<table>
<thead>
<tr>
<th>Title</th>
<th>Simple 3-designs on $q+2$ points constructed from $PSL(2, q)$, $q \equiv 3 \pmod{4}$ (Finite Groups and Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyamoto, Izumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008: 1593: 93-98</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81653</td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td>Textversion</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Simple 3-designs on $q + 2$ points constructed from $PSL(2, q), q \equiv 3 \pmod{4}$

Izumi Miyamoto
University of Yamanashi

Let $X = \{0, 1, 2, \cdots, n\}$. Let B be a set of k-point subsets of X. Here B may be a multi-set. Then (X, B) is called a $t-(n+1, k, \lambda)$ design if every t-point subset of X is contained exactly λ elements of B. An element of B is called a block. A design (X, B) is called simple, if there are no repeated blocks in B.

Let G be a permutation group on X.

t-Transitive and t-Homogeneous:

Let x_1, x_2, \cdots, x_t and y_1, y_2, \cdots, y_t be a couple of t points of X.

G is t-transitive.
$\exists g \in G$ such that $x_1^g = y_1, x_2^g = y_2, \cdots, x_t^g = y_t$.

G is t-homogeneous.
$\exists g \in G$ such that $\{x_1^g, x_2^g, \cdots, x_t^g\} = \{y_1, y_2, \cdots, y_t\}$.

Examples

$G = PGL(2, q)$, projective general linear group over a field of q elements.
$\Rightarrow G$ is 3-transitive.

$G = PSL(2, q)$, projective special linear group over a field of q elements, q odd.
$\Rightarrow G$ is 2-transitive.
G is 3-homogeneous if $q = 3 \pmod{4}$.

Action of G in k-point subsets:

Let $b = \{x_1, x_2, \cdots, x_k\}$, a k-point subset of X. We denote $\{x_1^g, x_2^g, \cdots, x_k^g\} = \{x_1, x_2, \cdots, x_k\}^g$.
Let $B = \{ b^g | g \in G \}$, the orbit of G containing b.

G is t-homogeneous. $\Rightarrow (X, B)$ is a simple t-design.

Here we assume G is t-homogeneous on $\{1, 2, \cdots, n\} = X \setminus \{0\}$ and G leaves the point 0 fixed. We want to choose orbits B_0, B_1, B'_1 of G on $(k+1)$-point subsets so that

\[
\begin{align*}
&b_0 \in B_0 \implies 0 \in b_0 \\
&b_1 \in B_1 \cup B'_1 \implies 0 \not\in b_1
\end{align*}
\]

$c_0 B_0 \cup c_1 B_1 \cup c'_1 B'_1$ becomes the blocks of a t-design, where $c_j B_j$ means every subset in B_j is repeated c_j times. Here we quote a theorem which will be shown in [4]

Theorem 1 Let $B = c_0 B_0 \cup c_1 B_1 \cup c'_1 B'_1$, where c_0, c_1 and c'_1 satisfy

\[
\frac{(n-k)c_0}{(k+1)g_0} = \frac{c_1}{g_1} + \frac{c'_1}{g'_1}.
\]

Then (X, B) is a $t-(n+1, k+1, \lambda)$ design with

\[
\lambda = \frac{c_0 g \binom{k}{t-1}}{g_0 \binom{n}{t-1}}.
\]

In particular, if $c'_1 = 0$, then $B = c_0 B_0 \cup c_1 B_1$ and the above condition becomes

\[
\frac{c_1}{c_0} = \frac{g_1(n-k)}{g_0(k+1)}.
\]

Examples

$G = PSL(2, q)$ or $PGL(2, q)$ acting on projective line $P = \{1, 2, \cdots, q+1\}$. If $G = PSL(2, q)$, we assume that $q = 3 \mod 4$ so that G is 3-homogeneous. $G_{1,2} = \text{stabilizer of points 1 and 2 in } G$ We assume $q = 1 \mod 6$, which implies $3|q-1$. So $G_{1,2}$ has subgroups of order 3 and $\frac{1}{2}(q-1)$ having $\frac{3}{2}(q-1)$ orbits of length 3 and of order $\frac{1}{2}(q-1)$ having two orbits of length $\frac{3}{2}(q-1)$ respectively. We use some of these orbits to construct blocks. Set $b_0 = \cup \frac{1}{2}(q-7)$ orbits of length 3 $\cup \{0, 1, 2\}$ $b_1 = \cup \frac{1}{2}(q-1)$ orbits of length 3 $b'_1 = \text{a orbit of length } \frac{3}{2}(q-1)$ Then the block size is $k+1 = \frac{1}{2}(q-1)$. The
orders of the stabilizers of the blocks \(b_0, b_1, b_1' \) should be \(g_0 = 3c_0, \ g_1 = 3c_1, \ g_1' = \frac{c_1'}{2}(q - 1) \). Set \(B = c_0B_0 \cup c_1B_1 \cup c_1'B_1' \). Then we have

\[
\frac{(n - k)c_0}{(k + 1)g_0} = \frac{q + 1 - \frac{1}{2}(q - 3)}{\frac{1}{2}(q - 1) \times 3} = \frac{q + 5}{3(q - 1)}
\]

\[
\frac{c_1}{g_0} + \frac{c_1'}{g_1'} = \frac{1}{3} + \frac{2}{q - 1} = \frac{q + 5}{3(q - 1)}
\]

\[|G| = \frac{1}{m}(q + 1)q(q - 1), \text{ where } m = 2 \text{ or } 1 \text{ according as } G = PSL(2, q) \text{ or } PGL(2, q).\]

\[
\lambda = \frac{(q - 1)(q - 3)(q - 5)}{12m}
\]

Theorem 2 [3] \((P \cup \{0\}, B)\) is a 3-\((q + 2, \frac{1}{2}(q - 1), \frac{1}{12m}(q - 1)(q - 3)(q - 5))\) design.

\(G\) is as above. Similarly we chose 3 subsets of \(P \cup \{0\}\) of size \(\frac{1}{2}(q + 1)\) so that the stabilizers are of order \(g_0 = c_0, \ g_1 = c_1, \ g_1' = \frac{c_1'}{2}(q + 1)\)

Theorem 3 \((P \cup \{0\}, B)\) is a 3-\((q + 2, \frac{1}{2}(q + 1), \frac{1}{4m}(q - 1)^2(q - 3))\) design.

Simple designs

Let \(G = PSL(2, q), q \equiv 3 \pmod{4}\). From Theorem 2, if there exist \(b_0, b_1\) and \(b_1'\) of size \(\frac{1}{2}(q - 1)\) such that

\[|G_{b_0 \setminus \{0\}}| = 3, \ |G_{b_1}| = 3, \ |G_{b_1'}| = \frac{1}{2}(q - 1),\]

then we have a simple 3-design.

Similarly from Theorem 3, if there exist \(b_0, b_1\) and \(b_1'\) of size \(\frac{1}{2}(q + 1)\) such that

\[|G_{b_0 \setminus \{0\}}| = 1, \ |G_{b_1}| = 1, \ |G_{b_1'}| = \frac{1}{2}(q + 1),\]

then we have a simple 3-design.

The number of \(k\)-subsets with stabilizer group precisely \(H\) for a subgroup \(H\) of \(PSL(2, q)\) is determined in [2] if \(k \not\equiv 0, 1 \pmod{p}\), where \(q\) is a power of a prime \(p\) and \(q \equiv 3 \pmod{4}\). The number is denoted by \(g_k(H)\). A cyclic group of order \(l\), a dihedral group of order \(2l\), an alternating and a symmetric group
of degree 4 will be denoted by C_1, D_2, A_4 and S_4 respectively. A_5 denotes an alternating group of degree 5.

For Theorem 2 it suffices to show that

$$g_{\frac{1}{2}(q-3)}(C_3) > 0, \quad g_{\frac{1}{2}(q-1)}(C_3) > 0 \quad \text{and} \quad g_{\frac{1}{2}(q-1)}(C_{\frac{1}{2}(q-1)}) > 0$$

For Theorem 3,

$$g_{\frac{1}{2}(q-1)}(C_1) > 0 \quad g_{\frac{1}{2}(q+1)}(C_1) > 0 \quad g_{\frac{1}{2}(q+1)}(C_{\frac{1}{2}(q+1)}) > 0$$

Let $f_k(H)$ denotes the number of k-subsets left invariant by a subgroup H and let $\mu(l)$ denotes the Möbius function. In Table 2 in [2] $f_k(H)$ are obtained for various subgroups H of $PSL(2,q)$. In Theorem 24, 25 and 26 in [2] $g_k(C_1)$, $g_k(C_2)$ and $g_k(C_3)$ are expressed with $f_k(H)$. So we have the following.

$$g_{\frac{1}{2}(q-3)}(C_3) = -\frac{q-1}{3}f_{\frac{1}{2}(q-3)}(A_4) + f_{\frac{1}{2}(q-3)}(C_3) - \frac{q-1}{6}f_{\frac{1}{2}(q-3)}(D_6)$$

$$g_{\frac{1}{2}(q-1)}(C_3) = \sum_{l\mid \frac{1}{6}(q-1)}\mu(l)f_{\frac{1}{2}(q-1)}(C_{3l}),$$

where p_1 is the smallest prime factor of $\frac{1}{6}(q-1)$.

$$g_{\frac{1}{2}(q-1)}(C_1) = f_{\frac{1}{2}(q-1)}(C_1) + \sum_{l>1, l\mid \frac{1}{6}(q-1)} \frac{q(q+1)}{2}\mu(l)f_{\frac{1}{2}(q-1)}(C_l)$$

$$g_{\frac{1}{2}(q+1)}(C_1) = f_{\frac{1}{2}(q+1)}(C_1)$$

$$\quad + \frac{q(q^2-1)}{12}2f_{\frac{1}{2}(q+1)}(A_4) - 6f_{\frac{1}{2}(q+1)}(S_4) - 12f_{\frac{1}{2}(q+1)}(A_5) + f_{\frac{1}{2}(q+1)}(D_4))$$

$$\quad + \sum_{l>1, l\mid (q+1)/2} \frac{q(q^2-1)}{4}\mu(l)f_{\frac{1}{2}(q+1)}(C_l) - \frac{q(q^2-1)}{4}\sum_{l>1, l\mid (q+1)/2} \mu(l)f_{\frac{1}{2}(q+1)}(D_{2l})$$

In order to see $g_k(H) > 0$, we use the following lemmas.

Lemma 4 Let m and t be integers greater than 1. Assume t divides m. Then

$$\begin{align*}
(1) \quad & \left(\frac{2m}{m} \right) > 2^{m-\frac{m}{t}} \left(\frac{t+1}{2} \right)^{\frac{m}{t}} \left(\frac{2m}{m/t} \right) \\
(2) \quad & \left(\frac{4m+2}{2m} \right) > 2^{2m} \left(\frac{2m+1}{m} \right) \quad \text{and} \quad \left(\frac{4m}{2m} \right) > 2^{2m-1} \left(\frac{2m}{m} \right)
\end{align*}$$
Lemma 5 Let p_1, p_2, \ldots, p_r be the prime factors of m. Then
\[- \sum_{i=1}^{r} \left(\frac{2m}{p_i} \right) \leq \sum_{l|m, l > 1} \mu(l) \left(\frac{2m}{l} \right) < -\frac{7}{8} \sum_{i=1}^{r} \left(\frac{2m}{p_i} \right)\]

Lemma 6
\[\sum_{l>m, l | m} \mu(l) \left(\frac{2m}{l} \right) > -\frac{3}{2} \left(\frac{2m}{p_1} \right),\]
where p_1 is the smallest prime factor of m.

The proofs will be shown in [4]. Then we will have the following simple designs.

Theorem 7 If $q \equiv 7 \mod 12$ and $q > 19$, then there exists a simple 3-$(q+2, \frac{1}{2}(q-1), \frac{1}{24}(q-1)(q-3)(q-5))$ design $(\mathbb{P} \cup \{0\}, B)$, where B consists of three orbits B_0, B_1 and B_1' of $PSL(2, q)$ acting on the $\frac{1}{2}(q-1)$-point subsets of $\mathbb{P} \cup \{0\}$ such that $0 \in b_0$, $0 \notin b_1$ and $0 \notin b_1'$ for $b_0 \in B_0$, $b_1 \in B_1$ and $b_1' \in B_1'$ and that the stabilizers of them are C_3, C_3 and $C_{\frac{1}{2}(q-1)}$ respectively.

Theorem 8 If $q \equiv 3 \mod 4$ and $q \geq 19$, then there exists a simple 3-$(q+2, \frac{1}{2}(q+1), \frac{1}{8}(q-1)^2(q-3))$ design $(\mathbb{P} \cup \{0\}, B)$, where B consists of three orbits B_0, B_1 and B_1' of $PSL(2, q)$ acting on the $\frac{1}{2}(q+1)$-point subsets of $\mathbb{P} \cup \{0\}$ such that $0 \in b_0$, $0 \notin b_1$ and $0 \notin b_1'$ for $b_0 \in B_0$, $b_1 \in B_1$ and $b_1' \in B_1'$ and that the stabilizers of them are C_1, C_1 and $C_{\frac{1}{2}(q+1)}$ respectively.

We note that it is a popular method to construct designs using some orbits of permutation groups, if the number of the points is fixed. For instance, readers may refer to [1]. We also note that $g_{\frac{1}{2}(q-3)}(C_3) = 0$ if $q = 19$ below. So we will construct a simple design in the following section from $PSL(2, 19)$ by a similar method shown in Theorem 1.

\[
g_{\frac{1}{2}(q-3)}(C_3) = -\frac{q-1}{3} f_{\frac{1}{2}(q-3)}(A_4) + f_{\frac{1}{2}(q-3)}(C_3) - \frac{q-1}{6} f_{\frac{1}{2}(q-3)}(D_6)
\]
\[= -\frac{q-1}{3} \left(\left(\frac{q-7}{12} \right) + \left(\frac{q-1}{3} \right) \right) - \frac{q-1}{6} \left(\frac{(q-1)/6}{q-7}/24 \right)
\]
\[= -6 \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + 6 \left(\begin{array}{c} 6 \\ 2 \end{array} \right) - 3 \left(\begin{array}{c} 3 \\ 1 \end{array} \right) = -6 + 15 - 9 = 0\]
Experiments

$G = PSL(2,19) =$PrimitiveGroup$(20,1)$ of order 3420. G is 3-homogeneous on $P = \{1, 2, \cdots, 20\}$. Here we consider the additional point 21. So $X = P \cup \{21\}$. We take the following 4 9-point subsets of X, $\{1, 2, 3, 4, 9, 10, 15, 16, 21\}$, $\{1, 2, 3, 6, 9, 12, 15, 18, 21\}$, $\{3, 4, 5, 9, 10, 11, 15, 16, 17\}$ and $\{3, 5, 7, 9, 11, 13, 15, 17, 19\}$. The stabilizers of these subsets are of order 6, 6, 3 and 9, respectively. Let B be the union of the 4 orbits of G acting on the 9-point subsets of X containing these 4 subsets. Then B becomes the block set of a 3-(21,9,168) design.

$G = PGL(2,25) =$PrimitiveGroup$(26,2)$. We can choose the blocks of size $\frac{1}{2}(q-1) = 12$ so that the stabilizers are of order 6, 6, 24. So by Theorem 2 $c_0 = c_1 = c_1' = 2$ and $B = 2B_0 \cup B_1 \cup B_1'$. So, if we set $B = B_0 \cup B_1 \cup B_1'$, we have a simple 3-(27,12,440) design.

We used GAP system in our experiments.

References

[3] I. Miyamoto, A construction of designs from $PSL(2,q)$ and $PGL(2,q)$, $q \equiv 1 \pmod{6}$, on $q + 2$ points. to appear in Algorithmic Algebraic Combinatorics and Gröbner Bases, edited by G. Jones, A. Jurisic, M. Muzychuk and I. Ponomarenko Springer.

[4] I. Miyamoto, A construction of designs on $n + 1$ points from multiply homogeneous permutation groups of degree n. in preparation.