Additive indecomposability of submodular set functions and its generalization*

Toshiaki Murofushi (Tokyo Institute of Technology)
Katsushige Fujimoto (Fukushima University)
Yoshinari Sawata (Tokyo Institute of Technology)

1 Introduction

This paper deals with a decomposition of a submodular set function into a sum of submodular set functions on subdomains and its generalization. Submodular set functions have an important role in mathematical programming [3], and a supermodular set function, which is the conjugate of a submodular set function (see Section 2), also is an important concept called a convex game in cooperative game theory [6]. Therefore, the additive decomposition of submodular set functions has broad application possibilities.

This paper is organized as follows. Section 2 explains basic concepts such as inclusion-exclusion family, submodularity, and (weak) k-monotonicity. Section 3 shows the results on additive decompositions of set functions we have obtained so far. Section 4 gives the main results, that is, conditions for additive indecomposability, which provide a foothold for further investigation of additive decompositions.

2 Preliminaries

For a finite set X, the number of elements of X is denoted by $|X|$, the power set of X by 2^X, and, for an integer k such that $0 \leq k \leq |X|$, the family of k-element subsets of X is denoted by $\binom{X}{k}$, i.e,

$$\binom{X}{k} \coloneqq \{Y \in 2^X \mid |Y| = k\}.$$

Throughout this paper, E is assumed to be a finite set.

A family \mathcal{A} of subsets of E is called an antichain if $A, A' \in \mathcal{A}$ and $A \subsetneq A'$ together imply $A = A'$. For antichains \mathcal{A} and \mathcal{B}, we write $\mathcal{A} \subseteq \mathcal{B}$ if for every $A \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $A \subseteq B$; then \subseteq is a partial ordering on the class of all antichains over E, and the class forms a lattice with the following meet:

$$\mathcal{A} \cap \mathcal{B} = \text{Max}\{A \cap B \mid A \in \mathcal{A}, B \in \mathcal{B}\},$$

*This work is partially supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, the 21st Century COE Program “Creation of Agent-Based Social Systems Sciences” and Grant-in-Aid for Scientific Research (C), 19510136, 2007.
where, for a family \(\mathcal{F} \) of sets, \(\text{Max}\mathcal{F} \) is defined by

\[
\text{Max\mathcal{F}} \eqdef \{ M \in \mathcal{F} \mid M \text{ is maximal in } \mathcal{F} \text{ with respect to set inclusion } \subseteq \}.
\]

A function \(f : 2^E \to \mathbb{R} \) satisfying \(f(\emptyset) = 0 \) is called a set function on \(E \). An antichain \(\mathcal{A} \) of subsets of \(E \) is called an inclusion-exclusion family, or an inclusion-exclusion antichain, with respect to a set function \(f \) on \(E \) if \(\langle \mathcal{A} \rangle \) below holds:

\[
\langle \mathcal{A} \rangle : \quad f(X) = \sum_{B \subseteq A, B \neq \emptyset} (-1)^{|B|+1} f \left(X \cap \bigcap B \right) \quad \text{for all } X \subseteq E.
\]

If an antichain \(\mathcal{A} \) contains a subset \(A \) such that \(f(X) = f(X \cap A) \) for every \(X \subseteq E \), then \(\mathcal{A} \) is an inclusion-exclusion family with respect to \(f \), and \(\mathcal{A} \) is called a trivial inclusion-exclusion family; for example, \(\{ E \} \) is a trivial inclusion-exclusion family with respect to any set function on \(E \). For antichains \(\mathcal{A} \) and \(\mathcal{B} \), if \(\mathcal{A} \subseteq \mathcal{B} \), and if \(\mathcal{A} \) is an inclusion-exclusion family with respect to a set function \(f \), then so is \(\mathcal{B} \). If \(\mathcal{A} \) and \(\mathcal{B} \) are inclusion-exclusion antichains with respect to a set function \(f \), then so is \(\mathcal{A} \cap \mathcal{B} \). Therefore, every set function has its least (with respect to \(\subseteq \) inclusion-exclusion antichain.

For a set function \(f \) on \(E \), the sign inversion \(-f\) of \(f \) and the conjugate, or dual, \(f^\# \) of \(f \) are defined as follows [3]:

\[
(-f)(X) \eqdef -f(X), \quad f^\#(X) \eqdef f(E) - f(E \setminus X)
\]

for every \(X \subseteq E \). For any set function \(f\alpha \) on \(A \subseteq E \), we regard \(f\alpha \) as a set function on \(E \) by defining \(f\alpha(X) = f\alpha(X \cap A) \) for every \(X \in 2^E \setminus 2^A \). Let \(\mathcal{A} \subseteq 2^E \) and \(\{ f\alpha \}_{A \in \mathcal{A}} \) be a collection of set functions \(f\alpha \) on \(A \in \mathcal{A} \). Then the following holds:

\[
f = \sum_{A \in \mathcal{A}} f\alpha \iff -f = \sum_{A \in \mathcal{A}} (-f\alpha) \iff f^\# = \sum_{A \in \mathcal{A}} f\alpha^\#;
\]

note that, for every set function \(f\alpha \) on \(A \subseteq E \), the conjugate \(f\alpha(A) - f\alpha(A \setminus \cdot) \) over \(A \) coincides, as a set function on \(E \), with the conjugate \(f\alpha(E) - f\alpha(E \setminus \cdot) \) over \(E \).

A set function \(f \) is said to be submodular if the following inequalities hold [3]:

\[
f(X \cup Y) + f(X \cap Y) \leq f(X) + f(Y) \quad \text{for all } X, Y \subseteq E.
\]

A set function \(f \) is said to be supermodular if \(f^\# \) is submodular.

The difference function \(\wedge f : 2^E \times \mathbb{N}^{2^E} \to \mathbb{R} \) of a set function \(f \) on \(E \) is defined recursively as follows [2]:

\[
\wedge f(X, \emptyset) \eqdef f(X), \quad \wedge f(X, \mathcal{Y} \cup \{ Y \}) \eqdef \wedge f(X, \mathcal{Y}) - \wedge f(X \cap Y, \mathcal{Y}),
\]

where \(\mathbb{N} \) is the set of nonnegative integers, \(\mathcal{Y} \) is a multiset over \(2^E \)—— \(\mathcal{Y} : 2^E \to \mathbb{N} \) and \(\mathcal{Y}(Z) \in \mathbb{N} \) is the multiplicity of \(Z \in 2^E \) in \(\mathcal{Y} \)——, \(\cup \) is the sum of multisets, and it holds that

\[
(\mathcal{Y} \cup \{ Y \})|Z| = \begin{cases} \mathcal{Y}(Z) + 1 & \text{if } Z = Y, \\ \mathcal{Y}(Z) & \text{if } Z \neq Y. \end{cases}
\]

When \(|\mathcal{Y}| \eqdef \sum_{Z \in 2^E} \mathcal{Y}(Z) = k \), we write \(\wedge f(X, \mathcal{Y}) \) as \(\wedge_k f(X, \mathcal{Y}) \) also.
(i) [2] For a positive integer \(k \), a set function \(f \) is said to be \(k \)-monotone if \(\bigwedge_k f \geq 0 \), i.e., \(\bigwedge f(X, \mathcal{Y}) \geq 0 \) whenever \(X \subseteq 2^E \) and \(\mathcal{Y} \in (2^E)^k \) are \(|X| = k \).

(ii) [1] For an integer \(k \) greater than 1, a set function \(f \) is said to be weakly \(k \)-monotone if for every \(X \subseteq 2^E \) and \(\mathcal{Y} \subseteq 2^E \) the following condition is satisfied:

\[
f\left(\bigcup X \right) \geq \sum_{\mathcal{Y} \subseteq X, \mathcal{Y} \neq \emptyset} (-1)^{|\mathcal{Y}|+1} f\left(\bigcap \mathcal{Y} \right),
\]

where, for \(Z \subseteq 2^E \), \(\bigcup Z \) is the union of \(Z \), \(\bigcap Z \) is the intersection of \(Z \), \(\mathcal{Z} \in N^{(2^E)} \), \(\mathcal{Z}(Z) > 0 \), and \(\text{supp} Z \) is the ordinary set \(\{ Z \mid Z(Z) > 0 \} \subseteq 2^E \).

The 1-monotonicity is equivalent to the ordinary monotonicity, i.e., \(X \subseteq Y \Rightarrow f(X) \leq f(Y) \). The concept of weak 1-additivity is not defined. There are the following relations between submodularity and weak 2-monotonicity:

\[f \text{ is submodular } \iff \neg f \text{ is weakly } 2\text{-monotone } \iff f^\# \text{ is weakly } 2\text{-monotone}. \]

For every integer \(k \) greater than 1, a set function \(f \) is \(k \)-monotone iff \(f \) is monotone and weakly \(k \)-monotone. If \(k \) and \(k' \) are integers such that \(1 \leq k \leq k' \), and if a set function \(f \) is \(k' \)-monotone, then \(f \) is \(k \)-monotone. If \(k \) and \(k' \) are integers such that \(2 \leq k \leq k' \), and if a set function \(f \) is weakly \(k' \)-monotone, then \(f \) is weakly \(k \)-monotone.

3 Additive decomposition

This paper deals with the following additive decomposition of a set function \(f \) on \(E \) with respect to an antichain \(\mathcal{A} \) of subsets of \(E \).

\(\langle AD \rangle \): A set function \(f \) on \(E \) is decomposable into a sum of set functions \(f_A \) over all \(A \in \mathcal{A} \), that is, there exists a collection \(\{ f_A \}_{A \in \mathcal{A}} \) such that each \(f_A \) is a set function on \(A \) and

\[
f = \sum_{A \in \mathcal{A}} f_A. \tag{1}\]

A necessary and sufficient condition for the additive decomposition \(\langle AD \rangle \) is \(\langle IE \rangle \), that is, \(\mathcal{A} \) is an inclusion-exclusion family with respect to \(f \) [5].

If \(f \) is a submodular set function, and if an antichain \(\mathcal{A} \) is an inclusion-exclusion family with respect to \(f \), there does not always exist a collection \(\{ f_A \}_{A \in \mathcal{A}} \) of submodular set functions satisfying Eq. (1), while there always exists a collection \(\{ f_A \}_{A \in \mathcal{A}} \) of set functions satisfying Eq. (1). That is to say, the antichain \(\mathcal{A} \) being an inclusion-exclusion family is only a necessary condition and not a sufficient condition for a submodular set function \(f \) to be decomposable into a sum of submodular set functions \(f_A \) over all \(A \in \mathcal{A} \).

So far, the authors have obtained two theorems showing sufficient conditions for the decomposition of submodular set functions into a sum of submodular set functions and their generalizations [4][7]. We show below the two generalized additive decomposition
theorems. For an antichain A of subsets of E, a set function f on E is said to have a k-monotone [resp. weakly k-monotone] A-decomposition if there exists a collection $\{f_A\}_{A \in A}$ such that each f_A is a k-monotone [resp. weakly k-monotone] set function on A and Eq. (1) holds. The two theorems deal with the following three types of conditions $\cap(k, l, A), M(k', k, A)$, and wM($k', k, A$) on positive integers k, k', and l such that $k \leq k'$ and an antichain A:

$\cap(k, l, A): |\cap B| \leq k$ for any $B \in \binom{A}{l}$.

M(k', k, A): Every k'-monotone set function f with A as an inclusion-exclusion family has a k-monotone A-decomposition.

wM(k', k, A): Every weakly k'-monotone set function f with A as an inclusion-exclusion family has a weakly k-monotone A-decomposition.

Condition wM($k', 1, A$) is not considered.

Theorem 1 (Generalized Additive Decomposition Theorem A). For a positive integer k and an antichain A, the three conditions $\cap(k, 2, A)$, M(k', k, A), and wM(k', k, A) are equivalent to each other.

Theorem 2 (Generalized Additive Decomposition Theorem B). Let k and k' be positive integers, $k \leq k'$, and A be an antichain. Then $\cap(k - 1, k' - k + 2, A)$ is a sufficient condition for each of M(k', k, A) and wM(k', k, A).

4 Indecomposability

Our present subject is the unification of Theorems 1 and 2, that is, necessary and sufficient conditions for M(k', k, A) and wM(k', k, A). We have found a cue to this subject, and we give it below. Note that, for every integer k greater than 1, a monotone set function f has a k-monotone A-decomposition iff it has a weakly k-monotone A-decomposition.

Proposition 1. Let k, k', l, n be positive integers such that $k \leq k' \leq l \leq n - 3$, and E be an n-element set. If

$$(n - l)(l - k' + 1) - 2(l - k + 1) > 0,$$ (2)

then there exists a k'-monotone set function f on E with $\binom{E}{l + 2}$ as the least inclusion-exclusion family such that f does not have a k-monotone $\binom{E}{l + 2}$-decomposition.

If A is a non-trivial inclusion-exclusion family with respect to a set function f, a k-monotone A-decomposition of f is said to be non-trivial.
Corollary 1. Let k and k' be positive integers such that $k \leq k'$, and E be an n-element set. If

$$n > 3k' - 2k + 2,$$

then there exists a k'-monotone set function on E with a non-trivial inclusion-exclusion family such that f has no non-trivial k-monotone decomposition.

Corollary 2. Let k and k' be positive integers such that $k \leq k'$, and E be an n-element set. If

$$n > k' + 1 + \sqrt{8(k'-k)+1},$$

then there exist a k'-monotone set function f and an inclusion-exclusion antichain A with respect to f such that f does not have a k-monotone A-decomposition.

References

