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In this talk, we determine irreducible modules of the Terwilliger algebra of a $Q-$

polynomial distanceregular graph $\Gamma$ with respect to a subset with a special condition.
Here we focus on the case where $\Gamma$ is the Johnson graph. We construct irreducible mod-
ules of the Terwilliger algebra of $\Gamma$ from those of binary Hamming graphs. This is a joint
work with Hajime Tanaka.

1 Width and dual width
Let $\Gamma$ be a Q-polynomial distance-regular graph of diameter $D$ with vertex set $X$ . We refer
the reader to [1], [2] for terminology and background materials on Q-polynomial distance-
regular graphs. Let $C$ be a nonempty subset of $X$ . Let $\chi\in C^{X}$ be the characteristic
vector of $C$ , i.e.,

$(\chi)_{x}=\{\begin{array}{ll}1 if x\in C,0 therwise.\end{array}$

Let $A_{0,}A_{D}$ be distance matrices of F. We write $A=A_{1}$ . Let $E_{0},$
$\ldots,$

$E_{D}$ be primitive
idempotents of F. Brouwer, Godsil, Koolen and Martin [3] introduced two parameters of
$C$. The width $w$ of $C$ is defiend as

$w= \max\{i|\chi^{T}A_{i}\chi\neq 0\}$ .

Dually, the dual width $?lJ$
“ of $C$ is defined as

$w^{*}= \max\{i|\chi^{T}E_{i}\chi\neq 0\}$ .
We can verify that $w= \max\{\partial(x, y)|x, y\in C\}$ , i.e., the maximum distance between
two vertices in $C$ . Obviously, $w=0$ if and only if $C=\{x\}(x\in X)$ . The foUowing
fundamental bound holds.

Theorem 1 [3]
$w+w^{*}\geq D$ .

When the above bound is attained, Brouwer et.al. showed that some good properties hold:

Theorem 2 [3] Suppose $w+w^{*}=D$ . Then
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(i) $C$ is completely regular.

(1i) $C$ induces a Q-polynomial distance-regular graph whenever $C$ is connected.

Recently, Tanaka proved the following:

Theorem 3 [8] Suppose $w+w^{*}=D$ . Then

(i) $C$ induces a Q-polynomial distance-regular graph whenever $q\neq-1$ .
(ii) $C$ is convex if and only if $\Gamma$ has classical parameters.

The subsets with $w+w^{r}=D$ were classified for some Q-polynomial distance-regular
graphs (see [3], [8]). Our current goal ls to characterize Q-polynomial distance-regular
graphs having subsets with $w+w^{*}=D$ in terms of Terwilliger algebras. We will see the
definitions and basic terminology on Terwilliger algebras in the next section.

2 Terwilliger algebras and modules
Let $C\subset X$ . Let $\Gamma_{i}(C)=\{x\in X|\partial(x, C)=i\}$ , i.e., the $i$ th subconstituent of $\Gamma$ with
respect to $C$. We define the diagonal matirx $E_{i}^{*}\in Mat_{X}(C)$ so that

$(E_{i}^{*})_{xx}=\{\begin{array}{ll}1 if x\in\Gamma_{i}(C),0 otherwise.\end{array}$

The Terwilliger algebra $\mathcal{T}(C)$ of $\Gamma$ with respect to $C$ is defined as follows:
$\mathcal{T}(C)=<A,$ $E_{0}^{*},$

$\ldots,$
$E_{D}^{*}>$ $\subset Mat_{X}(C)$ .

It is known that $\mathcal{T}(C)$ is semisimple, and non-commutative in general. If we set $C=$

$\{x\}(x\in X)$ , then $\mathcal{T}(C)$ is identical to the ordinary Terwilliger algebra $\mathcal{T}(x)$ or the
subconstituent algebra introduecd by Terwilliger [10]. Suzuki generalized the theory of
subconstituent algebras to the case associated with subsets [6].

Let $W\subset C^{X}$ be an irreducible $\mathcal{T}(C)$-module. There are two types of decompositions
of $W$ into subspaces which are invariant under the action of $E_{i}^{*}$ and $E_{i}$ respectively:

$W=E_{0}^{*}W+\cdots+E_{D}^{*}W$ (direct sum),

$W=E_{0}W+\cdots+E_{D}W$ (direct sum).

We define parameters for $W$ to describe isomorpfism classes of irreducible modules; The
endpoint $\nu$ of $W$ is defined as $\nu=\min\{i|E_{i}^{*}W\neq 0\}$ , and the dual endpoint $\mu$ of $W$ is
$\mu=\min\{i|E_{i}W\neq 0\}$ . The diameter of $W$ is defined as $d=|\{i|E_{i}^{l}W\neq 0\}|-1$ . $W$ is
called thin if dim $E_{i}^{*}W\leq 1$ for all $i$ .

Suppose $C$ satisfies $w+w^{*}=D$ . We have a preceeding result on irreducible modules
of endpoint $0$ :
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Theorem 4 [5] Suppose $C$ satisfies $w+w^{*}=D$ . Let $W$ be an irreducible $\mathcal{T}(C)$ -module
of endpoint $\nu=0$ . Then $W$ is thin with $d=w^{*}$ .
Our primary goal is to determine irreducible $\mathcal{T}(C)$-modules of arbitrary endpoint $\nu$ . In
this article, we discuss the case of Johnson graphs.

3 Johnson graphs
Definition 3.1 The binary Hamming graph $\overline{\Gamma}=H(N, 2)(N\geq 2D)$ has vertex set

$\tilde{X}=\{(\frac{N}{x_{1}\cdots x_{N}})|x_{i}\in\{0,1\}\}$

,

$i.e.$ , the set of binary words of length $N$ , and two vertices $x,$ $y\in\tilde{X}$ are adjacent if $x$ and
$y$ differ in exactly 1 coordinate.

Definition 3.2 The Johnson graph $\Gamma=J(N, D)$ has vertex set

$X=\tilde{\Gamma}_{D}(0)=$ { $(x_{1}\cdots x_{N})\in\tilde{X}|(\#$ of 1 $s)=D$ },
$i.e.$ , the set of binary worhs of length $N$ and weight $D$ , and two vertices $x,$ $y\in X$ are
adjacent if $x$ and $y$ differ in exactly 2 coordinates.

Theorem 5 [3] Let $\Gamma=J(N, D)$ and $C\subset X.$ Suppose $C$ satisfies $w+w^{l}=D$ . Then

$C\cong$ {
$(1\cdot\cdot 1^{\bigwedge_{*\cdot\cdot*}^{N.-w}})|\wedge w^{r}.\cdot(\#$

of 1 $s)=D$ },
$i.e.$ , the induced subgraph on $C$ is isomophic to the Johnson graph $J(N-w^{*}, D-w)$ .

Let $C=$ {
$(1\cdots 1*\cdot\cdot*)\wedge-wN.-w|(\#$

of ls) $=D$}, and $\Gamma^{(1)}=H(w^{*}, 2),$ $\Gamma^{\{2)}=H(N-w^{*}, 2)$ .
Then

$C=\Gamma_{w}^{(1)}(0)\cross\Gamma_{w}^{(2)}(0)$ ,
and we also have

$\Gamma_{i}(C)=\Gamma_{w^{r}-i}^{(1)}(0)\cross\Gamma_{w+i}^{(2)}(0)$ .
Let $\mathcal{T}_{1}(0)$ be the Terwilliger algebra of $H(w^{*}, 2)$ with respect to $0$ , where $0$ denotes the
all zero word, and $\mathcal{T}_{2}(0)$ the Terwilliger algebra of $H(N-w, 2)$ with respect to $0$ . Let
$\mathcal{T}(C)$ be the Terwilliger algebra of $J(N, D)$ with respect to $C$. Let $\tilde{X}$ denote the vertex
set of $H(N, 2)$ . Recall that the vertex set $X$ of $J(N, D)$ is a subset of $\tilde{X}$ . For a subset $\mathcal{A}$

of $Mat_{\overline{X}}(C)$ , let $\mathcal{A}|_{XxX}\subset$ Mat$x(C)$ denote the set of principal submatrices of matrices
‘in $\mathcal{A}$ . The following is the key lemma.
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Lemma 6
$\mathcal{T}(C)\subseteq \mathcal{T}_{1}(0)\otimes \mathcal{T}_{2}(0)|_{XxX}$ $(\subset Mat_{X}(C))$

Let $W_{i}$ be an irreducible $\mathcal{T}_{i}(0)$-module $(i=1,2)$ . Let

$W$ $:=W_{1}\otimes W_{2}|_{X}\subset C^{X}$ ,

where the right hand side denotes the set of vectors from $W_{1}\otimes W_{2}$ whose indices are
restricted on $X$. Then

Lemma 7 $W$ is a $\mathcal{T}(C)$ -module.

Go [4] gave an explicit description of $W_{1},$ $W_{2}$ . We will make use of results in [4] for the
characterization of $W$ .

Lemma 8 Let $\mathcal{B}_{1},$ $\mathcal{B}_{2}$ be standard bases for $W_{1},$ $W_{2}$ (see $l41$). Then

(i) $\mathcal{B}:=\{u\otimes u’|u\in \mathcal{B}_{1}, u’\in \mathcal{B}_{2}, u\otimes u’|_{X}\neq 0\}$ is a basis for $W$

(ii) $Span\{u\otimes u’\}=E_{i}^{*}W$ for some $i$ .

(iii) $W$ is thin.

We can deterrnine the endpoint of $W$ by comparing suppots of $W_{1}$ and $W_{2}$ . For dcterIni-
nation of the dual enpoint of $W$ , the following will be useful:

Proposition 9 [11] Let $\mathcal{T}(0)$ be the Terwilliger algebra of the binary Hamming graph
$H(N, 2)$ with respect to $0$ . Let $U$ be an $i_{7\gamma}educible\mathcal{T}(0)$ -module of endpoint $r$ . Then
$v(\neq 0)\in U|_{X}$ is an eigenvector of $J(N, D)$ for eigenvalue $\theta_{r}$ .

Next we will check that $W$ is irreducible. To see that it is so, we consider a tridiagonal
matrix. Let $[A]_{B}$ be the matrix representing $A$ with respect to the basis $\mathcal{B}$ . Then $[A]_{\mathcal{B}}$ is
tridiagonal since $LV$ is thin. Moeover, by calculation we can verify that the off-diagonal
entries of $[A]_{\mathcal{B}}$ are nonzero. Hence we have the following:

Lemma 10 $W$ is an irreducible $\mathcal{T}(C)$ -module.

4 Main results
Let $\Gamma=J(N, D)$ and $C\subset X$ . Suppose $C$ satisfies $w+w^{*}=D$ . Let $\mathcal{T}(C)$ be the Terwilliger
algebra of $\Gamma$ with respect to $C$ . Let $W$ be an irreducible $\mathcal{T}(C)$-module of endpoint $\nu$ , dual
endpoint $\mu$ , diameter $d$ .
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Theorem 11 There exist integers $e,$ $f$ satisfying

$0 \leq e\leq\lfloor\frac{w^{*}}{2}\rfloor$ , $0 \leq f\leq\lfloor\frac{N-w^{*}}{2}\rfloor$ ,

$\nu=\max\{e, f-w\}$ , $\mu=e+f$ ,

$d=\{\begin{array}{ll}w^{*}-2\nu if \nu=e,\min\{D-\mu, N-D-2\nu-w\} if \nu=f-w.\end{array}$

Remarks. $e,$ $f$ comes from endpoints of $W_{1},$ $W_{2}$ .
Remarks. If $N\neq 2D$ , then $e,$ $f$ are uniquely determined for given $\nu,$ $\mu,$

$d$ . In this case,

$\mathcal{T}(C)=\mathcal{T}_{1}\otimes \mathcal{T}_{2}|_{X\cross X}$ in Lemma 6.

Theorem 12 $W$ has a basis $\mathcal{B}=\{v_{0}, \ldots, v_{d}\}$ satisfying

$v_{i}\in E_{i+\nu}^{*}W$ $(0\leq i\leq d)$ ,

and with respect to which the matrix representing $A$ is tridiagonal with entries

$c_{i},(W)$ $=i(i+2\nu-\mu+w)$ ,
$a_{i}(W)$ $=$ $D(N-D)+\mu(\mu+d-N-1)+d(d-N$

$+2\nu+w)+i(N-4\nu-2i-2w)$ ,
$b_{i}(W)$ $=$ $(d-i)(N-d-2\nu-\mu-i-w)$ .

Remarks. $c_{i}(W)+a_{i}(W)+b_{i}(W)=\theta_{\mu}$ .
Remarks. If $w=0$ , the above $c_{i}(W),$ $a_{i}(W),$ $b_{i}(W)$ coincide with the results by Ter-

williger [10].

Corollary 13 Isomophism classes are determined by $(\nu, \mu, d)$ .

5Remark
Let $A^{*}=diag(E_{1}\chi)$ . Then $(A, A”)$ acts on $W$ as a Leonard pair with parameter array
$(h, r, s, s^{*}, r, d, \theta_{0}, \theta_{()}^{*})$ (Dual Hahn):

$\theta_{i}$ $=\theta_{0}+hi(i+1+s)$ ,
$\theta_{1}^{*}$ $=\theta_{0}^{*}+s^{*}i$ ,
$\varphi_{i}$ $=$ $hs^{*}i(i-d-1)(i+r)$ ,
$\phi_{i}$ $=$ $hs^{*}i(i-d-1)(i+r-s-d-1)$ .
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Especially, we have
$s=-N-2+2\mu$ ,

$r=-N+d+2\nu+\mu-1+w$ .
See [9] for details on Leonard pairs. If $w=0$, the above parameters coincide with the
results by Terwilliger [10].
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