A new characterization of ℓ_p by an L_p-function

Aoi Honda a, Yoshiaki Okazaki a, Hiroshi Sato b

a Kyushu Institute of Technology, 680-4, Kawazu, Iizuka 820-8502, Japan
b Kyushu University, Faculty of Mathematics, Fukuoka 812-8581, Japan

Abstract

In this talk, we shall show that the classical sequence space $\ell_p(1 < p < +\infty)$ is completely determined by one function $f(x)(\neq 0) \in L_p(\mathbb{R})$ which satisfies the p-integrability condition.

We introduce a new sequence space $\Lambda_p(f)$ defined by an L_p-function $f(\neq 0)$ for $1 \leq p < +\infty$ by

$$\Lambda_p(f) := \{a \in \mathbb{R}^\infty : \Psi_p(a : f) < +\infty\},$$

where

$$\Psi_p(a : f) := \left(\sum_n \int_{-\infty}^{+\infty} |f(x-a_n) - f(x)|^p dx \right)^{\frac{1}{p}}.$$

We shall give a characterization for $\Lambda_p(f) = \ell_p$. We shall also discuss the linear and topological properties of $\Lambda_p(f)$.

1 Introduction

Let $f(\neq 0)$ be an L_p-function on the real line \mathbb{R}. For $1 \leq p < +\infty$ and for a real sequence $a = \{a_n\} \in \mathbb{R}^\infty$, we set

$$\Psi_p(a : f) := \left(\sum_n \int_{-\infty}^{+\infty} |f(x-a_n) - f(x)|^p dx \right)^{\frac{1}{p}},$$

and define $\Lambda_p(f)$ by

$$\Lambda_p(f) := \{a \in \mathbb{R}^\infty : \Psi_p(a : f) < +\infty\}.$$
By the triangular inequality of L_p-norm and by the translation invariance of the Lebesgue measure, we have

$$\Psi_p(a - b : f) \leq \Psi_p(a : f) + \Psi_p(b : f),$$

which implies that $\Lambda_p(f)$ is an additive subgroup of \mathbb{R}^∞.

Define a metric on $\Lambda_p(f)$ by

$$d_p(a, b) := \Psi_p(a - b : f).$$

Then $(\Lambda_p(f), d_p(a, b))$ becomes a topological group. The space \mathbb{R}_0^∞, the direct sum, is a dense subset of $(\Lambda_p(f), d_p(a, b))$.

2 Relations between $\Lambda_p(f)$ and ℓ_p

We say $I_p(f) < +\infty$ if $f(x)$ is absolutely continuous on \mathbb{R} and the p-integral defined by

$$I_p(f) := \int_{-\infty}^{+\infty} |f'(x)|^p dx$$

is finite. In particular $I_2(\sqrt{f})$, for probability density function $f(x)$, coincides with the Shepp's integral(Shepp[3]).

Theorem 1 ([2]) Let $1 \leq p < +\infty$ and let $f(\neq 0)$ be an L_p-function on \mathbb{R}. Then $\Lambda_p(f) \subset \ell_p$.

Proof. Assume that $\Psi_p(a; f) < +\infty$ for $a = \{a_k\} \in \mathbb{R}^\infty$. Without loss of generality, we may assume $a_k \neq 0$ for every k.

First we shall prove $\{a_k\}$ is bounded. If there is a subsequence $\{a_k'\}$ such that $|a_k'| \to +\infty$, then $\Psi_p(a; f) < +\infty$ implies

$$0 = \lim_{k'} \left(\int_{-\infty}^{+\infty} |f(x - a_k') - f(x)|^p dx \right)^{1/p} = 2^p ||f||_{L_p}$$

which contradicts to $||f||_{L_p} > 0$.

Next we shall prove that $\{a_k\}$ converges to 0. Assume that there is a subsequence a_k' such that $a_k' \to a_0 \neq 0$. Then we have

$$0 = \lim_{k'} \int_{-\infty}^{+\infty} |f(x - a_k') - f(x)|^p dx = \int_{-\infty}^{+\infty} |f(x - a_0) - f(x)|^p dx,$$

which implies $f(x-a_0) = f(x), a.e.(dx)$. This contradicts to the integrability of $f(x)$.
Finally, we shall prove
\[\rho := \inf_k \int_{-\infty}^{+\infty} \left| f(x - a_k) - f(x) \right|^p \, dx > 0. \]

Assume that there exists a subsequence \(a_{k'} \) such that
\[\int_{-\infty}^{+\infty} \left| f(x - a_{k'}) - f(x) \right|^p \, dx \to 0 \]
Then it follows that
\[f(x - a_{k'}) - f(x) \to 0 \text{ in } L_p(\mathbb{R}). \]

Consequently, \(f(x) \) is absolutely continuous with \(f'(x) = 0, \text{a.e.}(dx) \), that implies \(f = 0 \), which is a contradiction.

Therefore we have
\[+\infty > \sum_k \int_{-\infty}^{+\infty} \left| f(x - a_k) - f(x) \right|^p \, dx |a_k|^p \geq \rho \sum_k |a_k|^p, \]
which proves the theorem.

Theorem 2 ([2]) Let \(1 < p < +\infty \) and \(f(\neq 0) \) be a non-negative integrable function on \(\mathbb{R} \). Then \(\Lambda_p(f) = \ell_p \) if and only if \(I_p(f) < +\infty \).

Proof. Assume \(\Psi_p(\alpha; f) < +\infty \) for every \(\alpha = \{a_k\} \in \ell_p \). We set
\[\psi(\alpha) := \int_{-\infty}^{+\infty} \left| f(x - a) - f(x) \right|^p \, dx, \]
\[u_n := 2^{-\frac{n}{p}}, \]
and
\[F_n(x) := f(x - u_n) - f(x) \]
Then we shall show
\[K := \sup_N 2^N \psi(u_N) = \sup_N \int_{-\infty}^{+\infty} \left| F_N(x) \right|^p \, dx < +\infty. \]
Assume, on the contrary, that for every \(n \) there exists \(N(n) > n \) satisfying
\[2^{N(n)} \psi(u_{N(n)}) > 2^n. \]
Then for the sequence

\[a_0 := (\tilde{u}_{N(1)}, \cdots, u_{N(1)}, \cdots, \tilde{u}, N(n), \cdots, u_{N(n)}, \cdots) \]

we have \(a_0 \in \ell_p \) and \(\Psi_p (a_0; f) = +\infty \), which is a contradiction.

Since \(L_p(\mathbb{R}, dx), 1 < p \leq +\infty \), is a separable reflexive Banach space, each bounded closed ball is compact and metrizable with respect to the weak topology. So that there exists a subsequence \(\{ F_{n_j}(x) \} \) and \(h(x) \in L_p(\mathbb{R}, dx) \) such that \(\{ F_{n_j}(x) \} \) converges weakly to \(h(x) \).

Consequently, \(f(x) \) is absolutely continuous, \(f'(x) = -h(x) \), a.e.\((dx)\), and we have

\[I_p(f) = \int_{-\infty}^{+\infty} |f'(x)|^p dx = \int_{-\infty}^{+\infty} |h(x)|^p dx < +\infty. \]

Conversely, assume \(I_p(f) < +\infty \). Then by the mean value theorem and Fubini’s theorem, we have

\[
\int_{-\infty}^{+\infty} |f(x - a_k) - f(x)|^p dx = |a_k|^p \int_{-\infty}^{+\infty} \left| \int_0^1 f'(x - ta_k) dt \right|^p dx
\leq |a_k|^p \int_{-\infty}^{+\infty} dx \int_0^1 \left| f'(x - ta_k) \right|^p dt = |a_k|^p \int_{-\infty}^{+\infty} \left| f'(x) \right|^p dx = I_p(f) |a_k|^p,
\]

which implies

\[\sum_k \int_{-\infty}^{+\infty} |f(x - a_k) - f(x)|^p dx \leq I_p(f) \sum_{k=1}^{+\infty} |a_k|^p < +\infty. \]

3 Linearity of \(\Lambda_p(f) \)

We say \(f(x) \) is an N-modal function if there exist \(a_n, n = 1, 2, \cdots, 2N + 1 \) such that

\[-\infty = a_1 < a_2 < \cdots < a_{2N} < a_{2N+1} = +\infty, \]

\(f(x) \) is non-decreasing on the interval \([a_{2k-1}, a_{2k}]\), and

\(f(x) \) is non-increasing on the interval \([a_{2k}, a_{2k+1}]\).

Let \(\alpha = \alpha(f) := \frac{1}{2} \min\{a_{k+1} - a_k\} \) if \(N \geq 2 \) and \(\alpha := +\infty \) if \(N = 1 \).
Lemma 3 Let \(f(x) : [-2a, 2a] \to [0, +\infty) \) be a function such that \(f(x) \) is non-decreasing on \([-2a, 0]\) and is non-increasing on \([0, 2a]\), where \(a \geq 0 \). Then for every \(t \in [0, 1] \), we have

\[
\int_0^a |f(x-ta) - f(x)|^p \, dx \leq \int_a^{2a} |f(x-a) - f(x)|^p \, dx + 3 \int_0^a |f(x-a) - f(x)|^p \, dx.
\]

Proof. Let \(u \) be the \(x \)-coordinate of the cross point of \(f(x) \) and of \(f(x-ta) \) and \(v \) be the \(x \)-coordinate of the cross point of \(f(x-ta) \) and of \(f(x-a) \). Then we have \(0 \leq u \leq ta \leq v \leq a \). We have

\[
\int_0^{ta} |f(x-ta) - f(x)|^p \, dx = \left(\int_0^u + \int_u^{ta} \right)
\]

\[
\leq \int_0^u (f(x) - f(x-a))^p \, dx + \int_u^{ta} (f(x-ta) - f(x+a-ta))^p \, dx
\]

\[
\leq \int_0^{ta} |f(x-a) - f(x)|^p \, dx + \int_0^u |f(x) - f(x+a)|^p \, dx
\]

\[
= \int_0^{ta} |f(x-a) - f(x)|^p \, dx + \int_{u-ta}^a |f(x-a) - f(x)|^p \, dx
\]

\[
\leq 2 \int_0^a |f(x-a) - f(x)|^p \, dx,
\]

where we have used the facts

\[
f(x-a) \leq f(x-ta) \leq f(x) \text{ on } [0, u] \text{ and}
\]

\[
f(x+a-ta) \leq f(x) \leq f(x-ta) \text{ on } [u, ta].
\]

On the other hand we have

\[
\int_{ta}^a |f(x-ta) - f(x)|^p \, dx = \left(\int_{ta}^v + \int_v^a \right)
\]

\[
\leq \int_{ta}^v (f(x-ta) - f(x+a-ta))^p \, dx + \int_v^a (f(x-a) - f(x))^p \, dx
\]

\[
= \int_{ta}^v (f(x) - f(x+a))^p \, dx + \int_v^a (f(x-a) - f(x))^p \, dx
\]

\[
= \int_{ta}^{2a} (f(x-a) - f(x))^p \, dx + \int_v^a (f(x-a) - f(x))^p \, dx
\]

\[
\leq \int_a^{2a} |f(x-a) - f(x)|^p \, dx + \int_0^a |f(x-a) - f(x)|^p \, dx,
\]

where we have used the facts

\[
f(x+a-ta) \leq f(x) \leq f(x-ta) \text{ on } [ta, v], \text{ and}
\]

\[
f(x) \leq f(x-ta) \leq f(x-a) \text{ on } [v, a].
\]

Consequently we have the inequality of Lemma 3.
Lemma 4 Let \(f(x) : [-2a, 2a] \to [0, +\infty) \) be a function such that \(f(x) \) is non-increasing on \([-2a, 0]\) and is non-decreasing on \([0, 2a]\), where \(a \geq 0 \).
Then for every \(t \in [0, 1] \), we have

\[
\int_{0}^{a} |f(x-ta) - f(x)|^p \, dx \leq \int_{-a}^{0} |f(x-a) - f(x)|^p \, dx + 3 \int_{0}^{a} |f(x-a) - f(x)|^p \, dx.
\]

Proof. Let \(u \) be the \(x \)-coordinate of the cross point of \(f(x) \) and of \(f(x-ta) \)
and \(v \) be the \(x \)-coordinate of the cross point of \(f(x-ta) \) and of \(f(x-a) \).
Then we have \(0 \leq u \leq ta \leq v \leq a \). We have

\[
\int_{0}^{ta} |f(x-ta) - f(x)|^p \, dx = \left(\int_{0}^{u} + \int_{u}^{ta} \right) \\
\leq \int_{0}^{u} (f(x-a) - f(x))^p \, dx + \int_{u}^{ta} (f(x-a-ta) - f(x-ta))^p \, dx \\
\leq \int_{0}^{u} |f(x-a) - f(x)|^p \, dx + \int_{ta}^{v} |f(x-a-ta) - f(x-ta)|^p \, dx \\
\leq \int_{0}^{a} |f(x-a) - f(x)|^p \, dx + \int_{-a}^{0} |f(x-a) - f(x)|^p \, dx,
\]

where we have used the facts

\[f(x) \leq f(x-ta) \leq f(x-a) \text{ on } [0, u] \text{ and} \]

\[f(x-ta) \leq f(x) \leq f(x-a-ta) \text{ on } [u, ta]. \]

On the other hand we have

\[
\int_{ta}^{a} |f(x-ta) - f(x)|^p \, dx = \left(\int_{ta}^{u} + \int_{u}^{a} \right) \\
\leq \int_{ta}^{u} (f(x-a-ta) - f(x-ta))^p \, dx + \int_{u}^{a} (f(x) - f(x-a))^p \, dx \\
= \int_{ta}^{a} (f(x-a-ta) - f(x-ta))^p \, dx + \int_{v}^{u} (f(x) - f(x-a))^p \, dx \\
\leq 2 \int_{0}^{a} |f(x-a) - f(x)|^p \, dx,
\]

where we have used the facts

\[f(x-ta) \leq f(x) \leq f(x-a-ta) \text{ on } [ta, v], \text{ and} \]

\[f(x-a) \leq f(x-ta) \leq f(x) \text{ on } [v, a]. \]

Consequently we have the inequality of Lemma 4.

Theorem 5 Let \(f(x) \) be a non-negative integrable N-modal function. Then
for every \(0 \leq a \leq \alpha \) and every \(0 \leq t \leq 1 \), we have
\[
\int_{-\infty}^{+\infty} |f(x-ta) - f(x)|^p dx \leq 5 \int_{-\infty}^{+\infty} |f(x-a) - f(x)|^p dx.
\]

Proof. On the subset

\[S := [a_1, a_2] \cup [a_2 + a, a_3] \cup [a_3 + a, a_4] \cup \cdots \cup [a_{2N} + a, a_{2N+1}] \]

we have

\[f(x - a) \leq f(x-ta) \leq f(x) \text{ for } x \in [a_1, a_2] \text{ or } x \in [a_{2k-1}, a_{2k}], \]

and

\[f(x) \leq f(x-ta) \leq f(x-a) \text{ for } x \in [a_{2k}, a_{2k+1}] \text{ or } x \in [a_{2N} + a, a_{2N+1}], \]

which implies

\[\int_S |f(x-ta) - f(x)|^p dx \leq \int_S |f(x-a) - f(x)|^p dx. \]

By applying Lemma1 and Lemma2 for the function \(g(x) = f(x + a_k) \), we have

\[\int_{a_{2k}}^{a_{2k}+a} |f(x-ta) - f(x)|^p dx \]

\[\leq \int_{a_{2k}+a}^{a_{2k}+2a} |f(x-a) - f(x)|^p dx + 3 \int_{a_{2k}}^{a_{2k}+a} |f(x-a) - f(x)|^p dx, \]

and

\[\int_{a_{2k+1}+a}^{a_{2k+1}+a} |f(x-ta) - f(x)|^p dx \]

\[\leq \int_{a_{2k+1}}^{a_{2k+1}+a} |f(x-a) - f(x)|^p dx + 3 \int_{a_{2k+1}}^{a_{2k+1}+a} |f(x-a) - f(x)|^p dx. \]

Consequently we have the inequality.

Theorem 6 Let \(f(x) \) be a non-negative integrable N-modal function. Then \(\Lambda_p(f) \) is a linear space.

Proof. Let \(\{a_n\} \in \Lambda_p(f) \). We shall show that \(t\{a_n\} \in \Lambda_p(f) \) for every \(0 \leq t \leq 1 \). Without loss of generality, we may assume \(a_n \geq 0 \). Since \(\Lambda_p(f) \subset \ell_p \), there exists \(K \) such that \(a_n \leq \alpha \) for every \(n \geq K \). The finite sequence \(t(a_1, \cdots, a_{K-1}, 0, 0, \cdots) \) belongs to \(\Lambda_p(f) \) and the sequence \(t(0, 0, \cdots, 0, a_K, a_{K+1}, \cdots) \) belongs to \(\Lambda_p(f) \) by Theorem 1, so that \(t\{a_n\} \in \Lambda_p(f) \).
4 Completeness of $\Lambda_p(f)$

Theorem 7 ([1]) Let $f(\neq 0)$ be an L_p-function. Then $\Lambda_p(f)$ is complete with respect to d_p for $1 \leq p < +\infty$.

Proof. Let $a^{(k)} \in \Lambda_p(f)$, $k = 1, 2, \ldots$, be a Cauchy sequence in d_p. Then for every $\varepsilon > 0$, there exists N such that

\[\sum_n \int_{-\infty}^{+\infty} \left| f(x - a_n^{(k)} + a_n^{(l)}) - f(x) \right|^p dx \leq \varepsilon^p. \]

for $k, l \geq N$. For any fixed n, we have

\[\int_{-\infty}^{+\infty} \left| f(x - a_n^{(k)} + a_n^{(l)}) - f(x) \right|^p dx \rightarrow 0, \text{ as } k, l \rightarrow +\infty. \]

Then it follows that $a_n^{(k)} - a_n^{(l)} \rightarrow 0$ as $k, l \rightarrow +\infty$, that is, $\{a_n^{(k)}\}$ is a Cauchy sequence (see the proof of Theorem 2).

Let $a_n^{(0)} := \lim_k a_n^{(k)}$. Then we shall show $a^{(k)} \rightarrow a^{(0)} := \{a_n^{(0)} \mid n = 1, 2, \ldots\}$ in d_p. In the inequality (\ast), taking $\lim \inf_{l \rightarrow +\infty}$, by the Fatou’s Lemma, we have

\[
\varepsilon^p \geq \sum_n \liminf_{l \rightarrow +\infty} \int_{-\infty}^{+\infty} \left| f(x - a_n^{(k)}) - f(x - a_n^{(l)}) \right|^p dx
= \sum_n \int_{-\infty}^{+\infty} \left| f(x - a_n^{(k)}) - f(x - a_n^{(0)}) \right|^p dx = d_p(a^{(k)}, a^{(0)})^p,
\]

which shows $a^{(k)} \rightarrow a^{(0)}$ with respect to d_p.

References

