<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of Solutions with Moving Singularities for a Semilinear Parabolic Equation (Nonlinear Evolution Equations and Mathematical Modeling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sato, Shota; Yanagida, Eiji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1588: 124-134</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81553</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Existence of Solutions with Moving Singularities for a Semilinear Parabolic Equation

Shota Sato and Eiji Yanagida

Mathematical Institute, Tohoku University

Abstract

We study the Cauchy problem for a semilinear parabolic equation with a power nonlinearity. It is known that in some parameter range, the equation has a singular steady state. Our concern is a solution with a moving singularity that is obtained by perturbing the singular steady state. By the formal expansion, it turns out that the correction term must satisfy the heat equation with inverse-square potential near the singular point. From the well-posedness of this equation, we see that there appears a critical exponent. Paying attention to this exponent, given a motion of the singular point and suitable initial data, we establish the time-local existence result.

1 Introduction

We study singular solutions of the semilinear parabolic equation

\[
\begin{cases}
 u_t = \Delta u + u^p & \text{in } \mathbb{R}^N \times (0, \infty), \\
 u(x, 0) = u_0(x) & \text{in } \mathbb{R}^N,
\end{cases}
\]

(1.1)

where \(p > 1 \) is a parameter and \(u_0 \in L^1_{loc}(\mathbb{R}^N) \) is a nonnegative function. It is known that for

\[N \geq 3, \quad p > p_{\text{sing}} := \frac{N}{N-2}, \]

(1.1) has an explicit singular steady state \(\varphi(|x|) \in C^\infty(\mathbb{R}^N \setminus \{0\}) \) with a singular point 0;

\[\varphi(|x|) = L|x|^{-m}, \quad m = \frac{2}{p-1}, \quad L^{p-1} = m(N-m-2). \]
Then $\varphi(|x|)$ satisfies (1.1) in the distribution sense, and
\begin{equation}
\varphi_{rr} + \frac{N-1}{r} \varphi_r + \varphi^p = 0, \quad r = |x| > 0.
\end{equation}
Clearly, the spatial singularity of $u = \varphi(|x|)$ persists for all $t > 0$, but the singular point does not move in time.

Our aim of this paper is to discuss the existence of a solution of (1.1) whose spatial singularity moves in time. More precisely, we define a solution with a moving singularity as follows.

Definition 1. The function $u(x, t)$ is said to be a solution of (1.1) with a moving singularity $\xi(t) \in \mathbb{R}^N$ for $t \in (0, T)$, where $0 < T \leq \infty$, if the following conditions hold:

(i) $u, u^p \in C([0, T); L_{loc}^1(\mathbb{R}^N))$ satisfy (1.1) in the distribution sense.

(ii) $u(x, t)$ is defined on $\{(x, t) \in \mathbb{R}^{N+1} : x \in \mathbb{R}^N \setminus \{\xi(t)\}, t \in (0, T)\}$, and is twice continuously differentiable with respect to x and continuously differentiable with respect to t.

(iii) $u(x, t) \to \infty$ as $x \to \xi(t)$ for every $t \in [0, T)$.

In this paper, we study the time-local existence for a solution with a moving singularity of the Cauchy problem (1.1). In order to state our result, we first introduce a critical exponent given by

\[p_* := \frac{N + 2\sqrt{N-1}}{N - 4 + 2\sqrt{N-1}}, \]

which appeared in the papers of Véron [8] and Chen-Lin [3]. It was shown in [8] that p_* is related to the linearized stability of the singular steady state, while it was shown in [3] that p_* plays a crucial role for the existence of solutions with a prescribed singular set of the Dirichlet problem

\[
\begin{cases}
\Delta u + u^p = 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}
\]

where Ω is a bounded smooth domain in \mathbb{R}^N. In fact, in [3], they proved that if $N \geq 3$, $p_{\text{sing}} < p < p_*$, then for any closed set $K \subset \Omega$, there exists a singular solution having K as a singular set. We note that p_* is larger than p_{sing} and is smaller than the Sobolev critical exponent $p_S := (N+2)/(N-2)$. We also introduce the important numbers

\[\lambda_1 := \frac{N - 2 - \sqrt{(N - 2)^2 - 4pL^p - 1}}{2}, \]
\[\lambda_2 := \frac{N - 2 + \sqrt{(N - 2)^2 - 4pL^p - 1}}{2}. \]
We note that for $N \geq 3$, $p_{\text{sing}} < p < p_*$, the constants $\lambda_1 < \lambda_2$ are positive roots of
\[\lambda^2 - (N - 2)\lambda + p J^p = 0. \]
Finally, for $a \in \mathbb{R}$, $[a]$ denotes the largest integer not greater than a.

Our result is concerning the time-local existence of a solution of (1.1) with a moving singularity.

Theorem 1. Let $N \geq 3$ and $p_{\text{sing}} < p < p_*$. Assume the following conditions:

(A1) $\xi(t) \in C^{i+\alpha}([0, \infty); \mathbb{R}^N)$ ($\alpha > 0$) with $i = \left[\frac{m - \lambda_2}{2}\right] + 1$.

(A2) u_0 is nonnegative and continuous in $x \in \mathbb{R}^N \setminus \xi(0)$, and is uniformly bounded for $|x - \xi(0)| \geq 1$.

(A3) If $m - \lambda_2$ is not an integer, then
\[
\begin{align*}
u_0(x) &= L|x - \xi(0)|^{-m} \left\{ 1 + \sum_{i=1}^{[m - \lambda_2]} b_i \left(\frac{x - \xi(0)}{|x - \xi(0)|}, 0 \right) |x - \xi(0)|^i \\
&\quad + O(|x - \xi(0)|^{m - \lambda_2 + \epsilon}) \right\}
\end{align*}
\]
as $x \to \xi(0)$ for some $\epsilon > 0$, where $b_i(\omega, t)$ are functions on S^{N-1} defined later by (2.9)-(2.5). If $m - \lambda_2$ is an integer, then
\[
\begin{align*}
u_0(x) &= L|x - \xi(0)|^{-m} \left\{ 1 + \sum_{i=1}^{m - \lambda_2} b_i \left(\frac{x - \xi(0)}{|x - \xi(0)|}, 0 \right) |x - \xi(0)|^i \\
&\quad + c(0)|x - \xi(0)|^{m - \lambda_2} \log |x - \xi(0)| + O(|x - \xi(0)|^{m - \lambda_2 + \epsilon}) \right\}
\end{align*}
\]
as $x \to \xi(0)$ for some $\epsilon > 0$, where $b_i(\omega, t)$ are functions on S^{N-1} defined later by (2.9)-(2.5) and $b_{m - \lambda_2}(\omega, t)$ and $c(t)$ satisfy (3.1)

Then for some $T > 0$, there exists a solution of (1.1) with a moving singularity $\xi(t)$.

Remark 1. If $N \geq 3$ and
\[p_{\text{sing}} < p < \min\{p_*, \frac{3N + 5}{3N - 3}\}, \]
then $0 \leq m - \lambda_2 < 1$ so that $[m - \lambda_2] = 0$. In this case, (A1) implies $\xi(t) \in C^{1+\alpha}([0, \infty); \mathbb{R}^N)$ ($\alpha > 0$), and (A3) is simplified as
\[
u_0(x) = L|x - \xi(0)|^{-m} + O(|x - \xi(0)|^{-\lambda_2 + \epsilon}) \quad \text{as } x \to \xi(0). \] (1.3)
In this paper, we consider only the time-local existence of the Cauchy problem with a moving singularity. Needless to say, the existence of time-global solutions are important questions. Also, when the solution with a moving singularity is not time-global, it is interesting to ask what happens at the maximal existence time. These questions will be future works.

This paper is organized as follows: In Section 2 we carry out formal analysis for a solution of (1.1) as a perturbation of the singular steady state. In Section 3 we state the outline of proof of the time-local existence.

2 Formal expansion at a singular point

In this section, we consider the formal expansion of a solution $u(x, t)$ of (1.1) with a moving singularity $\xi(t)$. Assuming that the solution resembles the singular steady state around $\xi(t)$, we may naturally expand $u(x, t)$ as

$$u(x, t) = Lr^{-m}\left\{1 + \sum_{i=1}^{k} b_i(\omega, t)r^i + v(y, t)r^m\right\}, \quad (2.1)$$

where

$$y = x - \xi(t), \quad r = |x - \xi(t)|, \quad \omega = \frac{1}{r}(x - \xi) \in S^{N-1}, \quad k = [m],$$

and the remainder term v satisfies

$$v(y, t) = o(|y|^{-m}) \quad \text{as} \quad |y| \to 0. \quad (2.2)$$

Substituting (2.1) into (1.1), and using

$$r_t = -\frac{(x - \xi) \cdot \xi_t}{r}, \quad \omega_t = -\frac{1}{r} \xi_t + \frac{\omega \cdot \xi_t}{r} \omega,$$

$$\Delta = \partial_{rr} + \frac{N-1}{r} \partial_r + \frac{1}{r^2} \Delta_{S^{N-1}}$$

and the Taylor expansion, we compare the coefficients of r^{-m+i-2} for $i = 0, 1, \ldots, k$. Then we obtain

$$r^{-m-2}; (Lr^{-m})_{rr} + \frac{N-1}{r}(Lr^{-m})_r + (Lr^{-m})_r = 0,$$

$$r^{-m-1}; \Delta_{S^{N-1}} b_1 + \{(-m+1)(N-m-1) + pm(N-m-2)\} b_1 = mw \cdot \xi_t, \quad (2.3)$$
where $\Delta _{S^{N-1}}$ is the Laplace-Beltrami operator on S^{N-1} and the function
$G_i(\omega ; b_1, b_2, \ldots , b_{i-1}, \xi)$ on $S^{N-1} \times [0, \infty)$ is determined by $(b_1, b_2, \ldots , b_{i-1}, \xi)$.

The equality for r^{-m-2} always holds by (1.2). From other equations, we have the above system of inhomogeneous elliptic equations for b_i on S^{N-1}: By these equations, b_1, b_2, \ldots are determined sequentially.

Let us consider the solvability of (2.3), (2.4) and (2.5). It is well known (see, e.g. [2]) that for every $j = 0, 1, 2, \ldots$, the eigenvalues of $-\Delta _{S^{N-1}}$ are given by

$$\mu_j = j(N+j-2), \quad j = 0, 1, 2, \ldots ,$$

and the eigenspace E_j associated with μ_j is given by

$$E_j = \{ f|_{S^{N-1}} : f \text{ is a harmonic homogeneous polynomial of degree } j \}.$$

Therefore, unless

$$(-m+i)(N-m+i-2)+pm(N-m-2) = j(N+j-2), \quad (2.6)$$

the operators in the left-hand side of (2.3), (2.4) and (2.5) are invertible. We define a set Λ by

$$\Lambda := \left\{ p > 1 : (2.6) \text{ holds for some } i \in \{1, 2, \ldots , \left\lfloor \frac{2}{p-1} \right\rfloor \}, \quad j \in \{0, 1, 2, \ldots , i\} \right\}.$$

Moreover, we consider $G_i(\omega ; b_1, b_2, \ldots , b_{i-1}, \xi)$ in detail and obtain next lemma.

Lemma 1. Suppose that $\xi(t)$ satisfies (A1). If $p \notin \Lambda$, then there exist $b_1(\omega, t), b_2(\omega, t), \ldots , b_k(\omega, t) \in C^{\infty,1}(S^{N-1} \times [0, \infty))$ such that (2.3), (2.4) and (2.5) hold.

By this lemma, in order to consider the existence of the solution of (1.1) with a moving singularity, it suffices to consider $v(y, t)$. By taking $b_i(\omega, t)$ as Lemma 1, (1.1) is satisfied if $v(y, t)$ satisfies

$$v_t = \Delta v + \xi \cdot \nabla v + F(v, y, t) \quad \text{in } \mathbb{R}^N \times (0, \infty). \quad (2.7)$$
where $F(v, y, t)$ is determined by b_1, b_2, \ldots, b_k and ξ. After tedious computations, we notice that

$$F(v, y, t) = \frac{pL^{p-1}}{r^2}v + o(r^{-2}) \quad \text{as } r \to 0.$$

In order to consider the existence of solutions of (2.7), we first consider

$$v_t = \Delta v + \frac{pL^{p-1}}{r^2}v \quad \text{in } \mathbb{R}^N \times (0, \infty). \quad (2.8)$$

This equation has been investigated in [1, 7, 6], and it was shown that (2.8) is well-posed when

$$0 < pL^{p-1} < \frac{(N-2)^2}{4}, \quad (2.9)$$

and

$$|v(y, 0)| \leq Cr^{-\lambda} \quad \text{for some } \lambda_1 < \lambda < \lambda_2, \ C > 0.$$

The inequalities (2.9) hold if and only if p satisfies

$$p_{\text{sing}} < p < p_* \quad \text{for } N \geq 3, \text{ or } p > p_{JL} := \frac{N-2\sqrt{N-1}}{N-4-2\sqrt{N-1}} \quad \text{for } N > 10.$$

Here the exponent p_{JL} was first introduced by Joseph-Lundgren [4] and is known to play an important role for the dynamics of solutions of (1.1).

Since the gradient term in (2.7) and the higher order term of F do not affect the well-posedness, we must assume (2.9) for the solvability of (2.7). If $p > p_{JL}$, then $\lambda_1 < m$ does not hold so that (2.2) may not be true. Hence we exclude the case $p_{JL} < p$. Based on the above formal analysis, we will focus on the case $p_{\text{sing}} < p < p_*$.

3 Time-local existence

Taking into account of the formal analysis in the previous section, we will show the existence of a time-local solution with a moving singularity. To this end, we develop the idea of Marchi [6] for the well-posedness of the linear equation (2.8).

The outline of the proof is divided into three steps. Roughly speaking, we construct a suitable supersolution and subsolution with a moving singularity in Subsection 3.1. In Subsection 3.2, we construct a sequence of approximate solutions and find a convergent subsequence. In Subsection 3.3, we show that the limiting function is indeed a solution of (1.1) with a moving singularity.
3.1 Construction of a supersolution and a subsolution

In this subsection, we construct a supersolution and a subsolution of (1.1) that are suitable for our purpose.

First we note that if $m - \lambda_2$ is not an integer, then (2.6) does not hold for all $i = 1, 2, \ldots, [m - \lambda_2]$, $j = 0, 1, \ldots, i$. Indeed, if (2.6) does not hold for some $1 \leq i \leq m - \lambda_2, j = 1, \ldots, i$, then $i = -\lambda_2, j = 0$, contradicting that $m - \lambda_2$ is not an integer. Therefore, if $m - \lambda_2$ is not an integer, then by Lemma 1 and (A1), we can determine $b_1(\omega, t), b_2(\omega, t), \ldots, b_{[m - \lambda_2]}(\omega, t) \in C^{2,1}(S^{N-1} \times [0, \infty))$ by (2.3), (2.4) and (2.5).

On the other hand, if $m - \lambda_2$ is an integer, (2.6) holds for $i = m - \lambda_2, j = 0$. However, we carry out similar argument by replacing $b_{[m - \lambda_2]}(\omega, t)r^{[m - \lambda_2]}$ with $(b_{m - \lambda_2}(\omega, t) + c(t) \log r)r^{m - \lambda_2}$ that satisfies

\[\Delta_{S^{N-1}} b_{m - \lambda_2} = (I - P_0)G(\omega, t), \quad c(t) = (N - 2\lambda_2 - 2)^{-1}P_0G(\omega, t), \tag{3.1} \]

where P_0 is define the projection on E_0 and $G(\omega, t)$ is the right-hand side of (2.5) with $i = m - \lambda_2$.

Now we fix $\lambda = \lambda_2 - \epsilon$ satisfying

\[\min\{\lambda_1, m - [m - \lambda_2] - 1\} < \lambda < \lambda_2 \]

and replace k defined in Section 2 with $k := [m - \lambda_2]$. From (A2) and (A3), it follows that $u_0 \in C(\mathbb{R}^N \setminus \xi(0)) \cap L^\infty(\mathbb{R}^N \setminus B(\xi(0), 1)), u_0 \geq 0$, and

\[
 u_0(x) = L|x - \xi(0)|^{-m}\left\{1 + \sum_{i=1}^{k} b_i \left(\frac{x - \xi(0)}{|x - \xi(0)|}, 0 \right) |x - \xi(0)|^i + O(|x - \xi(0)|^{m - \lambda}) \right\} \text{ as } x \to \xi(0).
\]

Then there exist constants $C > 0$ and $R > 0$ such that

\[
 \left| u_0(x) - L|x - \xi(0)|^{-m}\left\{1 + \sum_{i=1}^{k} b_i(\omega, 0) \left(\frac{x - \xi(0)}{|x - \xi(0)|} \right) |x - \xi(0)|^i \right\} \right|
 < CL|x - \xi(0)|^{-\lambda} \text{ in } B(\xi(0), R).
\]

Fix any $T_1 > 0$.

First we construct a supersolution and a subsolution of (1.1) in a neighborhood of $\xi(t)$ by using (2.7). By (2.1), we have

\[
 u_t - \Delta u - u^p = L\{v_t - \Delta v - \xi_t \cdot \nabla v - F(v, y, t)\}.
\]
Hence
\[\overline{u}(x, t) = L r^{-n} \left\{ 1 + \sum_{i=t}^{k} b_{i}(\omega, t) r^{i} + v^{1}(y, t) r^{m} \right\} \]
is a supersolution of (1.1) if and only if \(v^{+} \) is a supersolution of (2.7). Since it follows from tedious calculation that \(\overline{v} := C r^{-\lambda} \) is a supersolution of (2.7) on \(B_{R} \times (0, T_{1}) \) if \(R > 0 \) is sufficiently small,
\[\overline{v} := C r^{-\lambda} \left\{ 1 + \sum_{i=1}^{k} b_{i}(\omega, t) r^{i} + C r^{-\lambda} \right\} \]
is a supersolution of (1.1) on \(\bigcup_{0 \leq t \leq T_{1}} B_{R}(\xi(t)) \times \{ t \} \) for small \(R > 0 \). Similarly, we can show that
\[\underline{v} := C r^{-\lambda} \left\{ 1 + \sum_{i=1}^{k} b_{i}(\omega, t) r^{i} - C r^{-\lambda} \right\} \]
is a subsolution of (1.1) on \(\bigcup_{0 \leq t \leq T_{1}} B_{R}(\xi(t)) \times \{ t \} \) for small \(R > 0 \).

Next, we construct a supersolution and a subsolution near infinity. By direct calculation, it is shown that
\[\overline{u} := C_{1} \left(1 - \frac{t}{2T_{2}} \right)^{-\frac{1}{2(p-1)}} \]
is a supersolution of (1.1) on \(\mathbb{R}^{N} \setminus B(\xi(t), 1) \times (0, T_{2}) \), provided that
\[C_{1} > \| u_{0} \|_{L^{\infty}(\mathbb{R}^{N} \setminus B(\xi(0), 1))}, \quad T_{2} < 2\sqrt{2}(p-1)C_{1}^{p-1}. \]
Clearly \(u \equiv 0 \) is a subsolution (1.1).

Finally, connecting these supersolutions and subsolutions in the intermediate region, we obtain a supersolution \(\overline{u} \) and a subsolution \(\underline{u} \) such that \(\overline{u}, \overline{u}^{p}, \underline{u}, \underline{u}^{p} \in L^{1}_{\text{loc}}(\mathbb{R}^{N} \times [0, T]) \) and the following properties hold:

(i) \(\overline{u}(x, t) \) and \(\underline{u}(x, t) \) are defined on \(\{(x, t) \in \mathbb{R}^{N+1} : x \in \mathbb{R}^{N} \setminus \{\xi(t)\}, t \in [0, T]\} \) and are twice continuously differentiable with respect to \(x \) and continuously differentiable with respect to \(t \).

(ii) For every \(t \in [0, T] \), \(\overline{u}(x, t), \underline{u}(x, t) \to \infty \) as \(x \to \xi(t) \). In particular,
\[\overline{u}(x, t) = L |x - \xi(t)|^{-m} \left\{ 1 + \sum_{i=1}^{k} b_{i}(\omega, t) |x - \xi(t)|^{i} + C |x - \xi(t)|^{m-\lambda} \right\}, \]
\[\underline{u}(x, t) = L |x - \xi(t)|^{-m} \left\{ 1 + \sum_{i=1}^{k} b_{i}(\omega, t) |x - \xi(t)|^{i} - C |x - \xi(t)|^{m-\lambda} \right\} \]
for \(|x - \xi(t)| \leq R_{0} \) and \(0 \leq t \leq T \).
(iii) The inequalities
\[
\bar{u}(x, 0) > u_0(x) > \underline{u}(x, 0) \quad \text{in} \quad \mathbb{R}^N \setminus \{\xi(0)\},
\]
\[
\bar{u}(x, t) > \underline{u}(x, t) \quad \text{in} \quad \mathbb{R}^N \times [0, T] \setminus \bigcup_{0 \leq t \leq T} (\xi(t), t)
\]
hold.

(iv) The inequalities
\[
\bar{u}_t \geq \Delta \bar{u} + \bar{u}^p \quad \text{in} \quad \mathbb{R}^N \times [0, T] \setminus \bigcup_{0 \leq t \leq T} (\xi(t), t),
\]
\[
\underline{u}_t \leq \Delta \underline{u} + \underline{u}^p \quad \text{in} \quad \mathbb{R}^N \times [0, T] \setminus \bigcup_{0 \leq t \leq T} (\xi(t), t)
\]
hold.

for some small R_0 and T.

3.2 Construction of approximate solutions

In this subsection, by using the supersolution and subsolution given in the previous subsection, we construct a series of approximate solutions that is convergent in an appropriate function space.

Define a sequence of bounded domains
\[
\Lambda_n(t) := \{x \in \mathbb{R}^N : |x - \xi(t)| \leq n, |x - \xi(t)| \geq \frac{1}{n}\} \quad (n = 1, 2, \ldots).
\]

For each n, let $u_n(x, t)$ be a classical solution of
\[
\begin{cases}
 u_{n,t} = \Delta u_n + u_n^p & \text{in} \quad \bigcup_{0 \leq t \leq T} A_n(t) \times \{t\}, \\
 u_n = \underline{u} & \text{on} \quad \bigcup_{0 \leq t \leq T} \partial A_n(t) \times \{t\}, \\
 u_n(x, 0) = u_{0,n}(x) & \text{in} \quad A_n(0),
\end{cases}
\]
where the initial value is assumed to satisfy
\[
\underline{u}(x, 0) \leq u_{0,n}(x) \leq u_{0,n+1}(x) \leq \bar{u}(x, 0) \quad \text{in} \quad A_n(0),
\]
\[
u_{0,n}(x) = \underline{u}(x, 0) \quad \text{on} \quad \partial A_n(0), \quad u_{0,n} \nearrow u_0 \quad \text{as} \quad n \to \infty.
\]
It is easily seen that \(u \leq u_n \leq \overline{u} \) in \(\bigcup_{0 \leq t \leq T} A_n(t) \times \{t\} \) by the comparison principle. Furthermore, by the standard parabolic theory [5] and the Ascoli-Arzelà theorem, from \(\{u_n\} \), we can obtain a subsequence \(\{u_{n(j)}\}_j \) and some function \(u(x, t) \) such that

\[
u_{n(j)} \to u \text{ locally uniformly in } R^N \times (0, T) \setminus \bigcup_{0 \leq t < T} (\xi(t), t) \text{ as } n(j) \to \infty.
\]

Hence the limiting function \(u(x, t) \) satisfies

\[
u \in C(R^N \times (0, T) \setminus \bigcup_{0 \leq t < T}(\xi(t), t)),
\]

\[
u \leq u \leq \overline{u} \text{ in } R^N \times (0, T) \setminus \bigcup_{0 \leq t < T}(\xi(t), t).
\]

3.3 Completion of the proof

In this subsection, we show that the limiting function \(u(x, t) \) obtained in Subsection 3.2 is indeed a solution of (1.1) with a moving singularity \(\xi(t) \) for \(t \in (0, T) \).

First, by \(\underline{u} \leq u \leq \overline{u} \) and the Lebesgue convergence theorem, we can show that the function \(u \) satisfies (1.1) in the distribution sense. Next, by \(\underline{u} \leq u \leq \overline{u} \) and the standard parabolic theory [5], the function \(u \) has the desired properties as stated in Definition 1. Consequently, it is shown that the function \(u \) is a solution of (1.1) with a moving singularity \(\xi(t) \) for \(t \in (0, T) \).

Acknowledgments

The authors would like to thank Professor Futoshi Takahashi for his useful comments. The author was supported by the 21st century COE Program "Exploring New Science by Bridging Particle - Matter Hierarchy" at the Graduate School of Science, Tohoku University, from the Ministry of Education, Culture, Sports, Science and Technology.

References

