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1 Introduction and main theorems

In this paper we gather the papers [5], [6] and [12] for our talk at Kyoto
University. In particular we make the proofs of theorems in [5] easier by
using the methods in [12] and other.

We consider solutions of the initial value problem for the equation

ug = Au+ f(u),, zze€R™t>0, (1)
u(z,0) = up(z), z € R

The nonlinear term f € C*(R.) saitsfies that

——— < 00 with some C > 0, (2)

c [f(§)

[ there exists a function ® € C*(R..) such that

®(v) >0, ¥'(v) >0 and ¥"(v) >0 for v >0,

. S (3)
1 e 7

and f'(v)®(v) — f(v)® (v) = c®(v)P'(v) for v > b
| with some b 2 0 and ¢ > 0.
Remark. The conditions (2) and (3) were used in [12]. They are weaker
than the conditions used in [5] and [6]:
J(6b) < 67 f(b)

for all b > by and for all § € (6y,1) with some by > 0, some & € (0,1) and
somep > 1. '
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The initial data ug is assumed to be a measureable function in R™ satis-
fying
0 L up(z) £ M a.e. in R® (4)

for some positive M. We are interested in initial data such that ug — M as
|z| — oo for  in some sector of R®. We assume that there exists a sequence

{z}%_, C R" such that
Lim uo(z + zm) =M a.e. in R™. (5)

Remark. The condition (5) was given in [12]. This condition is equivalent
to the condition in [5] with [6]:

essinf .5 (uo(T) — Mm(T — Tm)) 20 for m=1,2,...,

where By = By, (zm) with a sequence {rm}_,, a sequence of functions
{Mem(2) )01 satisfying

lim 7, =00, Mp(z) < Mpi1(z) form>1

m—0o0
lim inf .
m-—-»ooae[l,"‘m] |Ba| B,(0)

M,.(z)dx = M,

and some sequence of vectors {z,}3_,. Here B.(z) denotes the opened ball
of radius r centered at z.

Problem (1) has a unique bounded solution at least locally in time. How-
ever, the solution may blow up in finite time. For a given initial value ug
and nonlinear term f let T* = T*(uo, f) be the maximal existence time of
the solution. If T* = oo, the solution exists globally in time. If T* < oo, we
say that the solution blows up in finite time. It is well known that

lim sup ||u(:, ¥)|lec = 00, | (6)
t—T*
where || - ||co denotes the L*-norm in space variables.

In this paper we are interested in behavior of a blowing up solution near
space infinity as well as location of blow-up directions defined below. A point
zgy € R™ is called a blow-up point if there exists a sequence {(Zm,tm)} oo,
such that

tm TT*, ZTm —2py and u(Zm,t,) — 00 a8 m — oo.



137

If there exists a sequence {(Zm,tm)}o=; such that
tm TT*, |zTm| — 00 and w(zTm,tm) —= 00 as m— oo,

then we say that the solution blows up to at space infinity.

A direction 1) € S™~! is called a blow-up direction if there exists a sequence
{(Zm,tm)}3; Wwith z,, € R™ and t,, € (0,T*) such that u(zm,tm) — oo as
m — oo and

Im_ _, % as m— oo (7)
|Zm|

We consider the solution v(t) of an ordinary differential equation

Vg = f(’U), t> 0, '
{ v(0) = M. (8)
Let T, = T*(M, f) be the maximal existence time of solutions of (8), i. e.,
* ds
T,= | ——.
m f(s)

We are now in position to state our main results.

Theorem 1. Assume that f € CY(R.;) is nondecreasing function and locally
‘Lipschitz in R... Let ug be a continuous function satisfying (4) and (5). Then
there exists a subsequence of {Tm}%_,, independent of t such that

Hm_ u(T + Tm, t) =v(t) in R 9)

- The convergence is uniform in every compact subset of R" x [0,T,). More-
over, the solution blows up at T,.

For this theorem we should introduce the results of Gladkov [7]. In his
paper there is the result [7, Theorem 1] relative to our first theorem. He
considered the initial-boundary value problem:

}ut=um+f(:z:,t,u), z>0,0<t<Ty,
u(z, 0) = uo(x), z >0,
u(0,t) = u(t) 0<t<Ty,

and the ordinary differential equation

vy = f(t,u), 0<t<Tp,
v(0) = M,
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where Tp € (0,00], 0 < f(z,t,u) < f(t,u), limeoo f(z,t,u) = f(t,u),
0 < up < M and lim,_,, up(z) = M. For the equations he had u(z,t) — v(t)
as £ — oo uniformly for [0, T] with T' < Tp. For the proof of this result, he
used the fundamental solution of the heat equation.

In [5] the expression (9) was the weak sense:

1im u(zm, 1) = v(t). (10)

After [5], (9) was used in [12]. However, for proving Theorems 2 and 3, we
can select even the expression (10).
Our second main result is on the location of blow-up points.

- Theorem 2. Assume the same hypotheses of Theorem 1 and that f satisfies
(2) and (3). Let ug Z M a.e. in R™. Then the solution of (1) has no blow-up
points with oo in R™. (It blows up only at space infinity.)

There is a huge literature on location of blow-up points since the work of
Weissler [15] and Friedman-McLeod [1). (We do not intend to list references
exhaustively in this paper.) However, most results consider either bounded
domains or solutions decaying at space 1nﬁmty, such a solution does not blow
up at space infinity [2].

As far as the authors know, before the result of [4] the only paper dis-
cussing blow-up at space infinity is the work of Lacey [8]. He considered
the Dirichlet problem in a half line. He studied various nonlinear terms and
proved that a solution blows up only at space infinity. His method is based
on construction of suitable subsolutions and supersolutions. However, the
construction heavily depends on the Dirichlet condition at z = 0 and does
not apply to the Cauchy problem even for the case n = 1.

As previously described, the Giga-Umeda [4] proved the statement of
Theorems 1 and 2 assuming that lim;, uo(z) = M for positive solutions
of uy = Au+ uP. Later, Simoj6[13] had the same results as in [4] by relaxing
the assumptions of initial data ug > 0 which is similar to that in the present
paper. His approach is a construction of a suitable supersolution which
implies that a € R™ is not a blow-up point. Although he restricted himself
for f(s) = sP, his idea works our f under slightly strong assumption on u,.
Here we give a different approach.

By Simojd’s results[13] it is natural to consider a problem of “blow-up
direction” defined in (7). We next study this “blow-up direction” for the
value oo.

Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction
v € S*. If and only if there exists sequences {ym,}X.;, and satisfying
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limy 00 Ym/|yml = ¥ such that
lim uo(z + ym) = M a.e. in R", (11)

then ¢ is a blow-up direction.

After [5] there are some results in this field. Shimojo had the result of
the upperbound and the lowerbound:

v(t — n(z,t)) < u(z,t) < v(t - on(z,t))

with some function 7 and ¢ € (0,1). Moreover, he proved the complete
blow-up of the solution. Seki-Suzuki-Umeda [12] and Seki [11] improved the
results of [5] for the quasilinear parabolic equation:

u = Ap(u) + f(u).

In particular they had more results for more general case. In [3] some of the
proofs of theorems in [5] were corrected.

This paper is organized as follows. In section 2 we prove Theorem 1 by
using the fundamental solution of the heat equation. The proof of Theorem
2 is given in section 3 by using the argument used in [12]. In section 4 we
show Theorem 3 using Theorem 1 and Lemma 3.2.

2 Behavior at space infinity

In this section we prove Theorem 1. We give proof of Theorem 1 which is
inspired in private communication with Y. Seki and M. Shimoja.

Proof of Theorem 1. Put w = v — z. Then, we have for t € (0,Tp] with
Ty € (0, T(M)),

= Aw + f(v(t)) = f(u(-,t)) < Aw+ C(v —u),

where

C = sup
t€[0,To)

[ #1600+ a - oyt opas|

Then, by comparison we obtain

1

w(z,t) < e (M — ug(z)) = Aty /1; ) e~V (M — ug(y))dy.
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From (5) we have
lin;o w(T + T, t) = v(t) in R™ (12)

It remains to prove that u blows up at ¢ = T,,. For this purpose it suffices
to prove that limmy,—co U(Zm, tm) = 0o for some sequence t,, — T,,. We argue
by contradiction. Suppose that lim,,; .o u(Zm,tm) < C for some C € [M, 00).
Then we could take t, € (0,T,) satisfying v(tp) > C and v:(t) > 0 for t > &,.
By (12) we have

to+ T, t :
lim u(mm,—g—i——) v(°+T") > C,
m—sc0 2 2
which yields a contradiction. We thus proved that lim,, ..o u(Zp,tm) = 00,
so that u(z,t) blows up at T,,. O

3 No blow-up point in R"

In this section we prove Theorem 2. We use three lemmas for proving the
theorem..

Lemma 3.1. Assume the same hypothesis of Theorem 1. Let u and v be
solutions of (1) and (8) with ug, M and f satisfying (2), (3) and (4). Then
there exist § = §(a, to, up, f) € (0,1) such that for (z,t) € Bi(a) X [to, Tv),

u(z,t) < ov(t)
with ty € [O,Tv).

Proof. By (2) there exist My = M;(f) > M and d; = d;(f) € (0, 1) satisfy-
ing for r > My and § € (dy,1),
f(or) < 6f(r). (13)

Let To = To(uo, f) € (0,T,) such that v(Ty) = My. Since up < M and
ug # M a.e. in R", we have u(z,Tp) < v(Tp). Note that u(z,t) < 'u(t) for
t € (0,Tp). Let w be the solution of

wy = Aw, zeR"te (To,T*),
w(z, To) = max{u(z, To)/v(To),ds}, = €R™

Put %@ = vw. Then we have

Ty = AT+ wf(v), z e Rt e (Tp, T,
a(z, To) = max{u(z, Tv), 6;v(To)}, z € R™,
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Since w(z,t) € [6f,1) and v(t) > M, we have

wf(v) 2 f(wv) = f(@)

by (13). This @ is supersolution of (1).
Since for any z € R", sup,¢(r, 1) w(z,t) < 1, we can take § = d(a, To, uo, f) €
(0, 1) satisfying w(z,t) < 6 for (z,t) € By(a) x [Ty, Ty). Thus, we obtain

u(z,t) < @(x,t) = w(z,t)v(t) < du(t)

and Lemma 3.1 is proved. O
For any a € R", we consider the solution ¢ = ¢, of the equation:

¢t=A¢+f(¢)> $EBl,t€ (tl;Tv),
¢(IE, 0) = ¢0(.’L‘), zE€ Bl; (14)
o(z,t) = v(t), z € 0By, t € (t1,Ty),

where ¢o(z) = v(t1)(1 — £ cos ﬂ,}') with € = €(uo, f, a) > 0 sufficiently small
satisfying

¢o(z) 2 u(z +a,t1) (15)

and B; denotes the open ball of radius 1 and centered at 0. It is easily seen
that

Ado(z) + f(do(z)) 2 0
By the maximum principle {10] we have
#(z,t) >u(z+a,t) and ¢, >0 for z€ By, t€[ty,T,). (16)

If w has no blow-up point in R", the u has no blow-up point in R", nelther
We should show that w has no blow-up point.

Lemma 3.2. Assume the same hypotheses of Lemma 3.1. Let QQ € By be a
domain. If 8;¢(z,t) >0 in Q X (t;,T,) and there ezist v € S*1 and § > 0,
such that

v-V¢(z,t) < —6|Ve(z,t)| <0 inQ x (t1,Ty),
then ¢ does not uniformly blow-up in Q:

irel‘f;qS(m, t)<L<oo forte (t1,Ty)-
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Proof of Lemma 38.2. This lemma is proved in [9] (See [9, Lemma 4.1]). 0O
Proof of Theorem 2. Put r € (0,1). Define

pu(z,t) = ¢(2r — zy, 7', t) — P(z1, 7', 1),

where z = (z;,z') with 2’ = (z;,23,...,2,) € R*"1. Then, we obtain
pe 2 Ap+ C(z,t)u, z € D,,t € (t1,T5),
M(I, 0) = ¢0(2’l" - 2?1,13,') - ¢0($1,xl) Z 0) TE Dr;
p(z,t) >0, z € 8D,,t € (t1,T,),
where

C(z,t) = /1 {6¢(2r — z,,2',t) + (1 — 6)p(z1, 7', t)} db
D,={.::::z:1 <r}n{z:(z-2r)?<1}.
Thus, by the maximum principle [10] we have
20 in Dx[t,T,)
and
¢(2r — 11,2',t) > ¢(x1,2',t) in D x[t,T,).
Since r € (0,1) is arbitrary, we obtain that ¢,, > 0 for z € {z|z; > 0} and

—e; V¢ < —¢, < —J—Iz—lllv¢|, in DU {z|z; = 0}

with some § > 0, where e; = %(1,0,0,...,0). Since ¢; > 0 and inf,¢p, ¢(z,t) =
#(0,t), by Lemma 3.2 we have

tlirg #(0,t) < L with some L < oo.

Thus

tlirg u(a,t) < L with same L.

Since a € R" is arbitrary, u does not blow up at ¢t = T, in R". O
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4 On blow-up direction

We shall prove Theorem 3 which gives a condition for blow-up direction.

Proof of Theorem 8. We first prove that if up satisfies (11), then v is a blow-
up direction. By assumption we obtain that ug(z) satisfies (5) with some
sequences {zp,}_, satisfying limy, 00 Zm/|Zm| = 9. Then, from the proof
of Theorem 1 it follows that

lim u(zp,ty,) =00
m—00

with the sequence {t,, }53_, satisfying limy, o0 tm = Ty. Since limy, oo Zm/|Zm| =
1 by the assumption we obtain that 1 is a blow-up direction.

We next show that if 1 is a blow-up direction, then there exist {zm}3_o C
R" such that zp,/|zm| — ¥, tm — Ty and u(zp,,tn) — 00 88 m — oo.
In contrary it says that if for any sequences {z,,}35.; C R" satisfying

limp, 00 Tm/|ZTm| = ¥, uo does not satisfy (11), then % is not a blow-up
direction.
Since lim;—.o0 Uo(Z + Z») = M a.e. in R", we have
: 1 2
lim sup / e~V 4ty (y)dy < M 17
M~ 1€ By (m) (4rt)"2? Jgn o(y)dy (17)

for t > 0. Since the solution of (1) satisfies the integral equation

u(z, t) = eBtug(z) + / t €2t~ f(u(zx, s))ds,
0

we have
u(z, i) < eBtug(z) + / t f(v(s))ds = v(t) = M + e®tuo(z)
0

for (z,t) € R® x [0,T*).
Let M;, §; and Tp be the same as proof of Lemma 3.1. We consider the
solution w of

{ wy = Aw, zeR"te (To,T.,),
w(z, To) = max{{v(To) — M + eATuy(z)}/v(To), 65}, =€ R™

We now introduce # = vw. From the proof of Lemma 3.1, it follows that
i > u for (z,t) € R® x [Ty, T*). Then we have

u(z, t) < v(t)e*¢~™ max{{v(To) — M + e uo(2)}/v(Tv), s }
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for (z,t) € R™ x [To, Ty).
Put Unm = SUP.eB,(zm) efu(z). From (17), there exists My € (0, M) such
that '

lim Un < Mo(< M).

There exists a sequence {V;}2, such that Vi = (Mp+M)/2, limg_,o Vi = My
Viy: < Vi and Vi > Uy, with a sequence {m;}32, satisfying ur4y > uy for
k € N. Thus, since (z — y)? < 2% + 2y?, we obtain

sup w(z,t) < Wi(t)

z€B1(Z))
— At-To) pav u(To) = (M = Vi)erkel/2 Jui<2 e~ 2ty(y)dy s\ o1
=e (4nTp)~"/2v(Tp) ) Of

for t € [Ty, T,), where &, = . By comparison we have Wi,1(t) < Wil(t)
for t € [Ty, T,) and k € N. From Lemma 3.2 and comparison it follows that
there exist the sequence {nx}52, satisfying 0 < mx+1 < M < 0o such that

Jim U(Zmy,, 1) < M.

Since the sequence {zm}%_, is arbitrary, we obtain that ¢ is not blow-up
direction. O
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