A new characterization of ℓ_p by an L_p-function

Aoi Honda a Yoshiaki Okazaki a Hiroshi Sato b

a Kyushu Institute of Technology, 680-4, Kawazu, Iizuka 820-8502, Japan
b Kyushu University, Faculty of Mathematics, Fukuoka 812-8581, Japan

Abstract

In this talk, we shall show that the classical sequence space $\ell_p(1 < p < +\infty)$ is completely determined by one function $f(x)(\neq 0) \in L_p(\mathbb{R})$ which satisfies the p-integrability condition.

We introduce a new sequence space $\Lambda_p(f)$ defined by an L_p-function $f(\neq 0)$ for $1 \leq p < +\infty$ by

$$\Lambda_p(f) := \{a \in \mathbb{R}^\infty : \Psi_p(a : f) < +\infty\},$$

where

$$\Psi_p(a : f) := \left(\sum_n \int_{-\infty}^{+\infty} |f(x - a_n) - f(x)|^p \, dx \right)^{\frac{1}{p}}.$$

We shall give a characterization for $\Lambda_p(f) = \ell_p$. We shall also discuss the linear and topological properties of $\Lambda_p(f)$.

1 Introduction

Let $f(\neq 0)$ be an L_p-function on the real line \mathbb{R}. For $1 \leq p < +\infty$ and for a real sequence $a = \{a_n\} \in \mathbb{R}^\infty$, we set

$$\Psi_p(a : f) := \left(\sum_n \int_{-\infty}^{+\infty} |f(x - a_n) - f(x)|^p \, dx \right)^{\frac{1}{p}},$$

and define $\Lambda_p(f)$ by

$$\Lambda_p(f) := \{a \in \mathbb{R}^\infty : \Psi_p(a : f) < +\infty\}.$$
By the triangular inequality of L_p-norm and by the translation invariance of the Lebesgue measure, we have

$$\Psi_p(a - b : f) \leq \Psi_p(a : f) + \Psi_p(b : f),$$

which implies that $\Lambda_p(f)$ is an additive subgroup of \mathbb{R}^∞.

Define a metric on $\Lambda_p(f)$ by

$$d_p(a, b) := \Psi_p(a - b : f).$$

Then $(\Lambda_p(f), d_p(a, b))$ becomes a topological group. The space \mathbb{R}_0^∞, the direct sum, is a dense subset of $(\Lambda_p(f), d_p(a, b))$.

2 Relations between $\Lambda_p(f)$ and ℓ_p

We say $I_p(f) < +\infty$ if $f(x)$ is absolutely continuous on \mathbb{R} and the p-integral defined by

$$I_p(f) := \int_{-\infty}^{+\infty} |f'(x)|^p \, dx$$

is finite. In particular $I_2(\sqrt{f})$, for probability density function $f(x)$, coincides with the Shepp's integral (Shepp[3]).

Theorem 1 ([2]) Let $1 \leq p < +\infty$ and let $f(\neq 0)$ be an L_p-function on \mathbb{R}. Then $\Lambda_p(f) \subset \ell_p$

Proof. Assume that $\Psi_p(a; f) < +\infty$ for $a = \{a_k\} \in \mathbb{R}^\infty$. Without loss of generality, we may assume $a_k \neq 0$ for every k.

First we shall prove $\{a_k\}$ is bounded. If there is a subsequence $\{a_k'\}$ such that $|a_k'| \to +\infty$, then $\Psi_p(a; f) < +\infty$ implies

$$0 = \lim_{k'} \left(\int_{-\infty}^{+\infty} \left| f(x - a_k') - f(x) \right|^p \, dx \right)^{1/p} = 2^\frac{1}{p} \|f\|_{L_p},$$

which contradicts to $\|f\|_{L_p} > 0$.

Next we shall prove that $\{a_k\}$ converges to 0. Assume that there is a subsequence $a_{k'}$ such that $a_{k'} \to a_0 \neq 0$. Then we have

$$0 = \lim_{k'} \int_{-\infty}^{+\infty} \left| f(x - a_{k'}) - f(x) \right|^p \, dx = \int_{-\infty}^{+\infty} \left| f(x - a_0) - f(x) \right|^p \, dx,$$

which implies $f(x - a_0) = f(x)$, a.e. (dx). This contradicts to the integrability of $f(x)$.

Finally, we shall prove

\[\rho := \inf_k \int_{-\infty}^{+\infty} \left| f(x-a_k) - f(x) \right|^p \, dx > 0. \]

Assume that there exists a subsequence \(a_{k'} \) such that

\[\int_{-\infty}^{+\infty} \left| f(x-a_{k'}) - f(x) \right|^p \, dx \to 0 \]

Then it follows that

\[f(x-a_{k'}) - f(x) \to 0 \text{ in } L_p(\mathbb{R}). \]

Consequently, \(f(x) \) is absolutely continuous with \(f'(x) = 0, \text{a.e.}(dx) \), that implies \(f = 0 \), which is a contradiction.

Therefore we have

\[+\infty > \sum_{k} \int_{-\infty}^{+\infty} \left| f(x-a_k) - f(x) \right|^p \, dx \, |a_k|^p \geq \rho \sum_{k} |a_k|^p, \]

which proves the theorem.

Theorem 2 ([2]) Let \(1 < p < +\infty \) and \(f(\neq 0) \) be a non-negative integrable function on \(\mathbb{R} \). Then \(\Lambda_p(f) = \ell_p \) if and only if \(I_p(f) < +\infty \).

Proof. Assume \(\Psi_p(a; f) < +\infty \) for every \(a = \{a_k\} \in \ell_p \). We set

\[\psi(a) := \int_{-\infty}^{+\infty} \left| f(x-a) - f(x) \right|^p \, dx, \]

\[u_n := 2^{-n}, \]

and

\[F_n(x) := f(x-u_n) - f(x). \]

Then we shall show

\[K := \sup_N 2^N \psi(u_N) = \sup_N \int_{-\infty}^{+\infty} \left| F_N(x) \right|^p \, dx < +\infty. \]

Assume, on the contrary, that for every \(n \) there exists \(N(n) > n \) satisfying

\[2^{N(n)} \psi(u_{N(n)}) > 2^n. \]
Then for the sequence

\[a_0 := (\hat{u}_{N(1)}, \cdots, \hat{u}_{N(1)}, \cdots, \hat{u}_{N(n)}, \cdots, \hat{u}_{N(n)}, \cdots), \]

we have \(a_0 \in \ell_p \) and \(\Psi_p(a_0; f) = +\infty \), which is a contradiction.

Since \(L_p(\mathbb{R}, dx), 1 < p < +\infty \), is a separable reflexible Banach space, each bounded closed ball is compact and metrizable with respect to the weak topology. So that there exists a subsequence \(\{F_{n_j}(x)\} \) and \(h(x) \in L_p(\mathbb{R}, dx) \) such that \(\{F_{n_j}(x)\} \) converges weakly to \(h(x) \).

Consequently, \(f(x) \) is absolutely continuous, \(f'(x) = -h(x), \ a.e.(dx) \), and we have

\[I_p(f) = \int_{-\infty}^{+\infty} |f'(x)|^p dx = \int_{-\infty}^{+\infty} |h(x)|^p dx < +\infty. \]

Conversely, assume \(I_p(f) < +\infty \). Then by the mean value theorem and Fubini’s theorem, we have

\[\int_{-\infty}^{+\infty} |f(x-a_k) - f(x)|^p dx = \left| a_k \right|^p \left[\int_{-\infty}^{+\infty} \left| \int_0^1 f'(x - ta_k) dt \right|^p dx \right] \leq |a_k|^p \int_{-\infty}^{+\infty} dx \int_0^1 \left| f'(x - ta_k) \right|^p dt = |a_k|^p \int_{-\infty}^{+\infty} \left| f'(x) \right|^p dx = I_p(f) |a_k|^p, \]

which implies

\[\sum_k \int_{-\infty}^{+\infty} |f(x-a_k) - f(x)|^p dx \leq I_p(f) \sum_{k=1}^{+\infty} |a_k|^p < +\infty. \]

3 Linearity of \(\Lambda_p(f) \)

We say \(f(x) \) is an \(N \)-modal function if there exist \(a_n, n = 1, 2, \cdots, 2N + 1 \) such that

\[-\infty = a_1 < a_2 < \cdots < a_{2N} < a_{2N+1} = +\infty, \]

\(f(x) \) is non-decreasing on the interval \([a_{2k-1}, a_{2k}]\), and

\(f(x) \) is non-increasing on the interval \([a_{2k}, a_{2k+1}]\).

Let \(\alpha = \alpha(f) := \frac{1}{2} \min\{a_{k+1} - a_k\} \) if \(N \geq 2 \) and \(\alpha := +\infty \) if \(N = 1 \).
Lemma 3 Let $f(x) : [-2a, 2a] \to [0, +\infty)$ be a function such that $f(x)$ is non-decreasing on $[-2a, 0]$ and is non-increasing on $[0, 2a]$, where $a \geq 0$. Then for every $t \in [0, 1]$, we have

$$\int_0^a |f(x-ta) - f(x)|^p \, dx \leq \int_a^{2a} |f(x-a) - f(x)|^p \, dx + 3 \int_0^a |f(x-a) - f(x)|^p \, dx.$$

Proof. Let u be the x-coordinate of the cross point of $f(x)$ and of $f(x-ta)$ and v be the x-coordinate of the cross point of $f(x-ta)$ and of $f(x-a)$. Then we have $0 \leq u \leq ta \leq v \leq a$. We have

$$\int_0^{ta} |f(x-ta) - f(x)|^p \, dx = \left(\int_0^u + \int_u^{ta} \right)$$

$$\leq \int_0^u (f(x) - f(x-a))^p \, dx + \int_u^{ta} (f(x-ta) - f(x+a-ta))^p \, dx$$

$$\leq \int_0^{ta} |f(x-a) - f(x)|^p \, dx + \int_0^u |f(x) - f(x+a)|^p \, dx$$

$$= \int_0^{ta} |f(x-a) - f(x)|^p \, dx + \int_{u-ta}^a |f(x-a) - f(x)|^p \, dx$$

$$\leq 2 \int_0^a |f(x-a) - f(x)|^p \, dx,$$

where we have used the facts

$$f(x-a) \leq f(x-ta) \leq f(x) \text{ on } [0, u] \text{ and }$$

$$f(x-a) \leq f(x) \leq f(x-ta) \text{ on } [u, ta].$$

On the other hand we have

$$\int_{ta}^a |f(x-ta) - f(x)|^p \, dx = \left(\int_{ta}^v + \int_v^a \right)$$

$$\leq \int_{ta}^v (f(x-ta) - f(x+a-ta))^p \, dx + \int_v^a (f(x-a) - f(x))^p \, dx$$

$$= \int_{ta}^{u-ta} (f(x) - f(x+a))^p \, dx + \int_{u-ta}^a (f(x-a) - f(x))^p \, dx$$

$$= \int_{ta}^{u-ta} (f(x-a) - f(x))^p \, dx + \int_{v}^a (f(x-a) - f(x))^p \, dx$$

$$\leq \int_a^{2a} |f(x-a) - f(x)|^p \, dx + \int_0^a |f(x-a) - f(x)|^p \, dx,$$

where we have used the facts

$$f(x+a-ta) \leq f(x) \leq f(x-ta) \text{ on } [ta, v], \text{ and }$$

$$f(x) \leq f(x-ta) \leq f(x-a) \text{ on } [v, a].$$

Consequently we have the inequality of Lemma 3.
Lemma 4 Let $f(x) : [-2a, 2a] \rightarrow [0, +\infty)$ be a function such that $f(x)$ is non-increasing on $[-2a, 0]$ and is non-decreasing on $[0, 2a]$, where $a \geq 0$. Then for every $t \in [0, 1]$, we have

$$\int_{0}^{a} |f(x-ta)-f(x)|^{p} dx \leq \int_{-a}^{0} |f(x-a)-f(x)|^{p} dx + 3 \int_{0}^{a} |f(x-a)-f(x)|^{p} dx.$$

Proof. Let u be the x-coordinate of the cross point of $f(x)$ and of $f(x-ta)$ and v be the x-coordinate of the cross point of $f(x-ta)$ and of $f(x-a)$. Then we have $0 \leq u \leq ta \leq v \leq a$. We have

$$\int_{0}^{ta} |f(x-ta) - f(x)|^{p} dx = \left(\int_{0}^{u} + \int_{u}^{ta} \right)$$

$$\leq \int_{0}^{u} (f(x-a) - f(x))^{p} dx + \int_{u}^{ta} (f(x-a-ta) - f(x-ta))^{p} dx$$

$$\leq \int_{0}^{ta} |f(x-a) - f(x)|^{p} dx + \int_{v-ta}^{0} |f(x-a) - f(x)|^{p} dx$$

$$\leq \int_{0}^{a} |f(x-a) - f(x)|^{p} dx + \int_{-a}^{0} |f(x-a) - f(x)|^{p} dx,$$

where we have used the facts

$f(x) \leq f(x-ta) \leq f(x-a)$ on $[0, u]$ and

$f(x-ta) \leq f(x) \leq f(x-a-ta)$ on $[u, ta]$.

On the other hand we have

$$\int_{ta}^{a} |f(x-ta) - f(x)|^{p} dx = \left(\int_{ta}^{u} + \int_{u}^{a} \right)$$

$$\leq \int_{ta}^{u} (f(x-a-ta) - f(x-ta))^{p} dx + \int_{u}^{a} (f(x) - f(x-a))^{p} dx$$

$$= \int_{0}^{u-ta} (f(x-a) - f(x))^{p} dx + \int_{u}^{a} (f(x) - f(x-a))^{p} dx$$

$$\leq 2 \int_{0}^{a} |f(x-a) - f(x)|^{p} dx,$$

where we have used the facts

$f(x-ta) \leq f(x) \leq f(x-a-ta)$ on $[ta, v]$, and

$f(x-a) \leq f(x-ta) \leq f(x)$ on $[v, a]$.

Consequently we have the inequality of Lemma 4.

Theorem 5 Let $f(x)$ be a non-negative integrable N-modal function. Then for every $0 \leq a \leq \alpha$ and every $0 \leq t \leq 1$, we have
\[
\int_{-\infty}^{+\infty} |f(x - ta) - f(x)|^p dx \leq 5 \int_{-\infty}^{+\infty} |f(x - a) - f(x)|^p dx.
\]

Proof. On the subset

\[S := [a_1, a_2] \cup [a_2 + a, a_3] \cup [a_3 + a, a_4] \cup \cdots \cup [a_{2N} + a, a_{2N+1}] \]

we have

\[f(x - a) \leq f(x - ta) \leq f(x) \text{ for } x \in [a_1, a_2] \text{ or } x \in [a_{2k-1}, a_{2k}], \]

and

\[f(x) \leq f(x - ta) \leq f(x - a) \text{ for } x \in [a_{2k}, a_{2k+1}] \text{ or } x \in [a_{2N} + a, a_{2N+1}], \]

which implies

\[
\int_S |f(x - ta) - f(x)|^p dx \leq \int_S |f(x - a) - f(x)|^p dx.
\]

By applying Lemma 1 and Lemma 2 for the function \(g(x) = f(x + a_k) \), we have

\[
\int_{a_{2k}}^{a_{2k}+a} |f(x - ta) - f(x)|^p dx
\]

\[
\leq \int_{a_{2k}+a}^{a_{2k}+2a} |f(x - a) - f(x)|^p dx + 3 \int_{a_{2k}}^{a_{2k}+a} |f(x - a) - f(x)|^p dx, \text{ and}
\]

\[
\int_{a_{2k+1}}^{a_{2k+1}+a} |f(x - ta) - f(x)|^p dx
\]

\[
\leq \int_{a_{2k+1}-a}^{a_{2k+1}} |f(x - a) - f(x)|^p dx + 3 \int_{a_{2k+1}}^{a_{2k+1}+a} |f(x - a) - f(x)|^p dx.
\]

Consequently we have the inequality.

Theorem 6 Let \(f(x) \) be a non-negative integrable N-modal function. Then \(\Lambda_p(f) \) is a linear space.

Proof. Let \(\{a_n\} \in \Lambda_p(f) \). We shall show that \(t\{a_n\} \in \Lambda_p(f) \) for every \(0 \leq t \leq 1 \). Without loss of generality, we may assume \(a_n \geq 0 \). Since \(\Lambda_p(f) \subset \ell_p \), there exists \(K \) such that \(a_n \leq \alpha \) for every \(n \geq K \). The finite sequence \(t(a_1, \cdots, a_{K-1}, 0, 0, \cdots) \) belongs to \(\Lambda_p(f) \) and the sequence \(t(0, 0, \cdots, 0, a_K, a_{K+1}, \cdots) \) belongs to \(\Lambda_p(f) \) by Theorem 1, so that \(t\{a_n\} \in \Lambda_p(f) \).
4 Completeness of $\Lambda_p(f)$

Theorem 7 ([1]) Let $f(\neq 0)$ be an L_p-function. Then $\Lambda_p(f)$ is complete with respect to d_p for $1 \leq p < +\infty$.

Proof. Let $a^{(k)} \in \Lambda_p(f), k = 1, 2, \ldots$, be a Cauchy sequence in d_p. Then for every $\epsilon > 0$, there exists N such that

\[\sum_n \int_{-\infty}^{+\infty} |f(x - a^{(k)}_n + a^{(l)}_n) - f(x)|^p dx \leq \epsilon^p. \]

for $k, l \geq N$. For any fixed n, we have

\[\int_{-\infty}^{+\infty} |f(x - a^{(k)}_n + a^{(l)}_n) - f(x)|^p dx \rightarrow 0, \text{ as } k, l \rightarrow +\infty. \]

Then it follows that $a^{(k)}_n - a^{(l)}_n \rightarrow 0$ as $k, l \rightarrow +\infty$, that is, $\{a^{(k)}_n\}$ is a Cauchy sequence (see the proof of Theorem 2.)

Let $a^{(0)}_n := \lim_k a^{(k)}_n$. Then we shall show $a^{(k)} \rightarrow a^{(0)} := \{a^{(0)}_n | n = 1, 2, \ldots\}$ in d_p. In the inequality (\ast), taking $\lim \inf_{l \rightarrow +\infty}$, by the Fatou's Lemma, we have

\[\epsilon^p \geq \sum_n \lim \inf_{l \rightarrow +\infty} \int_{-\infty}^{+\infty} |f(x - a^{(k)}_n) - f(x - a^{(l)}_n)|^p dx \]

\[= \sum_n \int_{-\infty}^{+\infty} |f(x - a^{(k)}_n) - f(x - a^{(0)}_n)|^p dx = d_p(a^{(k)}, a^{(0)})^p, \]

which shows $a^{(k)} \rightarrow a^{(0)}$ with respect to d_p.

References

