<table>
<thead>
<tr>
<th>Title</th>
<th>Hyperbolicity of critically finite maps on complex projective plane (Complex Dynamics and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MAEGAWA, KAZUTOSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008, 1586: 104-108</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81531</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>Publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hyperbolicity of critically finite maps on complex projective plane

KAZUTOSHI MAEGAWA

This is the abstract of my talk in the conference held at RIMS, September 3-6 2007. The results obtained in [M1] and [M2] will be explained.

Our main purpose is to give a necessary and sufficient condition for a critically finite map on complex projective plane to be Axiom A. This is helpful to understand the dynamics of a map f, which is obtained by a small perturbation of an Axiom A critically finite map f_0.

1 Repellers

We denote by \mathbb{P}^k complex projective space of complex dimension $k(\geq 1)$ and by ω Fubini-Study form such that $\int_{\mathbb{P}^k} \omega^k = 1$. For a holomorphic self-map f of \mathbb{P}^k, we define the degree of f by the formula

$$\deg(f) := \int_{\mathbb{P}^k} f^* \omega \wedge \omega^{k-1}.$$

Because the dynamics of degree 1 maps can be understood by linear algebra, in this paper, we will focus on the case when $\deg(f) \geq 2$. Let C denote the critical set of f. We consider the closure of the post-critical set and the critical limit set for f which are respectively defined by

$$D := \bigcup_{n \geq 1} f^n(C), \ E := \bigcap_{n \geq 1} \bigcup_{i \geq n} f^i(C).$$

In this section, we will study the dynamics on invariant compact sets outside D. We will describe a 'semi-repelling' structure of such invariant compact sets.

Definition 1.1. Let f be a holomorphic self-map of \mathbb{P}^k of degree ≥ 2. Let T_p denote the holomorphic tangent space at $p \in \mathbb{P}^k$ and let $|\cdot|$ denote Fubini-Study metric.

We say that $p \in \mathbb{P}^k$ is repelling for f if and only if

$$\min_{v \in T_p, |v|=1} |Df^j(v)| \to +\infty$$

as $j \to +\infty$, where Df denote the derivative of f.
We say that a compact set K in \mathbb{P}^{k} is a repeller for f if and only if $f(K) = K$ and there are constants $c > 0$, $\lambda > 1$ such that

$$|Df^n(v)| \geq c\lambda^n |v|$$

for all $v \in \bigcup_{p \in K} T_p$ and all $n \geq 1$.

Let D denote the unit disk in \mathbb{C}. We say that a holomorphic embedding $\phi : D \rightarrow \mathbb{P}^k$ is a Fatou disk if and only if $\{f^n \circ \phi\}_{n \geq 1}$ is a normal family in D. We say that a Fatou disk $\phi : D \rightarrow \mathbb{P}^k$ is noncontractive if and only if every limit map of $\{f^n \circ \phi\}_{n \geq 1}$ is nonconstant.

By the following theorem, we describe a 'semi-repelling' structure of an invariant compact set outside D, in terms of repelling points and Fatou disks.

Theorem 1.2. Let f be a holomorphic self-map of \mathbb{P}^k of degree ≥ 2. Let K be a compact set in \mathbb{P}^k such that $f(K) \subset K$ and $K \cap D = \emptyset$. Then, there are subsets K^u, $K^c \subset K$ which satisfy the following properties:

(i) $K^u \cup K^c = K$, $K^u \cap K^c = \emptyset$;

(ii) $f(K^u) \subset K^u$, $f(K^c) \subset K^c$;

(iii) each point in K^u is repelling;

(iv) for each $p \in E^c$, there is a noncontractive Fatou disk through p.

Moreover, if $f(K) = K$ and $K^c = \emptyset$, then K is a repeller.

2 Maps with sparse critical orbits

Let f be a holomorphic self-map of \mathbb{P}^k of degree ≥ 2. As in case when $k = 1$, we will consider the Fatou set and the Julia set for f.

Definition 2.1. We define the Fatou set F for f to be the domain of normality for the sequence of the iterates $\{f^n\}_{n \geq 1}$ and define the Julia set J as $J := \mathbb{P}^k \setminus F$.

The limit $T := \lim_{n \rightarrow +\infty} \frac{1}{d^n}(f^*)^n \omega$ exists and we call T the Green $(1,1)$ current for f. The p-fold wedge product $T^p := T \wedge \cdots \wedge T$ is called the Green (p,p) current for f and the support

$$J_p := \text{supp}(T^p)$$

is called the p-th Julia set.
By Fornæss-Sibony and Ueda, it is shown that $J_1 = J$. By Briend-Duval, it is shown that

$$J_k \subset \{\text{repelling periodic points}\}.$$

Interestingly, if $k \geq 2$, it is possible that J_k is a proper subset of the one on the right hand side. So, when we study Axiom A maps in higher dimensions, we cannot avoid considering this phenomenon.

Definition 2.2. Let f be a holomorphic self-map of \mathbb{P}^k of degree ≥ 2. We say that f is critically finite if and only if D is algebraic. We say that f is critically sparse if and only if D is pluripolar. (Obviously, critically finite maps are critically sparse.)

When f is critically sparse, we can show that J_k is the 'precise' locus of the distribution of repelling periodic points for f. Actually, we have a stronger theorem as follows.

Theorem 2.3. Suppose that f is critically sparse. Then, all repellers for f are contained in J_k. In particular,

$$J_k = \{\text{repelling periodic points}\}.$$

This theorem seems useful in many cases, not only for critically finite maps. For instance, let us see the following application.

Example 2.4. Let P be a polynomial self-map of \mathbb{C}^k of degree ≥ 2 which extends holomorphically on \mathbb{P}^k. We put

$$K(P) := \{w \in \mathbb{C}^k \mid \{P^n(w)\}_{n \geq 0} \text{ is bounded}\}.$$

Suppose that $K(P) \cap C = \emptyset$, where C is the critical set of (the extended) P. Since $K(P)$ is a repeller and P is critically sparse in \mathbb{P}^k, we can apply Theorem 2.3. Hence, we obtain $K(P) = J_k$.

3 Critically finite maps and hyperbolicity

In this section, we will deal with holomorphic self-maps of \mathbb{P}^2. Our philosophy in this section is that a good behavior of critical orbits implies a good structure of global dynamics.

Definition 3.1. Let f be a holomorphic self-map of \mathbb{P}^2 of degree ≥ 2. (Then, f is not invertible.)

Let S be a surjectively forward invariant compact set in \mathbb{P}^2. We say that S is hyperbolic if and only if the tangent bundle over the space \tilde{S} of histories of points in S has a hyperbolic splitting structure.

We say that f is Axiom A if and only if the nonwandering set Ω for f is hyperbolic and equals to the closure of the set of periodic points of f.
When f is Axiom A, we consider the decomposition of the nonwandering set
\[\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2 \]
where Ω_i is the part of unstable dimension i.

The following theorem states that a good behavior of critical orbits implies a good structure of Fatou set.

Theorem 3.2. Let f be a holomorphic self-map of \mathbb{P}^2 of degree ≥ 2. Suppose that $J \cap E$ is a hyperbolic set. Then, the Fatou set F consists of the attractive basins for finitely many attracting cycles. Moreover, if the unstable dimension of $J \cap E$ is 1, then
\[E = \{\text{attracting periodic points}\} \cup \bigcup_{\hat{p} \in J \cap E} W^u(\hat{p}) \]
where $W^u(\hat{p})$ is the unstable manifold for \hat{p}.

Remark 3.3. Theorem 3.2 is still true if we replace $J \cap E$ with the nonwandering part of $J \cap E$. Note that the hyperbolicity of the nonwandering part of $J \cap E$ is a necessary condition for f to be Axiom A.

Remark 3.4. The first part of Theorem 3.2 can be generalized in any dimension ≥ 2.

By integrating results above, we obtain our main theorems:

Theorem 3.5. Let f be a critically finite map on \mathbb{P}^2. Then, f is Axiom A if and only if $J \cap E$ is a hyperbolic set of unstable dimension 1.

Theorem 3.6. Let f be a critically finite map on \mathbb{P}^2 which is Axiom A. Then, the following (1) - (7) hold:

1. all irreducible components of E are rational;
2. J_2 is connected;
3. $\Omega_2 = J_2$;
4. $\Omega_1 = J \cap E$;
5. $\Omega_0 = \{\text{attracting periodic points}\} \neq \emptyset$;
6. $E = \{\text{attracting periodic points}\} \cup \bigcup_{p \in J \cap E} W^u(p)$;
7. $J = J_2 \cup \bigcup_{p \in J \cap E} W^*(p)$.

Remark 3.7. The degree of an irreducible component X of E can be any integer ≥ 1. Thus, X is not necessarily smooth.
References

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY
606-8502, KYOTO, JAPAN

E-mail address: maegawa@math.kyoto-u.ac.jp