We call x, y, z the equitable basis for signature x, y, z

[z,x] = 2z + 2x

Then x, y, z is a basis for \mathfrak{sl}_2 and

[x,y] = 2x + 2y,[y,z] = 2y + 2z,

x=2e-h,

y=-2f-h.

z=h.

The equitable basis for \mathfrak{sl}_2

Tatsuro Ito

Kanazawa University

Paul Terwilliger

University of Wisconsin

Overview

- The tetrahedron algebra realization of the three-point sl₂ loop algebra
- The f.d. irreducible modules
- The evaluation modules
- ullet The S_4 -action on the evaluation modules
- polynomials in two variables

24 bases for an evaluation module

Realization of the evaluation modules by

Warmup: The Lie algebra si2

field with characteristic 0. Throughout, F will denote an algebraically closed

Recall that \mathfrak{sl}_2 is the Lie algebra over ${\mathbb F}$ with a basis e,f,h and Lie bracket

$$[h,e] = 2e,$$
 $[h,f] = -2f,$ $[e,f] = h.$

The equitable basis for \mathfrak{sl}_2

The three-point si₂ loop algebra

algebra over F consisting of the vector space The three-point sl2 loop algebra is the Lie

$$s_{12} \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}], \quad \Im = \otimes_{\mathbb{F}}$$

where t is indeterminate, and Lie bracket

$$[u \otimes a, v \otimes b] = [u, v] \otimes ab.$$

The equitable presentation for the three-point \mathfrak{sl}_2 loop algebra

We now recall the equitable presentation for the three-point si2 loop algebra.

To give the presentation we define a Lie algebra \boxtimes by generators and relations, and display an isomorphism from \boxtimes to the three-point \mathfrak{sl}_2 loop algebra.

The tetrahedron algebra 8

Definition [Hartwig+T] The tetrahedron algebra \boxtimes is the Lie algebra over $\mathbf F$ that has generators

$$\{x_{ij}\,|\,i,j\in\mathbb{I},i\neq j\}$$
 $\mathbb{I}=\{0,1,2,3\}$ and the following relations:

(i) For distinct $i, j \in I$,

$$x_{ij}+x_{ji}=0.$$

(ii) For mutually distinct $h,i,j\in I$,

$$[x_{\mathrm{hi}},x_{\mathrm{ij}}]=2x_{\mathrm{hi}}+2x_{\mathrm{ij}}.$$

(iii) For mutually distinct $h,i,j,k\in\mathbb{I}$,

$$[x_{hi}, [x_{hi}, [x_{hi}, x_{jk}]]] = 4[x_{hi}, x_{jk}].$$

Theorem [Hartwig +T] There exists an isomorphism of Lie algebras

$$\psi: \boxtimes \to \mathfrak{sl}_2 \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}]$$

that sends

 $\begin{array}{lll} z_{12} \mapsto z \otimes 1, & z_{03} \mapsto y \otimes t + z \otimes (t-1), \\ z_{23} \mapsto y \otimes 1, & z_{01} \mapsto z \otimes (1-t^{-1}) - z \otimes t^{-1}, \\ z_{31} \mapsto z \otimes 1, & z_{02} \mapsto z \otimes (1-t)^{-1} + y \otimes t (1-t)^{-1} \end{array}$

where x, y, z is the equitable basis for \mathfrak{sl}_2

From now on we work with 83

ö

Finite-dimensional irred. Memodules

Our goal is to describe the f.d. irreducible &modules.

For these modules there is a special case called an evaluation module.

It turns out that every f.d. irreducible \(\text{M-module} \) is a tensor product of evaluation modules.

After some general remarks we focus on the evaluation modules.

Decompositions

Let V denote a f.d. irreducible \(\mathbb{R}\)-module.

By a decomposition of V we mean a sequence $\{V_n\}_{n=0}^d$ of nonzero subspaces of V such that

$$V = \sum_{n=0}^{d} V_n \qquad \text{(direct sum)}$$

We call d the diameter of the decomposition.

By the **shape** of this decomposition we mean the sequence $\{\dim(V_n)\}_{n=0}^d$.

Ξ

The decompositions [i,j]

Hartwig showed:

(i) Each generator x_{ij} is semisimple on V.

ues on V is each generator x_{ij} the set of distinct eigenval-(ii) There exists an integer $d \ge 0$ such that for

$$\{2n-d\,|\,0\leq n\leq d\}.$$

ordering of the eigenvalues. sition for x_{ij} on V associated with the above We let [i,j] denote the eigenspace decompo-

13

=

15

The evaluation modules for 🛭

We now define the evaluation modules for 83.

For $a \in \mathbb{F} \setminus \{0, 1\}$ we define a Lie algebra homo-

module V with dimension 1.

Up to isomorphism there exists a unique 82-

The trivial \(\text{\text{\$M\$-module}} \)

We call V the trivial \(\mathbb{M} \)-module

$$EV_a: \boxtimes \to \operatorname{sl}_2 \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}] \to \operatorname{sl}_2$$

$$\psi \qquad u \otimes f(t) \to uf(a)$$

structure via EV_6 ; this turns V into a &-module For an \mathfrak{sl}_2 -module V we pull back the \mathfrak{sl}_2 -module

Hartwig showed that the shape of the decomposition [i,j] is independent of the pair i,j.

We call this common shape the shape of V.

 $u \otimes f(t) \rightarrow u f(a)$

which we call V(a).

6

The evaluation modules for ⊠, cont.

By an evaluation module for \(\text{\tiny{\text{\tiny{\text{\tiny{\tinte\text{\tinx{\tinit}\xint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tinit}\\ \text{\tinit}\xiniting{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tinithtet{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texitilex{\text{\texiclex{\texi}\tint{\tiinttitt{\texitit{\texitilex{\tiinte\tant{\texit{\texit module $V_d(a)$ where

(i) d is a positive integer;

(ii) V_d is the irreducible \mathfrak{sl}_2 -module with dimension d+1.

We call a the evaluation parameter for $V_d(a)$. The oxtimes-module $V_d(a)$ is nontrivial and irreducible

8

Characterizing the evaluation modules, I

module V TFAE: Theorem For a nontrivial f.d. irreducible &-

(i) \boldsymbol{V} is isomorphic to an evaluation module for

(ii) V has shape (1,1,...,1)

19

Characterizing the evaluation modules, II

ducible M-module. Theorem Let V denote a nontrivial f.d. irre-

Then for $a \in \mathbb{F} \setminus \{0, 1\}$ TFAE:

with evaluation parameter a. (i) V is isomorphic to an evaluation module

 $ax_{23}+(1-a)x_{20}-x_{21}$ $ax_{10}+(1-a)x_{13}-x_{12}$

 $ax_{32} + (1-a)x_{31} - x_{30}$

(ii) Each of the following vanishes on V:

 $ax_{01}+(1-a)x_{02}-x_{03}$

8

2

 $\sigma(x_{ij}) = x_{\sigma(i),\sigma(j)} \quad \sigma \in S_4$

 S_4 acts on the set of generators for \boxtimes by permuting the indices:

group of permutations of I.

We identify the symmetric group S4 with the

An S₄-action on ⊠

tions and therefore induces an action of $S_{f 4}$ on as a group of automorphisms. This action leaves invariant the defining rela-

The S_4 -action on \boxtimes -modules, cont.

 σ , that behaves as follows:

module structure on V, called V twisted via For a \boxtimes -module V and $\sigma \in S_4$ there exists a \boxtimes -

An S_4 -action on \boxtimes -modules

uation modules to evaluation modules. The above S4-action on B4-modules sends eval-

rameter is described in the following two slides The effect of this action on the evaluation pa-

For $a \in \mathbb{F} \setminus \{0, 1\}$,

Lemma There exists an action of S_4 on the set $F\setminus\{0,1\}$ that does the following.

An action of S_4 on $\mathbb{F}\setminus\{0,1\}$

- (2,0) sends $a \mapsto a^{-1}$;
- (0,1) sends $a \mapsto a(a-1)^{-1}$;
- (1,3) sends $a \mapsto a^{-1}$.

2

 S_4 acts on the set of lpha-modules, with σ sendSometimes we abbreviate ${}^{\sigma}V$ for V twisted via

 $\sigma^{-1}(u).v$ computed in the original f B-module in V twisted via σ coincides with the vector For $u \in \mathbb{N}$ and $v \in V$, the vector u.v computed

The effect of S_4 on the evaluation parameter

 $a \in \mathbb{F} \setminus \{0, 1\}$ the following are isomorphic: Theorem For an integer $d \ge 1$, $\sigma \in S_4$, and

- (i) The \boxtimes -module $V_d(a)$ twisted via σ ;
- (ii) The \boxtimes -module $V_d(\sigma(a))$

3

A subgroup G of S₄

Earlier we gave an action of S_4 on the set **F**\{0,1}.

for $a \in \mathbb{F} \backslash \{0,1\}$ the following are isomorphic:

Corollary For an integer $d \ge 1$, for $\sigma \in G$, and

The subgroup G of S_4 , cont.

(i) The \boxtimes -module $V_d(a)$ twisted via σ ;

Let G denote the kernel of this action

It turns out that G consists of

(02)(13),

together with the identity element.

(ii) The \boxtimes -module $V_d(a)$.

We will return to the subgroup G later in the

27

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$, cont.

The relative function satisfies this recursion:

Lemma Pick $a \in \mathbb{F} \setminus \{0, 1\}$ and mutually distinct

We now describe the orbits for the S_4 -action

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$

Pick $a \in \mathbb{F} \backslash \{0,1\}$ and mutually distinct $i,j,k,\ell \in$

Let α denote the (i, j, k, ℓ) -relative of α . Then

- α^{-1} is the (j,i,k,ℓ) -relative of a;
- $\alpha(\alpha-1)^{-1}$ is the (i,k,j,ℓ) -relative of a;

 (i, j, k, ℓ) to (2, 0, 1, 3).

scalar $\sigma(a)$ where $\sigma \in S_4$ sends the sequence By the (i,j,k,ℓ) -relative of a we mean the

• α^{-1} is the (i,j,ℓ,k) -relative of a.

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$, cont.

Here is another way to view the relative function.

 $i,j,k,\ell\in\mathbb{I}$ the following (i), (ii) coincide: **Lemma** For $a \in \mathbb{F} \setminus \{0,1\}$ and mutually distinct

- (i) the (i, j, k, ℓ) -relative of a;
- (ii) the scalar

where we define 0=a, 1=0, 2=1, $3=\infty$.

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$, cont.

Here is an explicit description of the relative

tinct $i, j, k, \ell \in \mathbb{L}$ Then the (i,j,k,ℓ) -relative of a is given in the Theorem Pick $a \in \mathbb{F} \setminus \{0,1\}$ and mutually dis-

following table.

2

24 bases for $V_d(a)$

a scalar $a \in \mathbb{F} \setminus \{0, 1\}$. For the time being we fix an integer $d \geq 1$ and

We consider the oxtimes-module $V_d(a)$.

We are about to define 24 bases for this mod-

The vectors η_i $(i \in I)$ in $V_d(a)$

For notational convenience, for $i\in I$ we fix a eigenvector for $\{x_{ij} | j \in I, j \neq i\}$. nonzero vector $\eta_i \in V_d(a)$ which is a common

33

The basis $[i,j,k,\ell]$ for $V_d(a)$

The basis $[i, j, k, \ell]$ for $V_d(a)$

Location of η_i $(i \in I)$

exists a unique basis $\{u_n\}_{n=0}^d$ for $V_d(a)$ such Lemma For mutually distinct $i,j,k,\ell\in I$ there

component n of the decomposition $\{k, \ell\}$: (i) for $0 \le n \le d$ the vector u_n is contained in

(ii) $\eta_i = \sum_{n=0}^d u_n$.

We denote this basis by $[i, j, k, \ell]$.

We have now defined 24 bases for $V_d(a)$.

35

¥

监

How the generators x_{rs} act on the 24 bases

ing x_{rs} with respect to the basis $[i,j,k,\ell]$ of distinct $r,s\in\mathbb{I}$ consider the matrix representthe following table. All entries not displayed $V_d(a)$. The entries of this matrix are given in Theorem For mutually distinct $i,j,k,\ell\in\mathbb{F}$ and

I I	# #	1 4	5 2	ī,	¥ ¥	gen.
$\frac{2\alpha n(\alpha - 1)^{-1}}{2\alpha n(1 - \alpha)^{-1}}$	0.0	- 2an	2n 2n	00	0	(n, n - 1)-entry
$\frac{(d-2n)(\alpha+1)(\alpha-1)^{-1}}{(d-2n)(\alpha+1)(1-\alpha)^{-1}}$	2n - d	d - 2n 2n - d	2n - d d - 2n	2n d	2n - d	(n,n)-entry
$\frac{2(d-n+1)(1-\alpha)}{2(d-n+1)(\alpha-1)^{-1}}$	2(d-n+1)a-1	000	00	2n - 2d - 2		(n-1,n)-entry

In the above table the scalar α denotes the (i, j, k, ℓ) -relative of a.

Some transition matrices

We now consider the transition matrices be-

introduce a certain bilinear form on $V_d(a)$. In order to describe these, it is convenient to

The transition matrices

Theorem Referring to $V_d(a)$, pick mutually distinct $i,j,k,\ell\in \mathbb{I}$ and consider the transition matrices from the basis $[i,j,k,\ell]$ to the bases

 $[j,i,k,\ell],$ $[i,k,j,\ell],$ $[i,j,\ell,k]$.

(i) The first transition matrix is diagonal with

 $\langle \eta_j, \eta_\ell \rangle \alpha^r$

for $0 \le r \le d$, where α is the (i,j,k,ℓ) -relative of a.

matrix in $\mathsf{Mat}_{d+1}(\mathbb{F})$ with entries

For an integer $d \ge 0$ let Z = Z(d) denote the

The following matrix will play a role in our

The matrix Z

 $Z_{ij} = \begin{cases} 1, & \text{if } i+j=d; \\ 0, & \text{if } i+j\neq d \end{cases}$

 $(0 \leq i, j \leq d)$.

We observe

 $Z^2 = I$

angular with (r,s)-entry (ii) The second transition matrix is lower tri-

 $\binom{r}{s}\alpha^{r-s}(1-\alpha)^s$

for $0 \le s \le r \le d$, where α is the (i,j,k,ℓ) -relative of a.

(iii) The third transition matrix is the matrix

 \langle , \rangle on $V_d(a)$ such that

Lemma There exists a nonzero bilinear form

A bilinear form on $V_d(a)$

tween our 24 bases.

nonzero scalar in F.

The form is unique up to multiplication by a

The form is nondegenerate.

 $\langle \mathbf{w}.\mathbf{u}, \mathbf{v} \rangle = -\langle \mathbf{u}, \mathbf{w}.\mathbf{v} \rangle$

€ (⊠

 $u, v \in V$.

We call \langle , \rangle a standard bilinear form for $V_d(a)$.

when d is even (resp. d is odd).

The form is symmetric (resp. antisymmetric)

Realizing the evaluation modules for \(\text{using polynomials in two} \)

Let z_0, z_1 denote commuting indeterminates.

mials in z_0, z_1 that have coefficients in \mathbf{F} . let $\mathbf{F}[\mathbf{z}_0,\mathbf{z}_1]$ denote the \mathbf{f} -algebra of all polynomials.

We abbreviate $A = \mathbb{F}[z_0, z_1]$.

We often view A as a vector space over F.

als in z_0, z_1 that have total degree d. of ${\mathcal A}$ consisting of the homogeneous polynomi-For an integer $d \ge 0$ let \mathcal{A}_d denote the subspace

Thus $\{z_0^{d-n}z_1^n\}_{n=0}^d$ is a basis for A_d .

Note that

$$A = \sum_{n=0}^{\infty} A_d \qquad ($$

$$A = \sum_{n=0}^{\infty} A_d \qquad \text{(direct sum)}$$

$$x = \sum_{n=0}^{\infty} A_n$$
 (or set a and that

We fix mutually distinct $\beta_i \in \mathbb{F}$ $(i \in \mathbb{I})$.

 $A_rA_s=A_{r+s} \qquad (r,s\geq 0).$

Then there exist unique $z_2, z_3 \in A$ such that

$$\sum_{i\in I} z_i = 0, \qquad \sum_{i\in I} \beta_i z_i = 0.$$

Comments on the z_i $(i \in I)$

Lemma For mutually distinct $i,j,k,\ell\in I$ we

$$z_k = \frac{\beta_\ell - \beta_i}{\beta_k - \beta_\ell} z_i + \frac{\beta_\ell - \beta_j}{\beta_k - \beta_\ell} z_j,$$

$$z_\ell = \frac{\beta_i - \beta_k}{\beta_k - \beta_\ell} z_i + \frac{\beta_j - \beta_k}{\beta_k - \beta_\ell} z_j.$$

form a basis for A.

Lemma For distinct $i,j \in I$ the elements

 $0 \le r, s < \infty$

Some bases for A

Example: Some bases for A_3

Derivations of A

Our next goal is to display a &-module structure on A.

We will use the following terms.

Lemma For an integer $d \ge 0$ and distinct $i, j \in \mathbb{R}$ the elements $\{z_i^{d-n}z_j^n\}_{n=0}^d$ form a basis for

Some bases for A_d

Å

By a derivation of A we mean an F-linear map $D:A \rightarrow A$ such that

$$D(uv) = D(u)v + uD(v) \qquad (u, v \in A).$$

6

47

A is a ⊠-module

Theorem There exists a unique B-module structure on A such that:

(i) each element of \boxtimes acts as a derivation on \mathcal{A} ;

(ii) $x_{ij}.z_i=-z_i$ and $x_{ij}.z_j=z_j$ for distinct $i,j\in I$.

The eigenvectors for the x_{ij} on ${\cal A}$

Lemma for distinct $i, j \in \mathbb{I}$ and integers $r, s \ge 0$ the element $z_i^r z_j^s$ is an eigenvector for x_{ij} with eigenvalue s - r.

ઠ

ŝ

The elements η_i $(i \in I)$ for \mathcal{A}_d

For an integer $d \ge 1$ and $i \in I$ the element z_i^d is a scalar multiple of η_i .

Recall η_i is defined up to scalar multiplication

For the rest of talk we choose $\eta_i = z_i^d$

•

5

The irreducible f f 8-submodules of $\cal A$

Proposition Referring to the &-module A,

- (i) For $d \ge 0$ the subspace A_d is an irreducible \boxtimes -submodule of A.
- (ii) The \boxtimes -module A_0 is trivial.
- (iii) For $d \geq 1$ the $f B-module\ A_d$ is isomorphic to $V_d(a)$ where

$$a = \frac{\beta_0 - \beta_1}{\beta_0 - \beta_3} \frac{\beta_2 - \beta_3}{\beta_2 - \beta_1}.$$

The basis $[i,j,k,\ell]$ for A_d

Proposition For an integer $d \ge 1$ and for mutually distinct $i, j, k, \ell \in I$ the basis $[i, j, k, \ell]$ of \mathcal{A}_d is described as follows.

For $0 \le n \le d$ the nth component is

$$z_k^{d-n}z_\ell^n\binom{d}{n}\frac{(\beta_j-\beta_k)^{d-n}(\beta_j-\beta_\ell)^n}{(\beta_i-\beta_j)^d}.$$

52

53

For $0 \le n \le d$ the nth component is spanned by $z_i^{d-n} z_j^n$.

Proposition For an integer $d \ge 0$ and for distinct $i, j \in \mathbb{I}$ the decomposition [i, j] on \mathcal{A}_d is

described as follows.

point of view of \mathcal{A}_d .

We now consider how things look from the

Earlier in the talk we described the 82-module

The decomposition [i,j] for A_d

ž

The group G revisited

isomorphic to $V_d(a)$. $V_d(a)$ via an element of G then the result is We saw earlier that if we twist the 83-module

We now explain this fact using A.

Some automorphisms of A

Lemma For mutually distinct $i,j,k,\ell\in I$ there exists a unique automorphism of A that sends

$$\begin{aligned} z_i \mapsto \frac{\beta_j - \beta_k}{\beta_i - \beta_k} z_j; & z_j \mapsto \frac{\beta_i - \beta_\ell}{\beta_j - \beta_\ell} z_j \\ z_k \mapsto \frac{\beta_\ell - \beta_i}{\beta_i - \beta_k} z_\ell, & z_\ell \mapsto \frac{\beta_k - \beta_j}{\beta_j - \beta_\ell} \end{aligned}$$

55

Some automorphisms of ${\cal A}$

Theorem The following hold for $\sigma \in G$:

- $r \in I$. (i) There exists an automorphism g_σ of A that sends z_τ to a scalar multiple of $z_{\sigma(\tau)}$ for all
- (ii) For $u \in \mathbb{N}$ the equation

$$\sigma(u) = g_\sigma u g_\sigma^{-1} \label{eq:sigma}$$
 holds on A

(iii) The map g_σ is an isomorphism of $8\!\!\!\mathrm{M}$ -modules from ${\cal A}$ to ${\cal A}$ twisted via $\sigma.$

THE END