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ON ORBITAL FREE ENTROPY DIMENSION

YOSHIMICHI UEDA

ABSTRACT. Due to the lack of time, I present an outtake from one of my praivate notes. I
believe that this may serve as an introduction to orbital free entropy dimensions.

1. INTRODUCTION

In [4) we introduced the notion of orbital free entropy dimension &g orb(X1,...,Xs) for
‘hyperfinite random self-adjoint multi-variables (i.e., tuples of self-adjoint random variables in a
fixed tracial W*-probability space, each of which generates a hyperfinite von Neumann algebra),
and showed

n
So(X1 U+ UXn) < Soorb(X1, .+, Xn) + Y do(Xy), (1)

i=1
where §p means Voiculescu’s (modified) free entropy dimension (see (8]). Moreover, we could
showed that the equality holds true when all W*(X;)’s are finite dimensional, and it had been
open whether the equality holds in general. Very recently we resolved it affirmatively, which
led to the following lower semicontinuity result for dg: Let Xj,..., X, be hyperfinite self-ajoint
multi-variables, and assume, for each k = 1,...,n, that we have a sequence Xﬁm) of hyperfinite

multi-variables that converges to Xy strongly. In this setup, we will see that, if Xi’") C W*(Xy)
is further assumed for every m € Nand k = 1,...,n, then

liminf So(X{™ U+ LX) > (X U+ - UXp)
m—Oo0

holds. This is probably the first semicontinuity result of do of non-commutative nature. The
details of this recent progress will be presented in a revised and expanded version of [4].
Here we would like to give a rather direct and standard proof of the following general upper
bound:
So0,0rb(X1y..., Xp) £ —(n - Do (W*(Xy) n...N W*(Xn)). (2)

Although this fact itself can be immediately obtained as a simple corollary of our affirmative
resoltion mentioned above, the argument presented in this note may have some degree of positive
significance as an introduction to the orbital theory of free entropy dimension.

2. PRELIMINARIES

Let X;i,...,X, be hyperfinite random self-adjoint multi-variables. For each multi-variable
X: = (Xi1,. .., Xir(i)) one can choose a sequence of microstates Z;(N) = (§i1(N), . - -, &irciy (V)),
N € N, which means that Zi(N) C MN(C)"G, ||§zJ(N)||oo < ||X;,||°° (G = 1,...,7(¢)), and
Zi(IN) converges, in moments, to X;. Then for each m € N and § > 0 the orbital microstates
Toro(X1,.., Xn : E1(N),...,Ea(N); N,m,0) is defined to be all n-tuples (Uy,...,Up) €
U(N)" satisfying (121 (N)UY, .. -, UnEn(N)U2) € I'(X1U: - -UXp; N,m, 8), where UpEx (N)Ug
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denotes the lx-tuple Urri(N)UE,...,Ur€k, (N)Uy. Then the orbital free entropy dimen-
sion &g orb(X1,...,Xy) is originally defined by utilizing the orbital free entropy Xxorb With
Voiculescu’s liberation process, but it admits Jung’s covering/packing formalism. Namely,
letting

Ko (X;,...,X,) :

il

. . 1 — ~
Jim_ hlflnsup NE log Ke(Corb(X1, ..., Xpn : E1(N), ..., En(N); N,m, ),
/0 — 00

Pe(Xy, ..., Xp) :

. . 1 p— p—
Jim h;(_nsup op l0g Pe(Torb (X1, .-y Xn : E1(N), ..., En(N); N,m, 5))
§ /0 —00 .

we have

CPI(Xy, .. X,) Ko (X, ..., Xn)
80 orb(X1,...,Xp) = limsup 52100 T g = limsup —% N ke
0,0 b( 1 n) €\,0p |10g€| e\,Op |log€l

Here K (&) and P.(X) for a subset X in the metric space U(/N)" equipped with the metric

-n. (3)

d((U1,...,Un),(W1,...,Vn)) := \JZ Uk = ViellZ. 2 4)

k=1

denote the minimal number of £-balls that covers X and the maxiaml number of disjoint £-balls
inside X, respectively. Note that &g orb(X1,...,Xp) is independent of the choices of Z;(N)’s,
and moreover it depends only on the relative position among the W*(Xy)’s in the tracial W*-
probability space, that is,

W*X) =W* X)), i=1,...,n = Goorb(X1,...,Xn) =080,0rb(X5,...,X3). (5)
The latter fact trivially implies that
Yi C W*(xi), z‘ = 1,...,77; = Jo,orb(xl,---,Xn) S 60’°rb(Y1,---,Yn)- (6)

These facts on dg orb come from the corresponding ones on the orbital free entropy Xorb-

-3. UPPER ESTIMATE OF g orb

Theorem 3.1. Let X be a hyperfinite self-adjoint random multi-variable in a tracial W*-
probability space (M, r). Then we have

éo’orb(x, cee ,X) < ——(n - 1)60()().
4 e, o’
n times

The proof will be devided into several steps, and we begin by looking at the structure of
wW*(X).

L(et )us decompose W*(X) = Co ® C; @ --- ® C, possibly with s = oo such that Cp has
no minimal projection and each C, (r = 1,...,s) is isomorphic to My, (C). Let pr be the
central support projection of Cy in W*(X) for r = 1,...,n. We may and do assume that Cy is
abelian, i.e., Cp is isomorphic to L*[0,1]. Choose Xo € Co = L*°[0,1] in W*(X) as Xo(t) = ¢
in {0, 1], and a matrix unit system {eg)}f"j"gl in Cy (& My, (C)), 1 < 7 < s. For a while we

do further assume that s < co. Set X,1 := €l7,..., Xrm, = e m, and Xpg = 3omn eg),

all of which are self-ajoint. Then the new hyperfinite self-adjoint random multi-variable X’ =
{poy. -+ ps} U {Xo}Ullpi{Xri : ¢ =0,...,m,} clearly satisfies W*(X') = W*(X). Hence it
suffices to prove the desired inequality with replacing X by X'.
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For any sufficiently large N € N one can choose positive integers ng(N) and n,(N) =
mymy(N), r =1,...,8, in such a way that

]
Z ne(N) =N, (M
r=0
. ne(N) _
Jim === u (), r=1,...,8. : (8)
Then one can also choose an orthogonal family {P, (N )},‘,=0 of projections in My (C) so that .
Yo Pr(N) = Iy and rank(P,(N)) = n.(N) for r = .,8. Forr =1,...,8 we observe

P.(N)Mn(C)P,(N) & M, (n)(C) = Mm,. (C) ® My, (v)(C),

and one identification P.(N)Mp(C)P.(N) = My, (C) ® M, (n)(C) is fixed for each r in what
follows. Let

§o(NV) : = Diag[1/no(N), 2/no(N), ..., 1] € Mpy(n)(C) = Po(N)MN(C)Po(N),  (9)
1P (N) : = € ® Im,(N) € Min,(C) ® My (n)(C) = P-(N)Mn(C)P(N) (10)
fori,=1,...,m, and r = 1,...,8. The next lemma is clear, and the details are left to the
reader.
Lemma 3.2. The matricial multi-variables {Po(N), ..., P(N)} U {&(N)} U Lo {0 (N) :
i,j =1,...,my} converges in moments to {po,...,ps} U {Xo} U Ljr_l{e(') 14,7 =1,...,my}
as N — oo.

For each r = 1,...,8 set £4(N) := 'r;(")(N), i=1,...,m, and &o(N) = :",j;l n,,)(N)
- Then the above lemma says that the matricial multi-variable

E(N) := {Po(N),..., Py(N)} U {fo(M)} U |_|{&s(N) :i =0,...,m,}

r=1
coverges in moments to X’ as N — oo. Remark here that &;(N)&o(N)é;(N) = n.')(N)
being exactly a matrix unit in My, (C) ® CI, Ny C Pr(N)MN(C)P(N) for i,j = 1,...,my
and r = 1,...,s. Correspondingly, X;iXroXr; = eS;) holds too.
For € > 0 let (N;¢) be the set of all W € U(NN) such that

I, Pe(N))lltrw,2 <€ (r=0,...,3), (11)
1 [W, &o(N)llexn 2 < &, (12)
W, n (Vw2 <€ Gd=1,.0,me, 1 =1,...,8). (13)

Then we have the following lemma.
Lemma 3.3. For each € > 0 there are m € N and 6 > 0 such that

Corn(X/,..., X' : E(N),...,E(N); N,m, )

C ¥(N;e) := {(U,UW1,...,UWp_y) : U € U(N), Wh,...,Wr_1 € YN)}
for all sufficiently large N € N.
Proof. Choose (Uy,...,Uy,) from the left-hand side. Since
Ukn(r)(N)Uk = (U&ri(N)UR) (Uibro(N)UR)(Urérj(N)U), k=1,...,m,
one can easily find m € N and d > 0 so that
|trn ((UsPr(N)U = U1 Pe(N)UT)?) = 7((pr — pr)?)| <€ (r=0,...,8);



119

Y. UEDA

|t (Uko(N)UR = Ur&o(N)U?)?) — 7((Xo — Xo)?)| < €%
[orw (Uanil (VYU ~ UsnQ (NUD)* Usn (N)U; - Ui (N)U?)
_ T((e(f) (T)) (e(r) (;‘)))! < &2
(¢i=1,...,m, r=1,...,s).
Then by letting Wy, := U U1 the assertion immediately follows. O

The next lemma is the main estimate.

Lemma 3.4. For each t € (0,1) let c(t) := \/s(s+ 1) +t~2 + 8(m, + 1) > 0 with m, :=
max{m, :r =1,...,8}. Then, for any sufficiently small & > 0 there is ¢ € (0, k) so that

ﬂo(N) ¢ z:rul m"(N)
Kaery+1)x (N5 €)) < ( ‘;+ ) ( unitary V'8 + )

K

’

where Cunitary > 0 is @ universal constant, independent of any other parameter.

Proof. Let W € Q(N;¢) be arbitrary. By (11) we have

I Pry (NYW Pry(N)llten 2 || Y Pro(NYWPo(N) — P (N)W P, (N)
r#r/
= "[Pf‘(N)’ W] ”trN,Z <eg

as long as 71 # ra. Also, by (12) we have

trn,2

Y P(N)W&(N) ~ &(N)WP,(N)

r=0
= ||[W, §O(N)]”u~,2 < e&.
In what follows we write W,.,,, := Py, (N)WP,,(N) for r1,r2 =0,....s. Then it follows that

"[PO(N)WPO(N)’ EO(N)]”trNﬂ <

try,2

Weir, ltrw,2 <& aslong as ry # ry, (14)
"{W007€0(N)]"tr1v.2 <e. (15)
and, in particular, (14) implies that

Y Wr

rigra

<Vs(s-T)e. (16)

try,2

Let t € (0,1) be also arbitrary. Denote \; := ;t_o{-NS’ the ith nonzero eigenvalue of & (N).
Then it is plain to see that So := {(i,5) € {1,...,n0(V)}? : |X\i — Aj| < t} has the cardinality
less than no(N)?t. Let Sg := {1,...,n0(IN)}?\ So, and decompose Po(N)My(C)Py(N) =
M., »(C) = [E( ) : (i,5) € So) ® [E(;’) : (4,§) € Sg), a direct sum with respect to the Eu-
clidean structure induced from try, where the E(o) ’s are standard matrix units in M, (n)(C) =
Po(N)Mn(C)Po(N). Write Woo = Y 70U <°)E§§’>, and define Wgy = 3 jrego W B

$,j=1 !
L
Woe = 2o(i)est w(o)E'(o) Then we estimate

&2 > ||[Woo, &o(N)]IIZ.,, 2
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Il

o(N)
Z Ai “‘)‘J| lw(0)|2

J—V-
>1 A = A w2
(%,j)GSo
1
2 (0) 2
205 Y0 )l
(4,9)€85
S.L
= 2| Wod 12,2
so that
Sy
Woo llern,2 <€/t (17

Next we will treat with W;., withr = 1,...,s. As before we 1dent1fy P.(N)MN(C)P,(N) =
Mp, (C) ® My, (n)(C), and write Wy, := ’"'_1 e(') ® W(r) with W € Mp,,.(n)(C). By (13)
we have

2 > W, 0112, 2

2
Z P (NYWn) (N) =l (NYW Pu (N)
r/=0 trn,2
> |PA(NYWr{P (N) = i) (N)W Pe(N) |2 2
”Wrr"zr) (N) - 711';) (N)Wrr”?m,z
2
E e(f‘) W(") (;) ® WIS:)
k=1 trn,2
=3 el ®WPIE 2+ 3 llel @ WRIIZ 2
k#i k#j

+ ey ® (W = WiD)E, 2
for every i,j = 1,...,m,. Hence, letting Wér) = - ) D W(") we get

e @ Wi lluew,2 <& (i # 4, (18)
16 © (W = Wi luwz <€ (G=1,...,m,). (19)

Let Wy := I, ® W( ), which is the image of the trace-preserving conditional expectation of
Wy € My, (C)® Mm,(N)(C) to CIp,, ® M, (N) (C). Also let

W : = Wy — W
= Z 35:) ® (r) (r) + E e(r) ® W(r).
i=1 i#]
Then we have
[Werlloo < [Wrrlloo < 1, (20)
IWitlloo < IWerlloo + [[Werlloo < 2, (21)
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and also by (18),(19)

my
s 1/2
IWetlhewa = { o l1ell @ W ~ e @ Wi 2y 0+ 3 1) @ W20}
i=1 i#7
< mye. (22)

Here we prove that W, and also W, is almost a unitary inside Clm, ® My, (n)(C). By (14)
we have

”Pr(N) - WrrW:r”trNJ
< ”Pr(N) - Pr(N)WW*Pr(N)"trN,Z + “Pr(N)WW‘Pr(N) - WrrW:r”trNJ

s .
- Z W'-r' W:'.I - WTTW:r - Z Wrr/ W:rl
r/=0 tl'N,z T#T’ tl'N,z
< Z “Pr(N)WPr’ (N)W:,., “tr~,2
r#r!
<D IWellen 2 < se. - (23)
r#r/

Similarly we have
W Wer — Wer Wi lltew,2
< ”Pr(N)W*WPr(N) - W:rWrr“trN,Z’ + "Pr(N)WW*Pr(N) - WrrW;r”tru,z
+ “Pr(N)(W*W - WW.)PT(N)"“NJ

= Z Wi Wy +
rigr —_—
Then, by (23) and (20)-(22) we get
1P (N) = Wer Wit llien 2
S NP (N) = Wer Wi llew 2 + IWee Wiy = Wer Wl 2
< 8 + W Wir* + W Wy + Wa W ey 2
< 86+ 4| Wit llee,2 < (s + 4my)e, (25)
and also, by (23) and (20)-(22) as before,
"W:rwrr e WrrW:r"trN,Z
S Wi Wer = W Werlluen,2 + W5 Wer — Wer Wi lliey 2
+ | WeeWey = Wer Wi llern 2
< [IWh Wik + Wi W, + W Wirllien 2 + 2s¢
+ | WeeWi* + W W, + WA Wi ey 2
< A Wklleen,2 X 2+ 28
< 2(s+4m,)e (26)

Z Wrr/ W:T’
r'#r

< 2se. (24)

trn,2
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Hence W, is almost a unitary in Clhn, @ My, (ny(C) with unit P(N) = I,, ® L.y Then,
[3, Lemma 2.3] shows that for any x > 0 one can find € € (0, ) (depending only on &) in such
a way that for each W € Q(N,¢) there is W, € I, ® U(m.(N)) such that

IWer = Werllten,2 < & (27)
In what follows we fix € € (0, k) as above for a given x > 0. For each W € Q(N;¢) we set

8
W:=W0%°+ZW".

r=1
8
€ [ES : (5,5) € S0l @ @ Im, ® U(m(N)).
r=1
Then, by (16),(17) and (22),(27) we have
”W - W”?l‘[vﬂ
2 T s -
=| = Wl IWE Rz + 3 1Wor = Worl 2
trn,2
1"1#1‘3 r=1

9 52 s - . - 2
<s(s+ 1+ 5+ Y (IWklewa + 1Wer = Werluew,2)
r=1
€2

77 T 8(mre + K)2.

< 8(s+1)e? +

Since € < K, we get
\w - W”t!‘N,2 < c(t)k,

where ¢(t) > 0 is defined as in the statement of this lemma. Consequently, Q(N;¢) is contained
in the c(t)x-neighborhood of

(B : (5,1) € S0 © €D I, ® Ulmy (V)
r=1
[ED : (3,5) € So]
Im, ® U(my(N))

il

I, ® U(m,(N))

inside My (C). Now, let us choose a x/+/s + 1-net of minimal cardinality, whose center points
are denoted by (Ax,)reno; and also for each r = 1,...,8 choose a x/v/s + I-net of mini-
mal cardinality, whose center points are denoted by (Vi )a.ea.. It is a standard fact that if

k/vs+1< 1, then
2no(N)3t ,
IAo| < (5___\";“) | (28)

since |So| < no(N)?t as remarked before. Also, {7, Theorem 7] shows there is a universal
constant Cypitary > 0 such that

my(N)?
rf =

p (29)
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since max{||Pr(N) = Im, ® Ulltry,2 : U € U(my(N))} = max{||Im, ® (Im,n) — U)llrn,2: U €

Umn(N))} =/ 2o max{ |, vy ~ Ullersn, wy,2 : U € U(me(IN))} < 2, ie., the diameter of
I, ® U(m,(N)) = U(m,(N)) with respect to || - ||¢ry,2 i less than 2 uniformly in N. It is clear
~ that the s-balls at

8
‘/(Ao,...,k,) = AAu + Z VAra (A()’ “ee :AJ) € AO X X A.l

r=1

cover [E.-,- : (4,5) € So] ® @r=1 Im, ® U(m,(N)). Therefore, the (c(t) + 1)x-balls at the same
Voro,..., As) ’s cover Q(IV;¢) inside My (C). Note that each such ball clearly contains at least one
element in Q(N;e), say Wiy, ...2,) € QN;e), and hence the 2(c(t) + 1)s-balls at W(y,, .. x,)’s
clearly cover Q2(N;¢) inside U(N). Hence

Kacit)+1)x(QUN; €)) < |Ao| X [Ag] x -+ x A,

from which the assertion is immediate. O

Completion of the proof of Theorem 8.1. Firstly we complete the proof of the desired inequality
when s < 0o. Since

”UW - U,W,”trlv,2 < "U - U’““N,z + ”W - WI"“NJ

the mapping (U, W1,...,W,_1) € UN) x Q(N;e)""! = (U,UW;,...,UWyp_1) € ¥(N;¢) is
clearly Lipschitz continuous, and a rough estimate shows the Lipschitz constant is less than
v3n — 2. Thus, by Lemma 3.4 and [7, Theorem 7] we have

sz(c(tm)n(ro,b(x', ., X' E(N),...,E(N); N,m, 5))
< Ky vam=mmey+1)s (B (V3 €))

< Ky saety+1ys (UI) x (N €)™ 1)

< Koty +1)e(U(V)) X Kae(ey+1)a(QUN; €))7

Cuniter N? 2n (N)at 2= """'(Iv)2 n—-1
< (W“Fll) « ((3\/34—1) ° (2Cummy\/s+l) ! )
K

- K K

for every sufficiently small x > 0 and ¢ € (0, 1) together with a corresponding € < x in Lemma
3.4 and then m € N, § > 0 due to Lemma 3.3, where Cynitary > 0 denotes a universal constant

due to [7, Theorem 7] as before. Let C(t) := max { %“‘F"ll, 3v/s + 1,2C nitary V'8 + 1}, and then
it follows that

b
;rx/Sn’—Zn(c(t)+1)n(x’” te xl) .
2 & N)? C(t
< limsup (1 +(n-1) (2n°(N) t+ Z ln—'}-%—z——)——)) x log —-'(s—z

N—oo r=1

(1 +(n-1) (21-(po)2t + E T(p" )) x log —= C( )

r=1

by (8) and m,(N) = n.(N)/m,. Then we get

(X', X)
o,orb(X/, ..., X') = limsu 2m‘°(t)+1)n
0,010 ( ) = e Tiog(2v/3n? — 2n(c(®) + DR)]
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<l14+(n-1) <2T(po)2t+iz-(—7%%)——2-> -n

r=1
s

<—(n-1) (1 -3 I%g)-z-) +2(n — 1)7(po)’t

r=1 r
= =(n = 1)8(X’) + 2(n — 1)7(po)’,
where the last equality is due to Jung’s computation of dy ([5]). Since t is arbitrary, we obtain
60’orb(x, cee ,X) = Jo’orb(x', veey x’) S “(n - l)ao(x,) = ‘“(n - 1)50(X)
whenever s < oo.

We will next get rid of the assumption of s < oo; thus assume that s = oo. For each
89 < 00 let C% := Cp @+ Csy—1 ® Cp*® with p* := E:’;,o pr \, O strongly as sg /" oo.
Clearly C%* C W*(X), and choose a hyperfinite self-adjoint random multi-variable X such
that W*(X30) = C*°. Then, by what we have shown above and (6)

80,0rb(X, . .., X) < 0g,0rb (X%, ..., X%)

so—-1 ‘T(pr)2 rg
<-(n-1)|1- Z —17';5—+T(p°)

r=1 r
™ 7(pr)?
— (=1 {1-3 =55 ) = —(n - 1)é(X)
: r=1 my
as sp /" oo, thanks again to Jung’s computation of &y ([5]). ]

The following is immediate from the above theorem and (6):

Corollary 3.5. Let Xi,...,X, be hyperfinite self-adjoint multivariables in a tracial W*-
probability space (M, 7). Then one has

00,0rb(X1, . .. y Xp) < —(n—1) GO(W*(xl) n...N W‘(x,,)),

where 8 (W*(X1) N...NW*(X;)) means the unique number of do(X) with wW*(X) =W*(X;)N
.. N W*(X,,) due to Jung (5].
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