<table>
<thead>
<tr>
<th>Title</th>
<th>Blow-up at space infinity for nonlinear heat equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Umeda, Noriaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1588: 135-145</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81552</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Blow-up at space infinity for nonlinear heat equations

Noriaki Umeda

Graduate School of Mathematical Sciences,
University of Tokyo
3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

1 Introduction and main theorems

In this paper we gather the papers [5], [6] and [12] for our talk at Kyoto University. In particular we make the proofs of theorems in [5] easier by using the methods in [12] and other.

We consider solutions of the initial value problem for the equation

\[
\begin{cases}
 u_t = \Delta u + f(u), & x \in \mathbb{R}^n, t > 0, \\
 u(x, 0) = u_0(x), & x \in \mathbb{R}^n.
\end{cases}
\]

(1)

The nonlinear term \(f \in C^1(\mathbb{R}_+) \) satisfies that

\[
\int_0^\infty \frac{d\xi}{f(\xi)} < \infty \text{ with some } C \geq 0,
\]

(2)

and

\[
\begin{cases}
 \text{there exists a function } \Phi \in C^2(\mathbb{R}_+) \text{ such that} \\
 \Phi(v) > 0, \Phi'(v) > 0 \text{ and } \Phi''(v) \geq 0 \text{ for } v > 0, \\
 \int_1^\infty \frac{d\xi}{\Phi(\xi)} < \infty, \\
 \text{and } f'(v)\Phi(v) - f(v)\Phi'(v) \geq c\Phi(v)\Phi'(v) \text{ for } v > b \\
 \text{with some } b \geq 0 \text{ and } c \geq 0.
\end{cases}
\]

(3)

Remark. The conditions (2) and (3) were used in [12]. They are weaker than the conditions used in [5] and [6]:

\[
f(\delta b) \leq \delta^p f(b)
\]

for all \(b \geq b_0 \) and for all \(\delta \in (\delta_0, 1) \) with some \(b_0 > 0 \), some \(\delta_0 \in (0, 1) \) and some \(p > 1 \).
The initial data u_0 is assumed to be a measureable function in \mathbb{R}^n satisfying

$$0 \leq u_0(x) \leq M \text{ a.e. in } \mathbb{R}^n$$

(4)

for some positive M. We are interested in initial data such that $u_0 \to M$ as $|x| \to \infty$ for x in some sector of \mathbb{R}^n. We assume that there exists a sequence $\{x\}_{m=1}^{\infty} \subset \mathbb{R}^n$ such that

$$\lim_{m \to \infty} u_0(x + x_m) = M \quad \text{a.e. in } \mathbb{R}^n.$$

(5)

Remark. The condition (5) was given in [12]. This condition is equivalent to the condition in [5] with [6]:

$$\text{essinf}_{x \in B_m}(u_0(x) - M_m(x - x_m)) \geq 0 \quad \text{for } m = 1, 2, \ldots ,$$

where $B_m = B_{r_m}(x_m)$ with a sequence $\{r_m\}_{m=1}^{\infty}$, a sequence of functions $\{M_m(x)\}_{m=1}^{\infty}$ satisfying

$$\lim_{m \to \infty} r_m = \infty, \quad M_m(x) \leq M_{m+1}(x) \quad \text{for } m \geq 1$$

$$\lim_{m \to \infty} \inf_{x \in [1, r_m]} \frac{1}{|B_x|} \int_{|B_x(0)|} M_m(x) \, dx = M,$$

and some sequence of vectors $\{x_m\}_{m=1}^{\infty}$. Here $B_r(x)$ denotes the opened ball of radius r centered at x.

Problem (1) has a unique bounded solution at least locally in time. However, the solution may blow up in finite time. For a given initial value u_0 and nonlinear term f let $T^* = T^*(u_0, f)$ be the maximal existence time of the solution. If $T^* = \infty$, the solution exists globally in time. If $T^* < \infty$, we say that the solution blows up in finite time. It is well known that

$$\limsup_{t \to T^*} \|u(\cdot, t)\|_\infty = \infty,$$

(6)

where $\| \cdot \|_\infty$ denotes the L^∞-norm in space variables.

In this paper we are interested in behavior of a blowing up solution near space infinity as well as location of blow-up directions defined below. A point $x_{BU} \in \mathbb{R}^n$ is called a blow-up point if there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ such that

$$t_m \uparrow T^*, \quad x_m \to x_{BU} \quad \text{and} \quad u(x_m, t_m) \to \infty \quad \text{as } m \to \infty.$$
If there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ such that
\[t_m \uparrow T^*, \quad |x_m| \rightarrow \infty \quad \text{and} \quad u(x_m, t_m) \rightarrow \infty \quad \text{as} \quad m \rightarrow \infty, \]
then we say that the solution blows up to at space infinity.

A direction $\psi \in S^{n-1}$ is called a blow-up direction if there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ with $x_m \in \mathbb{R}^n$ and $t_m \in (0, T^*)$ such that $u(x_m, t_m) \rightarrow \infty$ as $m \rightarrow \infty$ and
\[\frac{x_m}{|x_m|} \rightarrow \psi \quad \text{as} \quad m \rightarrow \infty. \quad (7) \]

We consider the solution $v(t)$ of an ordinary differential equation
\[
\begin{cases}
 v_t = f(v), & t > 0, \\
 v(0) = M.
\end{cases} \quad (8)
\]
Let $T_v = T^*(M, f)$ be the maximal existence time of solutions of (8), i. e.,
\[T_v = \int_{M}^{\infty} \frac{ds}{f(s)}. \]

We are now in position to state our main results.

Theorem 1. Assume that $f \in C^1(\mathbb{R}_+)$ is nondecreasing function and locally Lipschitz in $\bar{\mathbb{R}}_+$. Let u_0 be a continuous function satisfying (4) and (5). Then there exists a subsequence of $\{x_m\}_{m=1}^{\infty}$, independent of t such that
\[\lim_{m \rightarrow \infty} u(x + x_m, t) = v(t) \quad \text{in} \quad \mathbb{R}^n. \quad (9) \]

The convergence is uniform in every compact subset of $\mathbb{R}^n \times [0, T_v)$. Moreover, the solution blows up at T_v.

For this theorem we should introduce the results of Gladkov [7]. In his paper there is the result [7, Theorem 1] relative to our first theorem. He considered the initial-boundary value problem:
\[
\begin{cases}
 u_t = u_{xx} + f(x, t, u), & x > 0, 0 < t < T_0, \\
 u(x, 0) = u_0(x), & x > 0, \\
 u(0, t) = \mu(t) & 0 < t < T_0,
\end{cases}
\]
and the ordinary differential equation
\[
\begin{cases}
 v_t = \hat{f}(t, u), & 0 < t < T_0, \\
 v(0) = M,
\end{cases}
\]
where \(T_0 \in (0, \infty], \) \(0 \leq f(x,t,u) \leq \tilde{f}(t,u), \) \(\lim_{x \to \infty} f(x,t,u) = \tilde{f}(t,u), \)

\(0 \leq u_0 \leq M \) and \(\lim_{x \to \infty} u_0(x) = M. \) For the equations he had \(u(x,t) \to v(t) \) as \(x \to \infty \) uniformly for \([0,T]\) with \(T < T_0. \) For the proof of this result, he used the fundamental solution of the heat equation.

In [5] the expression (9) was the weak sense:

\[
\lim_{n \to \infty} u(x_m, t) = v(t),
\]

(10)

After [5], (9) was used in [12]. However, for proving Theorems 2 and 3, we can select even the expression (10).

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypotheses of Theorem 1 and that \(f \) satisfies (2) and (3). Let \(u_0 \not\equiv M \) a.e. in \(\mathbb{R}^n. \) Then the solution of (1) has no blow-up points with \(\infty \) in \(\mathbb{R}^n. \) (It blows up only at space infinity.)

There is a huge literature on location of blow-up points since the work of Weissler [15] and Friedman-McLeod [1]. (We do not intend to list references exhaustively in this paper.) However, most results consider either bounded domains or solutions decaying at space infinity; such a solution does not blow up at space infinity [2].

As far as the authors know, before the result of [4] the only paper discussing blow-up at space infinity is the work of Lacey [8]. He considered the Dirichlet problem in a half line. He studied various nonlinear terms and proved that a solution blows up only at space infinity. His method is based on construction of suitable subsolutions and supersolutions. However, the construction heavily depends on the Dirichlet condition at \(x = 0 \) and does not apply to the Cauchy problem even for the case \(n = 1. \)

As previously described, the Giga-Umeda [4] proved the statement of Theorems 1 and 2 assuming that \(\lim_{|x| \to \infty} u_0(x) = M \) for positive solutions of \(u_t = \Delta u + u^p. \) Later, Simojö[13] had the same results as in [4] by relaxing the assumptions of initial data \(u_0 \geq 0 \) which is similar to that in the present paper. His approach is a construction of a suitable supersolution which implies that \(a \in \mathbb{R}^n \) is not a blow-up point. Although he restricted himself for \(f(s) = s^p, \) his idea works our \(f \) under slightly strong assumption on \(u_0. \) Here we give a different approach.

By Simojö's results[13] it is natural to consider a problem of "blow-up direction" defined in (7). We next study this "blow-up direction" for the value \(\infty. \)

Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction \(\psi \in S^{n-1}. \) If and only if there exists sequences \(\{y_m\}_{m=1}^\infty \) and satisfying
lim_{m \to \infty} y_m/|y_m| = \psi \text{ such that }
\lim_{m \to \infty} u_0(x + y_m) = M \text{ a.e. in } \mathbb{R}^n,
(11)
then \psi \text{ is a blow-up direction.}

After [5] there are some results in this field. Shimojö had the result of the upperbound and the lowerbound:

\[v(t - \eta(x,t)) \leq u(x,t) \leq v(t - c\eta(x,t)) \]

with some function \(\eta \) and \(c \in (0,1) \). Moreover, he proved the complete blow-up of the solution. Seki-Suzuki-Umeda [12] and Seki [11] improved the results of [5] for the quasilinear parabolic equation:

\[u_t = \Delta \varphi(u) + f(u). \]

In particular they had more results for more general case. In [3] some of the proofs of theorems in [5] were corrected.

This paper is organized as follows. In section 2 we prove Theorem 1 by using the fundamental solution of the heat equation. The proof of Theorem 2 is given in section 3 by using the argument used in [12]. In section 4 we show Theorem 3 using Theorem 1 and Lemma 3.2.

2 Behavior at space infinity

In this section we prove Theorem 1. We give proof of Theorem 1 which is inspired in private communication with Y. Seki and M. Shimojö.

Proof of Theorem 1. Put \(w = v - x \). Then, we have for \(t \in (0,T_0] \) with \(T_0 \in (0,T(M)) \),

\[w_t = \Delta w + f(v(t)) - f(u(\cdot,t)) \leq \Delta w + C(v - u), \]

where

\[C = \sup_{t \in [0,T_0]} \left\| \int_0^1 f'(\theta v(t) + (1 - \theta)u(\cdot,t))d\theta \right\|_{\infty}. \]

Then, by comparison we obtain

\[w(x,t) \leq e^{CT_0} e^{\Delta t}(M - u_0(x)) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y|^2/4t}(M - u_0(y))dy. \]
From (5) we have
\[\lim_{m \to \infty} u(x + x_m, t) = v(t) \quad \text{in } \mathbb{R}^n. \] (12)

It remains to prove that \(u \) blows up at \(t = T_v \). For this purpose it suffices to prove that \(\lim_{m \to \infty} u(x_m, t_m) = \infty \) for some sequence \(t_m \to T_v \). We argue by contradiction. Suppose that \(\lim_{m \to \infty} u(x_m, t_m) \leq C \) for some \(C \in [M, \infty) \). Then we could take \(t_0 \in (0, T_v) \) satisfying \(v(t_0) \geq C \) and \(v_t(t) > 0 \) for \(t \geq t_0 \). By (12) we have
\[\lim_{m \to \infty} u \left(x_m, \frac{t_0 + T_v}{2} \right) = v \left(\frac{t_0 + T_v}{2} \right) > C,\]
which yields a contradiction. We thus proved that \(\lim_{m \to \infty} u(x_m, t_m) = \infty \), so that \(u(x, t) \) blows up at \(T_v \).

\[\square\]

3 No blow-up point in \(\mathbb{R}^n \)

In this section we prove Theorem 2. We use three lemmas for proving the theorem.

Lemma 3.1. Assume the same hypothesis of Theorem 1. Let \(u \) and \(v \) be solutions of (1) and (8) with \(u_0, M \) and \(f \) satisfying (2), (3) and (4). Then there exist \(\delta = \delta(a, t_0, u_0, f) \in (0, 1) \) such that for \((x, t) \in B_2(a) \times [t_0, T_v)\),
\[u(x, t) \leq \delta v(t)\]

with \(t_0 \in [0, T_v) \).

Proof. By (2) there exist \(M_f = M_f(f) > M \) and \(\delta_f = \delta_f(f) \in (0, 1) \) satisfying for \(r \geq M_f \) and \(\delta \in (\delta_f, 1) \),
\[f(\delta r) \leq \delta f(r). \] (13)

Let \(T_0 = T_0(u_0, f) \in (0, T_v) \) such that \(v(T_0) = M_f \). Since \(u_0 \leq M \) and \(u_0 \not\equiv M \) a.e. in \(\mathbb{R}^n \), we have \(u(x, T_0) < v(T_0) \). Note that \(u(x, t) < v(t) \) for \(t \in (0, T_0] \). Let \(w \) be the solution of
\[\begin{cases} w_t = \Delta w, \\ w(x, T_0) = \max\{u(x, T_0)/v(T_0), \delta_f\}, \end{cases} \quad x \in \mathbb{R}^n, t \in (T_0, T^*),
\[w(x, T_0) = \max\{u(x, T_0), \delta_f v(T_0)\}, \quad x \in \mathbb{R}^n.\]

Put \(\bar{u} = vw \). Then we have
\[\begin{cases} \bar{u}_t = \Delta \bar{u} + w f(v), \\ \bar{u}(x, T_0) = \max\{u(x, T_0), \delta_f v(T_0)\}, \end{cases} \quad x \in \mathbb{R}^n, t \in (T_0, T^*),
\[\bar{u}(x, T_0) = \max\{u(x, T_0), \delta_f v(T_0)\}, \quad x \in \mathbb{R}^n.\]
Since \(w(x, t) \in [\delta_f, 1) \) and \(v(t) \geq M_f \), we have
\[
wf(v) \geq f(wv) = f(\overline{u})
\]
by (13). This \(\overline{u} \) is supersolution of (1).

Since for any \(x \in \mathbb{R}^n, \sup_{t \in [T_0, T^*)} w(x, t) < 1 \), we can take \(\delta = \delta(a, T_0, u_0, f) \in (0, 1) \) satisfying \(w(x, t) \leq \delta(x, t) \in B_1(a) \times [T_0, T^*) \). Thus, we obtain
\[
u(x, t) \leq \overline{u}(x, t) = w(x, t)v(t) \leq \delta v(t)
\]
and Lemma 3.1 is proved. \(\square \)

For any \(a \in \mathbb{R}^n \), we consider the solution \(\phi = \phi_a \) of the equation:
\[
\begin{cases}
\phi_t = \Delta \phi + f(\phi), & x \in B_1, t \in (t_1, T_v), \\
\phi(x, 0) = \phi_0(x), & x \in B_1, \\
\phi(x, t) = v(t), & x \in \partial B_1, t \in (t_1, T_v),
\end{cases}
\]
(14)

where \(\phi_0(x) = v(t_1)(1 - \epsilon \cos \frac{\pi|x|}{2}) \) with \(\epsilon = \epsilon(u_0, f, a) > 0 \) sufficiently small satisfying
\[
\phi_0(x) \geq u(x + a, t_1)
\]
and \(B_1 \) denotes the open ball of radius 1 and centered at 0. It is easily seen that
\[
\Delta \phi_0(x) + f(\phi_0(x)) \geq 0.
\]

By the maximum principle [10] we have
\[
\phi(x, t) \geq u(x + a, t) \quad \text{and} \quad \phi_t \geq 0 \quad \text{for} \quad x \in B_1, \ t \in [t_1, T_v).
\]
(16)

If \(w \) has no blow-up point in \(\mathbb{R}^n \), the \(u \) has no blow-up point in \(\mathbb{R}^n \), neither. We should show that \(w \) has no blow-up point.

Lemma 3.2. Assume the same hypotheses of Lemma 3.1. Let \(\Omega \in B_1 \) be a domain. If \(\partial_t \phi(x, t) \geq 0 \) in \(\Omega \times (t_1, T_v) \) and there exist \(\nu \in S^{n-1} \) and \(\delta > 0 \), such that
\[
\nu \cdot \nabla \phi(x, t) \leq -\delta |\nabla \phi(x, t)| < 0 \quad \text{in} \quad \Omega \times (t_1, T_v),
\]
then \(\phi \) does not uniformly blow-up in \(\Omega \):
\[
\inf_{x \in \Omega} \phi(x, t) \leq L < \infty \quad \text{for} \quad t \in (t_1, T_v).
\]
Proof of Lemma 3.2. This lemma is proved in [9] (See [9, Lemma 4.1]). \qed

Proof of Theorem 2. Put $r \in (0, 1)$. Define

$$
\mu(x, t) = \phi(2r - x_1, x', t) - \phi(x_1, x', t),
$$

where $x = (x_1, x')$ with $x' = (x_2, x_3, \ldots, x_n) \in \mathbb{R}^{n-1}$. Then, we obtain

$$
\begin{cases}
\mu_t \geq \Delta \mu + C(x, t) \mu, & x \in D_r, t \in (t_1, T_v), \\
\mu(x, 0) = \phi_0(2r - x_1, x') - \phi_0(x_1, x') \geq 0, & x \in D_r, \\
\mu(x, t) \geq 0, & x \in \partial D_r, t \in (t_1, T_v),
\end{cases}
$$

where

$$
C(x, t) = \int_0^1 \{\theta \phi(2r - x_1, x', t) + (1 - \theta) \phi(x_1, x', t)\} d\theta
$$

$$
D_r = \{x : x_1 < r\} \cap \{x : (x - 2r)^2 < 1\}.
$$

Thus, by the maximum principle [10] we have

$$
\mu \geq 0 \quad \text{in} \quad D \times [t_1, T_v)
$$

and

$$
\phi(2r - x_1, x', t) \geq \phi(x_1, x', t) \quad \text{in} \quad D \times [t_1, T_v).
$$

Since $r \in (0, 1)$ is arbitrary, we obtain that $\phi_{x_1} \geq 0$ for $x \in \{x|x_1 > 0\}$ and

$$
-e_1 \cdot \nabla \phi \leq -\phi_{x_1} \leq -\frac{\delta x_1}{|x|} |\nabla \phi| \quad \text{in} \quad D \cup \{x|x_1 \geq 0\}
$$

with some $\delta > 0$, where $e_1 = (1, 0, 0, \ldots, 0)$. Since $\phi_t \geq 0$ and $\inf_{x \in B_1} \phi(x, t) = \phi(0, t)$, by Lemma 3.2 we have

$$
\lim_{t \to T_v} \phi(0, t) \leq L \text{ with some } L < \infty.
$$

Thus

$$
\lim_{t \to T_v} u(a, t) \leq L \text{ with same } L.
$$

Since $a \in \mathbb{R}^n$ is arbitrary, u does not blow up at $t = T_v$ in \mathbb{R}^n. \qed
4 On blow-up direction

We shall prove Theorem 3 which gives a condition for blow-up direction.

Proof of Theorem 3. We first prove that if u_0 satisfies (11), then ψ is a blow-up direction. By assumption we obtain that $u_0(x)$ satisfies (5) with some sequences $\{x_m\}_{m=1}^{\infty}$ satisfying $\lim_{m \to \infty} x_m/|x_m| = \psi$. Then, from the proof of Theorem 1 it follows that

$$\lim_{m \to \infty} u(x_m, t_m) = \infty$$

with the sequence $\{t_m\}_{m=1}^{\infty}$ satisfying $\lim_{m \to \infty} t_m = T_v$. Since $\lim_{m \to \infty} x_m/|x_m| = \psi$ by the assumption we obtain that ψ is a blow-up direction.

We next show that if ψ is a blow-up direction, then there exist $\{x_m\}_{m=0}^{\infty} \subset \mathbb{R}^n$ such that $x_m/|x_m| \to \psi$, $t_m \to T_v$ and $u(x_m, t_m) \to \infty$ as $m \to \infty$. In contrary it says that if for any sequences $\{x_m\}_{m=1}^{\infty} \subset \mathbb{R}^n$ satisfying $\lim_{m \to \infty} x_m/|x_m| = \psi$, u_0 does not satisfy (11), then ψ is not a blow-up direction.

Since $\lim_{m \to \infty} u_0(x + x_m) = M$ a.e. in \mathbb{R}^n, we have

$$\lim_{m \to \infty} \sup_{x \in B_3(x_m)} \frac{1}{4\pi t} \int_{\mathbb{R}^n} e^{-(x-y)^2/4t} u_0(y) dy < M$$

for $t > 0$. Since the solution of (1) satisfies the integral equation

$$u(x, t) = e^{\Delta t} u_0(x) + \int_0^t e^{\Delta(t-s)} f(u(x, s)) ds,$$

we have

$$u(x, t) \leq e^{\Delta t} u_0(x) + \int_0^t f(v(s)) ds = v(t) - M + e^{\Delta t} u_0(x)$$

for $(x, t) \in \mathbb{R}^n \times [0, T^*)$.

Let M_f, δ_f and T_0 be the same as proof of Lemma 3.1. We consider the solution w of

$$\begin{cases}
 w_t = \Delta w, & x \in \mathbb{R}^n, t \in (T_0, T_v), \\
 w(x, T_0) = \max\{v(T_0) - M + e^{\Delta T_0} u_0(x)/v(T_0), \delta_f\}, & x \in \mathbb{R}^n.
\end{cases}$$

We now introduce $\tilde{u} = vw$. From the proof of Lemma 3.1, it follows that $\tilde{u} \geq u$ for $(x, t) \in \mathbb{R}^n \times [T_0, T^*)$. Then we have

$$u(x, t) \leq v(t) e^{\Delta(t-T_0)} \max\{v(T_0) - M + e^{\Delta T_0} u_0(x)/v(T_0), \delta_f\}$$
for \((x, t) \in \mathbb{R}^n \times [T_0, T_v)\).

Put \(U_m = \sup_{x \in B_2(x_m)} e^{T_0} u(x)\). From (17), there exists \(M_0 \in (0, M)\) such that

\[
\lim_{m \to \infty} U_m \leq M_0(< M).
\]

There exists a sequence \(\{V_k\}_{k=1}^\infty\) such that \(V_k = (M_0 + M)/2\), \(\lim_{k \to \infty} V_k = M_0\)
\(V_{k+1} \leq V_k\) and \(V_k \geq U_{m_k}\) with a sequence \(\{m_k\}_{k=1}^\infty\) satisfying \(u_{k+1} > u_k\) for \(k \in \mathbb{N}\). Thus, since \((x - y)^2 \leq 2x^2 + 2y^2\), we obtain

\[
\sup_{x \in B_1(\tilde{x}_k)} w(x, t) \leq W_k(t)
\]

\[
= e^{\Delta(t-T_0)} \max \left\{ \frac{v(T_0) - (M - V_k)e^{-|x|^2/2t} \int_{|y| < 2} e^{-|y|^2/2t} u_0(y) dy}{(4\pi T_0)^{-n/2} v(T_0)}, \delta_f \right\} < 1
\]

for \(t \in [T_0, T_v]\), where \(\tilde{x}_k = x_{m_k}\). By comparison we have \(W_{k+1}(t) \leq W_k(t)\) for \(t \in [T_0, T_v]\) and \(k \in \mathbb{N}\). From Lemma 3.2 and comparison it follows that there exist the sequence \(\{\eta_k\}_{k=1}^\infty\) satisfying \(0 < \eta_{k+1} \leq \eta_k < \infty\) such that

\[
\lim_{t \to T_v} u(x_{m_k}, t) \leq \eta_k.
\]

Since the sequence \(\{x_m\}_{m=1}^\infty\) is arbitrary, we obtain that \(\psi\) is not blow-up direction.

\[\square\]

Acknowledgement. The author is grateful to Mr. Yukihiro Seki and Mr. Masahiko Shimojo for their discussions on Theorems 1 and 2 in this paper. Much of the work of the author was done while he visited the University of Tokyo during 2005-2008 as a postdoctoral fellow. Its hospitality is gratefully acknowledged as well as support from formation of COE “New Mathematical Development Center to Support Scientific Technology”, supported by JSPS.

References

