mathcal{Y} \cup \{Y\}) \overset{\text{def}}{=} \bigwedge f(X, \mathcal{Y}) - \bigwedge f(X \cap Y, \mathcal{Y}),$$

where \mathbb{N} is the set of nonnegative integers, \mathcal{Y} is a multiset over 2^E—$\mathcal{Y} : 2^E \to \mathbb{N}$ and $\mathcal{Y}(Z) \in \mathbb{N}$ is the multiplicity of $Z \in 2^E$ in \mathcal{Y}—, \cup is the sum of multisets, and it holds that

$$(\mathcal{Y} \cup \{Y\})(Z) = \begin{cases} \mathcal{Y}(Z) + 1 & \text{if } Z = Y, \\ \mathcal{Y}(Z) & \text{if } Z \neq Y. \end{cases}$$

When $|\mathcal{Y}| \overset{\text{def}}{=} \sum_{Z \in 2^E} \mathcal{Y}(Z) = k$, we write $\bigwedge f(X, \mathcal{Y})$ as $\bigwedge_k f(X, \mathcal{Y})$ also.
(i) [2] For a positive integer k, a set function f is said to be k-monotone if $\bigwedge f \geq 0$, i.e., $\bigwedge f(X, Y) \geq 0$ whenever $X \subseteq 2^E$ and $Y \in \binom{2^E}{k}$, defined \{X \in \binom{2^E}{k} \mid |X| = k\}.

(ii) [1] For an integer k greater than 1, a set function f is said to be weakly k-monotone if for every $X \in \binom{2^E}{k}$

$$f \left(\bigcup X \right) \geq \sum_{Y \subseteq X, Y \neq \emptyset} (-1)^{|Y|+1} f \left(\bigcap Y \right),$$

where, for $Z \in \mathbb{N}(2^E)$, $\bigcup Z \triangleq \bigcup_{Z \in Z} Z = \bigcup(supp Z)$, $\cap Z \triangleq \bigcap_{Z \in Z} Z = \bigcap(supp Z)$, $Z \in Z$ means $Z(Z) > 0$, and $supp Z$ is the ordinary set $\{Z \mid Z(Z) > 0\} \subseteq 2^E$ called the support of Z.

The 1-monotonicity is equivalent to the ordinary monotonicity, i.e., $X \subseteq Y \implies f(X) \leq f(Y)$. The concept of weak 1-additivity is not defined. There are the following relations between submodularity and weak 2-monotonicity:

$$f \text{ is submodular} \iff -f \text{ is weakly 2-monotone} \iff f^\# \text{ is weakly 2-monotone.}$$

For every integer k greater than 1, a set function f is k-monotone iff f is monotone and weakly k-monotone. If k and k' are integers such that $1 \leq k \leq k'$, and if a set function f is k'-monotone, then f is k-monotone. If k and k' are integers such that $2 \leq k \leq k'$, and if a set function f is weakly k'-monotone, then f is weakly k-monotone.

3 Additive decomposition

This paper deals with the following additive decomposition of a set function f on E with respect to an antichain A of subsets of E.

\(<\text{AD}>\): A set function f on E is decomposable into a sum of set functions f_A over all $A \in A$, that is, there exists a collection $\{f_A\}_{A \in A}$ such that each f_A is a set function on A and

$$f = \sum_{A \in A} f_A. \quad \text{(1)}$$

A necessary and sufficient condition for the additive decomposition $<\text{AD}>$ is $<\text{IE}>$, that is, A is an inclusion-exclusion family with respect to f [5].

If f is a submodular set function, and if an antichain A is an inclusion-exclusion family with respect to f, there does not always exist a collection $\{f_A\}_{A \in A}$ of submodular set functions satisfying Eq. (1), while there always exists a collection $\{f_A\}_{A \in A}$ of set functions satisfying Eq. (1). That is to say, the antichain A being an inclusion-exclusion family is only a necessary condition and not a sufficient condition for a submodular set function f to be decomposable into a sum of submodular set functions f_A over all $A \in A$.

So far, the authors have obtained two theorems showing sufficient conditions for the decomposition of submodular set functions into a sum of submodular set functions and their generalizations [4][7]. We show below the two generalized additive decomposition
theorems. For an antichain \mathcal{A} of subsets of E, a set function f on E is said to have a k-monotone [resp. weakly k-monotone] \mathcal{A}-decomposition if there exists a collection $\{f_A\}_{A \in \mathcal{A}}$ such that each f_A is a k-monotone [resp. weakly k-monotone] set function on A and Eq. (1) holds. The two theorems deal with the following three types of conditions $\cap(k, l, \mathcal{A})$, $M(k', k, \mathcal{A})$, and $wM(k', k, \mathcal{A})$ on positive integers k, k', and l such that $k \leq k'$ and an antichain \mathcal{A}:

\[\cap(k, l, \mathcal{A}): |\cap B| \leq k \text{ for any } B \in \binom{\mathcal{A}}{l}. \]

$M(k', k, \mathcal{A})$: Every k'-monotone set function f with \mathcal{A} as an inclusion-exclusion family has a k-monotone \mathcal{A}-decomposition.

$wM(k', k, \mathcal{A})$: Every weakly k'-monotone set function f with \mathcal{A} as an inclusion-exclusion family has a weakly k-monotone \mathcal{A}-decomposition.

Condition $wM(k', 1, \mathcal{A})$ is not considered.

Theorem 1 (Generalized Additive Decomposition Theorem A). For a positive integer k and an antichain \mathcal{A}, the three conditions $\cap(k, 2, \mathcal{A})$, $M(k, k, \mathcal{A})$, and $wM(k, k, \mathcal{A})$ are equivalent to each other.

Theorem 2 (Generalized Additive Decomposition Theorem B). Let k and k' be positive integers, $k \leq k'$, and \mathcal{A} be an antichain. Then $\cap(k-1, k'-k+2, \mathcal{A})$ is a sufficient condition for each of $M(k', k, \mathcal{A})$ and $wM(k', k, \mathcal{A})$.

4 Indecomposability

Our present subject is the unification of Theorems 1 and 2, that is, necessary and sufficient conditions for $M(k', k, \mathcal{A})$ and $wM(k', k, \mathcal{A})$. We have found a cue to this subject, and we give it below. Note that, for every integer k greater than 1, a monotone set function f has a k-monotone \mathcal{A}-decomposition iff it has a weakly k-monotone \mathcal{A}-decomposition.

Proposition 1. Let k, k', l, n be positive integers such that $k \leq k' \leq l \leq n - 3$, and E be an n-element set. If

\[(n-l)(l-k'+1) - 2(l-k+1) > 0, \tag{2} \]

then there exists a k'-monotone set function f on E with $\binom{E}{l+2}$ as the least inclusion-exclusion family such that f does not have a k-monotone $\binom{E}{l+2}$-decomposition.

If \mathcal{A} is a non-trivial inclusion-exclusion family with respect to a set function f, a k-monotone \mathcal{A}-decomposition of f is said to be non-trivial.
Corollary 1. Let k and k' be positive integers such that $k \leq k'$, and E be an n-element set. If

$$n > 3k' - 2k + 2,$$

then there exists a k'-monotone set function on E with a non-trivial inclusion-exclusion family such that f has no non-trivial k-monotone decomposition.

Corollary 2. Let k and k' be positive integers such that $k \leq k'$, and E be an n-element set. If

$$n > k' + 1 + \sqrt{8(k' - k) + 1},$$

then there exist a k'-monotone set function f and an inclusion-exclusion antichain A with respect to f such that f does not have a k-monotone A-decomposition.

References

