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LIL for discrepancies of {6™x}
— a graphical sketch

Katusi FUKUYAMA (Kobe Univ.)

1. INTRODUCTION.

It is said that the sequence {zx} of real numbers is uniformly distributed mod 1 if
SHESN @) Clab) —b-a (N —oo)

for all [a,b) C [0, 1), where (z) denotes the fractional part of z.

It is well known that {ka} is uniformly distributed if and only if « is irrational, and it
is easily verified that {kle} is not uniformly distributed. In general it is very difficult to
decide that the given concrete sequence is uniformly distributed or not, and various studies
are done in this field. For classical results, we refer the reader to Kuipers-Niederreiter [6]
and Drmota-Tichy [3].

As a contrast to this difficulty, the next result by Weyl [12] opened the vast possibility
of metric results.

Theorem 1. If ng41 —nie = C > 0, then {nxzx} is uniformly distributed mod 1 fof almost
every .

By considering the example {kle}, it is seen that in general it is impossible to expect
the above results for all z. By admitting exceptional set of measure zero, one can prove
uniform distribution for many sequences. As a corollary of this theorem, we can say that
for every real number § > 1, the sequence {#"z} is uniformly distributed mod 1 a.e. In
this note, we try to determine the speed of convergence to uniform distribution.

To measure the speed of convergence, we use the following two types of discrepancies
Dy and Dj;:

Dn({zx}) : = up

1 N
F 3 Tha((@) - @b
k=1

<b<a<l
1 N
= 8u — z :
0_<_b<5<1 N &fbﬂ(( k)

where fq(z) = 1p0)({z)) — (@ — b);

Dy({zk}) : = 0su1<)

)

1 N
N D 1w ((zk) —a
k=1

<a<l
1 N
- o[ e

The latter is usually called ‘star disci'epancy’. Since 22;1 1(0,0)({zx)) can be regarded
as Fy(a) where Fy is the distribution function of the empirical measure £ SN | 8¢z,;,
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star discrepancy measures by the supremum norm the distance between the empirical
measure distribution function and uniform distribution function.
Solving the long standing Erd6s-G4l conjecture, W. Philipp [9] proved

o < .e.
(1) T >q>1==>4<131_1330 SN Toglog <C, ae

It implies that Dy = O(\/ (loglog N)/N ) and that O can’t be replaced by o, i.e., the
order of speed of convergence is determined. It should be emphasized that it is still not
known whether there exists a sequence {n;} for which the limsup above is not constant.

For special sequences, the limsup is constant. W. Philipp (8] studied the sequence
generated by mixing measure preserving transformation and proved the exact law of the
iterated logarithm:

— NDy({2*z}) _ ! > M2
T Joigtogy ~ (| v 2 [ o)
€ [\/15/9,\/5] a.e.

Recently, Berkes-Philipp-Tichy [2] stated that “the exact value of the limsup seems to
be unknown even in the simplest case n;, = 2¥.” In this note, we consider the sequence
ni = 6% for real number 6 > 1 and prove the exact law of the iterated logarithm. We
evaluate the value of limsup for most cases, and show that the case n, = 2% is a difficult
one, and the simplest case is ng = 3.

To state our result, let us prepare a notation. When 6" ¢ Q (r € N), put

1
ag,f=/0 f(z) dz.

When 6" € Q for some r € N, let us take the minimum of such r and denote § = {/p/q
by using coprime integers p and ¢. In this case we put

2 ! 2 —~ . k k
o= [ Fe)da+23 | 1)) da.

Theorem 2. If0 > 1, then

k * k
(2) Tm NDn({872}) _ im A Dn{0%zh) sup ogf,, =:Xg G.€. T

N-oo +/2NToglog N T Nooo V2NToglog N - 0<a<1

The constant Ly can be evaluated for most of 8 in the following way. By definition,
the evaluation is reduced to the calculation of the maximum of gg,, for 0 < a < 1. If
we regard 03, fo.. 88 & function of a, it is easily seen that it is symmetric with respect to
a = 1/2. The following is the the graph of o3 oo (0 < @ <1/2). It seems that it takes
maximum value at a = 1/3.
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If 6 ¢ Q for all 7 € N, then
nal

By Chung-Smirnov theorem, discrepancies for uniform i.i.d. obeys the law of the iter-
ated logarithm and the limsup equals to 1/2. Our result asserts that the behavior of
discrepancies imitate that of uniform i.i.d. when 6 is not a root of rational number.

Let us consider the case when 6 is a root of rational number and denote 8 = {/p/q by
using p, q, and r satisfying the conditions above. Then we have the estimate

1 1 [pg+1
: - < L =y [,
3 3 S %S5y g1

i.e., in this case ¥y attains its upper bound in the above estimate.
Especially, if p is odd and ¢ = 1, i.e., in case when 6 is a root of odd number p, we have

1 /[p+1
20—'2— p——_-—i-

As compared to this, when 0 is a root of even number, the expressxon of ¥y is completely
different. If p > 4 is even and g =1, then

5 =1\/<p+1>p<p—z>
) (p—1)%

This case does not include the case when p = 2. Although we have ¥y = 0 by putting
p = 2 in this expression, this is a wrong value.
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Ifp=2and g=1,ie., 6= /2, we have

<8
™o

$p =

This case is completely isolated. By using the estimate (3) above, we see that 1/42/9 is
the maximum value of 34, and we can conclude that among the class of sequences {6"z},
the sequence generate by binary transform is the farthest from the uniform distribution.

When 6 is a root of rational number given by the ratio of even and odd numbers, it is
difficult to evaluate ¥y and we have explicit value only in the following case. If p = 5 and

q=2,ie.,0=1/5/2, we have

2. EXACT LAW OF THE ITERATED LOGARITHM

The reason why ¥y appears in the law of the iterated logarithm for discrepancies orig-
inated to the limiting behavior of Riesz-Raikov sums ) f(6"z), where f is a real valued
function satisfying f(z + 1) = f(z), fol f=0, fol f? < co. It imitate the limiting behav-
ior of independent or weakly dependent stationary sequence, and obey the central limit
theorem and the law of the iterated logarithm,

N
1 N
T k _
N8, 73 og log Zk=1 f6%)| =00z, ae,

when the condition ||f(- + h) — f( - )|l2 = O(h®) is satisfied for o > 0. (Cf. Berkes (1],
Petit [7], Fukuyama, [4, 5]). In these theorems, 03 ; appears as the limiting variance. By
the last limit theorem and a heuristic argument, we have the law of the iterated logarithm
for discrepancies:

— NDy({6*z}) — 1 N )
lim = lim su 0
N- ZNToglg N N—wogscoci vVZN 0B 10 N ;fb’a“ )
1 N
= sup lm ———————— ok
05b<§<1N—>oo\/WW ;fb,a« )
= Sup 09,
0<b<a<1
— NDy({6*z}) — 1 N
lim N = ] ] ka
N— /2N Toglog N Nl—l—nooossliglm ;fo, ((6"z))
1 N
= Su m e . 0":1:
02an1 Nse /2N Tog log N ;fo, ((6%z))
= Sup aoyfo,u'

0<a<1
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To make the argument rigorous, we must justify the changes of the orders of sup and
lim sup appearing above. It is done by the approximation by so-called discrete discrepan-
cies:

First we note

N
ngl) Z fO,a(okx)

2-1 -1

< ma;c sup

Zfoz z1(6%z)

Zfz Lr2-t1+a(6%2)|.

For fixed I < 2[' we have the followmg estimate in the same way as the proof of (1) by
Philipp [8]:

1
limsup su ~Lro-L1ra(6%2)| < C2L/8  ae.
N_mp a<21_>L 3N Tog log 12-L1+a(6"7)
Teking maximum for I =1, ..., 2L — 1 we have
1

< C2°L/ 8 ae.

. 2L
lim sup max su

Nooo I=1 a<2?" Vgh IogIogN

By applying the law of the iterated loga.rlthm for Riesz-Raikov sum ) foo-2; and by
taking maximum for I =1, ..., 2¥ — 1, we have

Ly 2—L1+a(9 )

2L

tr(6%x) = maxo 20, foo-t1), a.e.

og og

Combining these two asymptotics and letting L — o0, we have
— + ({6*
lim M = Sup 0y,f,,, a.€.
N /2NToglog N  o0<e<1

In the same way, we can prove

im MPx{0%zh) o o ae
N—o0 \/2N |0g |og N 0<b<a<l 6,89
If & ¢ Q (r € N), we have
04 ta = (a—b) — (a—b)? < (1/2) — (1/2)2 = 1/4,

and hence we have

N—o00

Sup 0s,5, , = supag,“ =1/2,

ba
which prove the assertion of the theorem in this case.
In case @ = {/p/q we need a bit of consideration. We can express o3 f. DY means of
the following series:

2 = T as,0)+ 25 L@, 0. (0. (")
&

where

V(z, ) =zAé—2¢ and V(z,y,6n) =V(z,) +V(y,1) - V(z,n) - V(y,£).
This expression is proved by the following formula.

/: Jo,a(VZ) fo,0(uz) dz = Vb, (VZ);(MI’)’ (ua))’ (b < a, ged(p,v) =1).
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Although this is proved by complicated direct calculation in the original paper [5], we
present here an elegant new proof given by Tokuzo Shiga [11]. Putting I,y = 1y — 1j,4
(0 < 5,t < 1) and e,(z) = €*™*, by we have the Fourier expansion

Is,t =t—-s+ Z(ena Is,t)ena
n#0
and hence
1
B,—B,= / L(r)dB, = (t— 8)Bi + 3 (en, Loe)(en, B),
0 n#0
where B denotes the standard Brownian motion. By the definition of V, we have for
0<s,t €& <],
V(s,t,&,m) = E((B, — B.)(B; — By)) — (s — t)(€ — )
= 3 (en Lue) (En Ten).

n#0

By noting the relation (e,, lo.a) = (€k, Iivb),(va)) /v, We can prove (4) as follows:

1 1
/ fb,a(#x)fb,a(l/x) = / Ib,a(/"x)Ib,a(V.’L‘) - (a - b)2

0 0
Yo (en50)(Em Ina)

m,n#0: nu=mv

= Z(e.,k, Ib,a)(éﬂk’ Ib'"')

k#0
1 ~

= > (ks Lty (va)) (B Lty )
K k#0

_ V((vb), (va), (ub), (ua))
uv

By using this expression, we can prove sup,., %65, = éupa 06.50.- Inequality > is
trivial and we must prove <. It is proved by using

(5 V((z), (), €), () < V(i — 2), (n— €)) = V(0, (v — ),0, {n — £)).
Actually we have

¢J'g,f,,_‘l = 17(6, a,ba) +2 f: V((P’“b)s (Pk;k)(;éqkb), <qka))
k=1

< V(0,a—b,0,a —b) + 2§: V(0, (p*(a — b)),0, (g*(a — b))
k=1

jadri

2

- ao.fo,a—b’

and by taking supremum, we have <.
Although the inequality (5) is proved by direct calculation in the original paper [5], we
here again present an elegant proof by Tokuzo Shiga [11]. Note that we have (—z) = 1—(x)
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and that the relation (y) > () implies (y) — (z) = (y — z). If (y) > (z) and (n) > (£)
then we have

V((z), (),

|[{@), )10 [€), (]| - ({y — =) ((n =€)
Sl (@), WA (] = ({ly = ) (n — €))
=V({{y—=z),(n-¢)),

where |[a,b]| denotes the length b — a of interval [a,b]. Moreover we have

V), @), (€), ) = |[{=), @) | = [[{=), @) TN ), () 1| = ((y = 2))({n — €))
>[4z, W) ] = |[{=), @) T A 146N, (M )] — (y — =) ({n — €))
=-V({y — ), —n))

Hence if (y) > (z) and (n) < (€) are satisfied, we have

V((z), (v), (€), (m) = =V (=), (v}, (m) (€)) < V({y — 2), (n — ).
The rests are reduced to the above cases by using V ((z), (), (€), (n)) = V({y), (x), (n), (€)).

3. EVALUATION OF Xy

In this section, we explain the methods how we evaluate ¥y when 8 is a root of some
rational number. The expression of 0y ; does not depend on r, we may assume 6 = p/q
where p and q are relatively prime. In this case we have the expression

(6) 0450, = V(a,a +2Z

n=1

P"Q"

Since

V(w’g)'{(l—x)s O<é<z<1),

regarding as a function of z, V(z, ) is increasing for z < £, decreasing for z > £, and
take maximum at z = £. It implies

1
0<SV(@§ =zAE-af SV(§) =66 <,
where the equality holds at z = £. By this estimate, we have

1 pq+1
7 o2 <-+4+2 E = .
( ) oyfo,a 4 —~ 4pnqn 4(pq — 1)

On the other hand, since all the summands of expression are positive, we have
1
Uafo 2 2 >V(1/2,1/2) =

and hence we have the estimate (3).
Since V((p"a), (¢"a)) is a minimum of (p"a)(1 — (g"a)) and (g"a)(1 — (p"a)), it appears
to be a piecewise parabolic function and takes its local maximal value at points satisfying

(p"a) = (q"a).
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Here we present the graphs of summands V/({2"a), a) of expression of o3 foa®

0.25

0.2

0.18

0.1

0.0

0

Since V({2"a),a) < a — a?, we have the common enveloping parabolic curve for all
V((2"a),a). At any local maximal point, graph of V({2"a),a) touch the enveloping
parabola from below. As we have note previously, ag, fo, S€€MNS tO take maximal value at
a = 1/3. By this graph, each V((2"a), a) takes local maximal value at a = 1/3 if n = 2,
4,...,but doesnot if n =0, 1, 3, 5, ... That why the case 8 = 2 is difficult to investigate.
We will return to this case later.

The next figure presents the graph of o fo.. @0d the graphs of each summands of series

03 0. = V(a,a) + V((2a),a) + V((2%a),a)/2 + V((2%a),a) /2% + V((2a),a)/2° + - --

08 T T T T
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As compared to this, the case 0 is an odd number seems easy to handle. The next two
figures present the graphs o3 ;  and o3 ; . Every summands take its maximal value at
a = 1/2, and that why o3 ; = and o3 ; = are maximal at a = 1/2.

0.5 T T T T

045 | ;
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0.25 | -

_____________
-----
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e A Y A — -
02| e .
[
0.15 s -
01 _/"" %
0.05 - ;”"‘ ,-""' ..-.\-."--._ _.-'." -
,,':" . o, e, \:' /\-::: o
0 . ik i Lo, /’ A dlon e & f4\\q/ NN A‘i.’. “’:\ .r/:
0 0.1 0.2 03 04 0.5

We can verify the above graphical reasoning as follows. When p and ¢ are odd, 1/2 is a
fixed point of transformation a — pa mod 1 and a — ga mod 1, or (p"/2) = (¢"/2) = 1/2.
That why we have

S V(1/2,1/2) _ pa+l o

2 —
aa'foyllﬁ - V(1/2, 1/2) +2 Z; phgn - 4(pq - 1) Z 96,000
n=
2 pg+1

. 2 _ R 4 LA
which proves SUP 99,500 = T6.f0,1/2 Apg—1)
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From now on, we assume ¢ = 1 and evaluate X, when p > 4 is an even integer. The
graphs of 03 ; and o} ; _ are as below:

0.4 T T T T
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0.35 T T T T

03 p

025

015 |

01

0.05
0 i e e v e ;)-\ J/L‘,‘. AN _,.}’
0 0.1 0.2 0.3 - 0.4 0.5

03 .. S€ems to take maximum at a = 1/3, and o ; . at a = 2/5. In general we expect
that a;‘;’fo,a takes its maximum at a = a, = (p/2 — 1)/(p — 1), which is a maximal fixed
point of @ — pa mod 1 in [0,1/2], i.e. (pay) = a,. Therefore we are to prove

: _ 2 _(p+Dpe-2)
?112?0 Joa apyfo,ap - 4(]7 - 1)3
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We have the estimate V({p"a), a) < V'(a, a) where equality holds at a = a,. We present
the figure of this estimate in case p = 6.

0.35 T T - T T
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015
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Together with these estimates and series expansion (6) of o2, , we have

02 5. < V(a,a)(p+1)/(p—1),

where the equality holds at a = a,,.

]
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0.1

0.056
.
e et
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RN

0.3 0.4
By noting that V/(a, a) is increasing in [0,1/2], this estimate proves

a;fo,a <V(a,a)(p+1)/(p—1) < V(ap,ap)(p+1)/(p—1) = U,f,fo,n,, (a < ap).

0
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Thus we must consider the case when a, < a < 1/2. By using the series expansion (6)
and the estimate V' ({p"a),a) < V(a,a), and by using the explicit formula of V' ({pa), a) in
this interval, we have

2 2 |14
y = V(a, a)+5V( pa), +2Z ((p a) 2)

nyo a
n=2

< V(@) + 2(a -~ alpa— p/24+1)+23 A88) @s<as<i),

n=2
where the equality holds at a = a,. We can prove easily that the right hand side is a
quadratic function decreases in this interval if p > 6, and as before we can prove

|4
Ttoa S V(a,0) + (a alpa—p2+1) 23 L@
n=2 .
2 V(a,, a
< V(Gp, ap) + ;(ap -— ap(pa,p - p/2 + 1)) +2 Z (;n p)
| n=2
= o-gyfo,ap'

The graphical expression is as follows.
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In this way we have proved

o2 2 _(p+1p(p—-2)

P,fo,a _—
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Unfortunately, the second estimate is not sufficient in case when p = 4. As the graph
below, axis of the second estimating parabola located just right to the point a4, and is
not decreasing in the interval [a4,1/2].

0.45 ‘ . ' .

04} S
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0.25
0.2
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By expressing V' ({4a), a) and V' ((4a), a) explicitly just right of a4, we have the estimate

UZ,fo,, sV(aa)+ 2(“ —a(da—1)) + /P (1 — a(16a ~ 5))222 a’ a)

where the equality holds for @ = a4. By using this estimate, we have the graph below and
prove that the maximum is take at a = ay.
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02
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So far, we have evaluated X, for integers p > 3, and the evaluation of £, remains. Since

there is no fixed point of binary transformation a — 2a other than a = 0, and that why

this case is difficult. Our candidate of maximal point is @ = 1/3. This point has period
2 with respect to the binary transformation, i.e., (22*/3) = 1/3 and (2?"~1/3) = 2/3. As
we explained before, among the summands of the series expansion of ag, foas the terms
V({2%a),a)/2, V((2%a),a)/23, V({(2%a),a)/2%, ...takes local maximum at a = 1/3, but
consecutive V((2%a), a)/22, V({2%a),a)/2*, V({27a),a)/2%, ...does not. We try to make
groups consists of V' ((2%2a),a)/2 and V({23a),a)/2%, V({2%a}),a)/2® and V((2%a),a)/2¢,

and so on to compensate by the goodness of the big term the badness of small term.

The next is the graphs of V({2%a),a), V({23a),a)/2, and V' ((2%a),a) + V({23a), a)/2.
It seems that the last one take the maximum at @ = 1/3 and the badness of V({(2%a),a)/2

is compensated.
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0.15

0.1

0.05

0 ¥

0
The graphs of V((24a),
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0.2
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a), V((2%),a)/2, and V((2a), a) + V((25a), a)/2.
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The graphs of V' ((2%a), a), V({(27a), a)/2, and V((28a), a) + V((27a),a)/2.
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The graphs o; V((2%a), a), V((Zga),.a)/2, and V' ({2%a),a) + V((2%), d)/z.
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By viewing these figures, our method of compensation seems to be successfull. More-

over, we feel that there is a common enveloping curve of these graphs. To see this, we

draw these graphs in one display, i.e., we draw
V((2%a),a) + V({2%a),a)/2,
V({2%a),a) + V((2%a),a)/2,
V((2%a),a) + V({27a),a)/2,
V({(2%a),a) + V({2%a), a)/2.
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03

025
02|
0.15 -
0.1 |
0.05

The figure ensures us the existence of the enveloping curve. In this note, everything is

estimated by quadratic functions,

and hence we hope that our new enveloping curve is

also a parabola. Any parabola is determined by three points. Trivially (0,0) is on our

1/3 should be the local maximal point, by calculating the values

1/3, we see that (1/3,5/18) is on this curve.
that (1/2,1/4) is also on the parabola, and hence we can determine the parabola to be

parabola. Since a

at a

By viewing the graph, it seems

a(3 — 4a)/2. By drawing the graph of this parabola together with the previous ones, we

have the figure below. It seem that the estimate by this parabola seems to be valid.

we are to prove the following inequality. Let

025
02 -
0.15 |

03
To verify these arguments rigorously,

us put V*(b,a)

< b < 1. Note that

/2 and 0

<aX<l

= V(b,a) + V((2b),a)/2 for 0

V*(a,a) = a(3 — 4a)/2. We have

< V*(a,a) <V*(1/3,1/3),

V*(b, a)

where the equalities hold for a = b=1/3.
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Since V (b, a) and V' ((2b), a) are concrete piecewise quadratic form, we can prove the above
inequality elementarily.
By applying the inequality above, we have

1

e <]
0 so0 = V(a,0) +V(20,0) +23 —

n=1

o * 2n
=V(a,a) +V(2a,0) +2Y .2_1_;‘_/_(%;91)

n=1
N *
<V(a,a)+V(2a,0)+23 V—ff‘;“—)

(V((22"a), a) + %V((Zz’”’la), a))

n=1

= a(9 — 13a)/3,

where the equality holds for a = 1/3. Since the right hand side is increasing for a < 1/3,
wesee s . <03, o= 42/9? for a < 1/3. The right hand side is decreasing for a > 3/8

and its value on 3/8 is less than 42/9?, we have 0} ; =< 03 forjs = 42/9? for a > 3/8.
The graphs are as follows:

0.6 T 1

o 0.1
If 3/1 < a < 3/8, we have

: e * 2n
O30 =V(0,0) +V(20,0) + V(da = 1,0)/2+ V(8a - 2,0)/4 + 2 2%———‘/ ((24,.“>’ 2
n=2
2. 1 V*(a,a)
<V(2,0)+V(20,0)+V(4a~1,0)/2+V(8a~2,a)/4 +2) o —21>
n=2

=2a(6 — 11a)/3, (1/3 <a < 3/8).

Since the last quadratic function decreases for 1/3 < a < 3/8, we have 0%, fou S 03 4. o=
42/9? for 1/3 < a < 3/8. This completes the proof. The graphs are as follows.
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