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Abstract

In this talk, we shall show that the classical sequence space £,(1 <
p < +00) is completely determined by one function f(z)(# 0) €
L,(IR) which satisfies the p-integrability condition.

We introduce a new sequence space Ap( f) defined by an L,-function
f(#0) for 1 <p < +o00 by -

Ap(f) :={a e R™ : ¥p(a: f) < +o0},

where

Wa: )= (X [ re-an - F@Pds)”.

We shall give a characterization for Ay(f) = £p. We shall also discuss
the linear and topological properties of A,(f).

1 Introduction

Let f(# 0) be an Lp—function on the real line R.
For 1 < p < +c0 and for a real sequence a = {a,} € R®, we set

ba: )= (X [ 1w e - P )’
and define A,(f) by |

A(f) ={a eR®:¥,(a: f) < +oo}.
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By the triangular inequality of L,-norm and by the translation invariance
of the Lebesgue measure, we have

Yyla—b:f)<Yya: F)+ Up(b: f),
which implies that A,(f) is an additive subgroup of R™.

Define a metric on Ay(f) by

d,(a,b) ;= T,(a—b: f).

Then (A,(f),dp(a,b)) becomes a topological group. The space IRg’, the
direct sum, is a dense subset of (A,(f),dp(a,b)).

2 Relations between A,(f) and £,

We say I,(f) < +oo if f(z) is absolutely continuous on JR and the p-
integral defined by

)= [ If@Pe

is finite. In particular Io(v/f), for probability density function f(z), coincides
with the Shepp’s integral(Shepp[3]).

Theorem 1 ([2]) Let 1 < p < 400 and let f(# 0) be an L,-function on R.
Then A,(f) C ¥4, |

Proof. Assume that ¥, (a; f) < +oo for a = {ax} € JR*. Without loss of
generality, we may assume a; # 0 for every k.

First we shall prove {ax} is bounded. If there is a subsequence {a } such
that |ax| — +o0, then ¥,(a; f) < +oo implies

o=tip ([ 7|~ o) - o[ 2z) B,

which contradicts to || fl|z, > 0.
Next we shall prove that {a;} converges to 0. Assume that there is a
subsequence a such that ay — ag # 0. Then we have

0=tip [ |t~ ) - ffde = [ |se a0 - @) @z

which implies f(z—ao) = f(z), a.e.(dx). This contradicts to the integrability
of f(z).
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Finally, we shall prove

+0o0
p = ngf/_w

Assume that there exists a subsequence a; such that

/+°° flz —ap) — f(z)

Qy
f(x—ak’)-f(x)__)oan(R)
ag’ P |

p

fla—a) = F@F 5 o

A

p

dr — 0

Then it follows that

Consequently, f(z) is absolutely continuous with f’ (z) = 0,a.e.(dz), that
implies f = 0, which is a contradiction.
- Therefore we have

. +o0
+00 > Z/
k -0

which proves the theorem.

p

flx - a;i — f(z) dz |axfP > p; |lax|?,

Theorem 2 ([2]) Let 1 < p < +00 and f(# 0) be a non-negative integrable
function on IR. Then A,(f) = £, if and only if I,(f) < +oo.

Proof. Assume V,(a; f) < +oo for every a = {ax} € £,. We set

w0 = [ |ie-a) - @) e

and
Fn(m) = f(x - un) - f(.’B) )
Un,
Then we shall show
+00 P
K :=sup2Vy(uy) = sup/ ‘FN(x)I dz < +o0.
N N J-wo

Assume, on the contrary, that for every n there exists N(n) > n satisfying

2V h(uy () > 2.
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Then for the sequence

2N(1)~1 oN(n)—n
Ny -~ ~ ~ b ~
ag == (Un@), * ,UNQ) " s UN®), s UN@) ")

we have ag € £, and ¥,(ao; f) = +00, which is a contradiction.

Since Ly(R,dz),1 < p < +00, is a separable reflexible Banach space,
each bounded closed ball is compact and metrizable with respect to the weak
topology. So that there exists a subsequence {F,,(2)} and h(z) € L,(R, dz)
such that {F,,(z)} converges weakly to h(z).

Consequently, f(z) is absolutely continuous, f'(z) = —h(z), a.e.(dz),
and we have L

b= [ |r@fae= [ o <-+oo

—00 -—00

Conversely, assume I,(f) < +0o0. Then by the mean value theorem and
Fubini’s theorem, we have

| /::o 'f(m - ak) - f(m)lpd:z: = I'ak‘p 1::0 -/01 f’(m _ tak)dt
< |axl? [;wdw/ol lf'(:c ——tak)lpdt = |ax|? /_:o lf'(:c)lpdx = L(f)lax?,

P
dz

which implies

| T te -0 - £ dw < L) S Joul? < +oo.
koo k=1

3 Linearity of Ay(f)

We say f(z) is an N-modal function if there exist an,n = 1,2,--+ ,2N +1
such that

—00=a; < a3 <+ < @y < AN41 = +0Q,
f(z) is non-decreasing on the interval [asc—1, a2k, and
f(z) is non-increasing on the interval lagk, @2k+1)-

Let a = a(f) := i min{arr1 —ax} if N >2and a:=+o0 if N =1.
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Lemma 3 Let f(z) : [—2a,2a] — [0,+00) be a function such that f(z)
is non-decreasing on [—2a,0] and is non-increasing on [0, 2a], where a > 0.
Then for every t € [0,1], we have

/0 “fa—ta)—f@Pdz < [ |f(@—a)~F(@)Pde+3 / | f@—a)—f(a)Pdz.

Proof. Let u be the z-coordinate of the cross point of f(z) and of f(z—ta)
and v be the z-coordinate of the cross point of f(z — ta) and of f(z — a).
Then we have 0 < u < ta < v < a. We have

| f(z — ta) - f(z)Pdz = (f;‘ +15*)

<f0 (f(z) — f(a:—a))"dx+f (f(x—-ta) f(z +a —ta))Pdx
o |f(z — a) - f(z)lPdz + [,_,, |f(z) = f(z + a)|Pde

= otalf(w—a) f(x)lpdz+fu—ta+a|f —a) f(z)|Pdz

<2foif($~a) f(z)|Pdz,

where we have used the facts
flz—a) < f(zx—ta) < f(x) on [0,u] and
flx+a—ta) < f(z) L f(z -—vta) on [u,tal.
On the other hand we have

Jalf (@ —ta) - f@)pdz = ( [+ )

< Jplfe—ta) - fla+o—ta)pds + [[(f(@—a) = f@)da
= [J7%(f(2) - f(z +a))Pdz + [;(f(z - a) - f(z))Pd

= f”"“‘*“(f(x —a) — f(@))Pdz + [ (f(z — a) = f(z))Pdz

< 2| f(z - a) - f@)Pda+ [2 1@ - o) - F(@)[Pde,

where we have used the facts
f(z +a—ta) < f(z) £ f(x — ta) on [ta,v], and
f(z) < f(z —ta) < f(z —a) on [v,a].

Consequently we have the inequality of Lemma 3.
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Lemma 4 Let f(z) : [—2a,2a] — [0,+0c0) be a function such that f(z)
is non-increasing on [—2a,0] and is non-decreasing on [0, 2a], where a > 0.
Then for every t € [0, 1], we have

a 0 a
fo fa—ta)—f@)FPde < [ |f(@—a)—f(a)Pdo+3 /0 |f(z—a)—f(z)[Pdz.

Proof. Let u be the z-coordinate of the cross point of f(z) and of f(z — ta)
and v be the z-coordinate of the cross point of f(z — ta) and of f(z — a).
Then we have 0 < u < ta < v < a. We have

I 1f @~ to) - fla)Pds = (f+[) o
< [y (f(z —a) — f(z))Pdz + f;"(}‘(ﬂc —a—ta) — f(z —ta))Pdz
< [0 f(z—a) - f@)Pdz + [,_, |f(z — a) — f(z)Pdz
< S 1f@ - a) - f(@)Pdz + 2, | f(z — a) = f(2)[Pdz,
where we have used the facts
f(z) < f(z —ta) < f(zr—a) on [0,u] and
flz —ta) < f(z) < f(z — a — ta) on [u,ta].
On the other hand we have

Je\f(@—ta) - f@)Pds = (fo+ [

< Jo(f(z—a—ta) — f(z —ta))Pdz + [ (f(z) — f(z — a))Pdz
= [77*(f(z — a) — f(z))Pdz + [} (f(z) — f(z — a))Pdz

< 2f0 If T — a') (.'z:)]pda:,

Where we have used the facts

f(x—ta)v < f(z) < f(z — a — ta) on [ta,v], and

f(z—a) < f(z—ta) < f(z) on [v,a].

Consequently we have the inequality of Lemma 4.

Theorem 5 Let f(z) be a non-negative integrable N-modal function. Then
for every 0 < a < o and every 0 <t < 1, we have
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+oo +00
| la-ta) - f@pi <s [ i@ -0 - fo)pd

—00 00

Proof. On the subset

S = [a1,a2) U [az + a,a3] U[az + a,aq U - - - U [aan + a,a2n41]

we have

flx—a) < flx—ta) < f(z) forze la1,as] or x € agk—1, a2, and

f(x) < f(z —ta) < f(z —a) for z € [ask,aok+1] or T € [aan + a, azn41),
which implies

[ lf@=ta) - f@Pas < [ If@=a) - fla)Pds
S s

By applying Lemmal and Lemma2 for the function g(z) = f(z + ax), we
have .

Jo | f(z = ta) = f(z)|Pdw

azk+2a |f(z — a) — f(z)[Pdz + 3 fa2’°+°‘ fz—a) - f(z)|Pdz, and

“ azk+a a2k
G2k+1ta _ _
S f(@ — ta) ~ f(2)Pda

< [ | f(z —a) - f(2)Pdz + 3 [ | f(z — a) — f(z)|Pde.

azk+4+1—0a 02k+1

Consequently we have the inequality.

Theorem 6 Let f(z) be a non-negative integrable N-modal function. Then
A,(f) is a linear space.

Proof. Let {a,} € A,(f). We shall show that t{a,} € A,(f) for every
0 £t £ 1. Without loss of generality, we may assume a, > 0. Since
A(f) C £, there exists K such that a, < « for every n > K. The fi-

nite sequence t(ay, - ,ax-1,0,0,---) belongs to A,(f) and the sequence
£(0,0.--,0,ax,ax,- ) belongs to A,(f) by Theorem 1, so that t{a,} €

Ap(f).
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4 Completeness of A,(f)

Theorem 7 ([1]) Let f(3# 0) be an L,-function. Then A,(f) is complete
with respect to d, for 1 < p < +o0.

Proof. Leta® ¢ Ay(f),k=1,2,..., be a Cauchy sequence in d,. Then for
every € > 0, there exists N such that

+o0
(+) 3 [ re-at+ o) - f@)fde <o
for k,! > N. For any fixed n, we have
/ If(a:—aﬁf)—!—aﬁf)) ——f(:v)l dz — 0, as k,l — +o0.

Then it follows that o —alY — 0 as k,l — 400, that is, {a%k) } is a Cauchy
sequence(see the proof of Theorem 2.)

Let a¥ := limya®. Then we shall show a® — a©® := {a‘s? )| n =
1,2,...} in d,. In the inequality (*), taking liminf; ,;, by the Fatou’s
Lemma, we have

L [T  k ONE
sp?_thmf lf(a:—an))-—f(m—-an)! dx

l—<400

= 3 [T -a) - @ - a9 da = g(a®, a0,

which shows a®) — a(® with respect to dy.
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