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The equitable basis for sl

Define

x = 2e - h, y=-2f-h, z=h.

Then z,y,z is a basis for sl and

(z.9] 2z + 2y,
—@. N_ 2y + 2z,
[z,z} = 2z+4 2z.

]

We call z,y, z the equitable basis for sly.

Overview

o The tetrahedron algebra realization of the
three-point sl; loop algebra

e The f.d. irreducible modules

o The evaluation modules

o The Ss-action on the evaluation modules

e 24 bases for an evaluation module

o Realization of the evaluation modules by
polynomials in two variables

The equitable basis for sl;

Warmup: The Lie algebra sl

Throughout, F will denote an aigebraically closed
field with characteristic 0.

. Recall that sf; is the Lie algebra over F with 3

basis e, f,h and Lie bracket

:—. ﬂu = Np —‘-. ,a = |N.‘..
le.f1=h.

The three-point sl, loop algebra

The three-point sl; loop algebra is the Lie

algebra over F consisting of the vector space

sheFl,e (-1, 2=8f

where t is indeterminate, and Lie bracket

[u¥a,v&b) = [u,v] & ab.
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The equitable presentation for the
three-point si, loop algebra

We now recall the equitable presentation for
the three-point sl toop algebra.

To give the presentation we define a Lie alge-
bra ® by generators and relations, and display
an isomorphism from & to the three-point sl
loop algebra.

X and the three-point
sl> loop algebra

Theorem [Hartwig +T] There exists an iso-
morphism of Lie algebras

$:R—sh@Fltt}, (t—1)7Y

that sends

r1z—x%1, Tz ysttz&(t—1).
I y@1, T rez® (- t7Y) —z®t!,
zn— 281, HSIHN:QG»—.TQ@nC,I&L

where z, ¥, z is the equitable basis for sly.

From now on we work with BJ.

The tetrahedron algebra ®

Definition [Hartwig+T] The tetrahedron al-
gebra R is the Lie algebra over F that has gen-
erators .

{zyliieLi#j}  1=1{0,1,23}
and the following relations:

(i) For distinct i,j €L, .

zij tzii= 0.

(i) For mutually distinct h,i,j €L

[zhi, xi5] = 2z + 2255

(iii) For mutually distinct h,i,5,k € k

[Zhis (Zhis [xnss zad]) = Slzniszjnl-

Finite-dimensional irred. X-modules

Our goal is to describe the f.d. irreducible =3
modules.

For these modules there is a special case called
an evaluation module.

It turns out that every f.d. irreducible ®-module
is a tensor product of evaluation modules.

After some general remarks we focus on the
evaluation modules.

11

The algebra X

Decompositions

Let V denote a f.d. irreducible B-modute.

By a decomposition of V we mean a sequence
{Va}d_ of nonzero subspaces of V such that

d
V=Y Va (direct sum).

n=0
We call d the diameter of the decomposition.
By the shape of this decomposition we mean

the sequence {dim(Vi)}¢_o.

12
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The decompositions [, j]
Hartwig showed:
(i) Each generator z,; is semisimple on V'
(ii) There exists an integer d > 0 such that for

each generator z;; the set of distinct eigenval-
ues on V' is

{2n-d|0<n < d}.

We let [i,j] denote the eigenspace decompo-
sition for x;; on V associated with the above
ordering of the eigenvalues.

The trivial ¥-module

Up to isomorphism there exists a unique 8-
module V with dimension 1.

Every element of ® is 0 on V.

We call V the trivial ®-module.

16

How the decompaositions [i, j}
are related

14

The evaluation modules for
We now define the evaluation modules for &.

For a € F\{0, 1} we define a Lie algebra homo-
morphism

EVa:B — sh@Ft,t™),(t-1)"Y — si
v u® f(t) - uf(a)

For an sly-module V we pull back the sly-modute
structure via EV,; this turns V" into a 8 module
which we cali V(a).

17

The shape of V

Hartwig showed that the shape of the decom-
position [i,j] is independent of the pair i, 5.

We call this common shape the shape of V.

15

The evaluation modules for &, cont.

By an evaluation module for ® we mean the
modute Vz(a) where

(i) d is a positive integer;

(ii) V3 is the irreducible sl;-module with dimen-
siond+ 1.

The ®-module V (a) is nontriviat and irreducible.

We call a the evaluation parameter for V(a).
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Characterizing the evaluation
modules, I

Theorem For a nontrivial f.d. irreducible ®-
module V TFAE:

(i) V is isomorphic to an evaluation module for
R

(ii) V has shape (1,1,...,1).

19

An S,;-action on B-modules

For a ®-module V and o € S4 there exists 3 ®-
moduie structure on V, called V twisted via
o, that behaves as follows:

For u ¢ ® and v € V, the vector u.v computed
in V twisted via o coincides with the vector
o~ 1(u).v computed in the original ®-module
V.

Sometimes we abbreviate °V for V twisted via
o.

S4 acts on the set of ®-modules, with o send-
ing V" to °V for all o € S4 and all ®-modules
V.

Characterizing the evaluation
modules, II

Theorem Let 1" denote a nontrivial f.d. irre-
ducible ®-module.

Then for a € F\{0,1} TFAE:

(i) V is isomorphic to an evaluation modute
with evaluation parameter a.

(ii) Each of the following vanishes on V:

axg) + (1 - a)zp2 — 203,
az1g+ (1 - a)z33 - 712,
az23 + (1 - a)z20 - 221,
az32 + (1 — a)z3; — T30

The Ss-action on 8&-modules, cont.

The above Sg-action on B-modules sends eval-
uation modules to evaluation modules.

The effect of this action on the evaluation pa-
rameter is described in the following two slides.

23

An S4-action on B

We identify the symmetric group S4 with the
group of permutations of I.

Sa acts on the set of generators for 8 by per-
muting the indices:

o(zy5) =24G)oi) 7 E€Sa
This action leaves invariant the defining rela-

tions and therefore induces an action of S4 on
® as a group of automorphisms.

2

An action of S, on F\{0,1}

Lemma There exists an action of S4 on the
set F\{0,1} that does the following.

For a € F\{0,1},
 (2,0) sends a s a”};
e (0.1) sends a— afa—1)71;

e (1,3) sends a— a™ 1.
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The effect of S; on the
evaluation parameter

Theorem For an integer d > 1, o € Sy, and
a € F\{0, 1} the following are isomorphic:

(i) The ®-module 1y (a) twisted via o

(ii) The ®-module Vy(o(e)).

The orbits of S4 on F\{0,1}

We now describe the orbits for the S4-action
on F\{0,1}.

Pick a € F\{0, 1} and mutually distinct 1, 3,k. £ €
L

By the (i,j,k, ¢)-relative of a we mean the
scalar o(a) where o € S4 sends the sequence
(i, j, k. £) to (2,0,1,3).

A subgroup G of S,

Earlier we gave an action of S4 on the set
F\{0,1}.

Let G denote the kernel of this action.

It turns out that G consists of

(01)(23), (02)(13), (03)(12)
together with the identity element.

The orbits of S5 on F\{0,1}, cont.
The relative function satisfies this recursion:

Lemma Pick a € F\{0, 1} and mutually distinct
i,j.kteL

Let a denote the (i, j, k, £)-relative of a. Then
e a1 is the (j,i,k,{)-relative of a:
e a(a - 1)"1 is the (i, k, j, £)-relative of a;

e a~! is the (i,j,¢, k)-relative of a.

The subgroup G of S, cont.

Corollary For an integer d > 1, for o € G, and
for a € F\{0,1} the following are isomorphic:

(i) The B-module Vy(a) twisted via o,

(ii) The B-module Vy(a).

We will return to the subgroup G later in the
tatk.

7

The orbits of S5 on F\{0,1}, cont.

Here is another way to view the relative func-
tion.

Lemma For e € F\{0,1} and mutually distinct
i, 7, k, £ € I the following (i), (ii) coincide:

(i) the (i, j, k, £)-relative of a;

(ii) the scalar

>

-1
-k

L2

)

~)

)|
<)

where we define
0=4a,1=02=1,3=.
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The orbits of 5, on F\{0,1}, cont.

Here is an explicit description of the relative
function.

Theorem Pick a € F\{0,1} and mutually dis-
tinct i,j,k. £ €l

Then the (i, j, k, £)-relative of a is given in the
following table.

31

Location of n; (i€ l)

24 bases for Vy(a)

For the time being we fix an integer d > 1 and
a scalar a € F\{0,1}.

We consider the ®B-module Vy{a).

We are about to define 24 bases for this mod-
ule.

32

The basis [i, j, k,£] for Vy(a)
Lemma For mutualily distinct 4,j, k,£ € 1 there
exists a unique basis {un}d_g for V(a) such

that:

(i) for 0 < n < d the vector u, is contained in
component n of the decomposition [k, {:

(i) % = o un-
We denote this basis by [i,j, k. 4.

We have now defined 24 bases for Vy(a).

35

The vectors ; (i € I) in Vy(a)

For notationat convenience, for i € I we fix a
nonzero vector 7; € Vg(a) which is a common
eigenvector for {z;;|j €Li # i}.

The basis [i, j, k, €] for Vy(a)

36
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How the generators z,, act
on the 24 bases

Theorem For mutuaily distinct i,j5,k,£ € I and
distinct r,s € I consider the matrix represent-
ing zrs with respect to the basis [i,j,k,€ of
Vi(a). The entries of this matrix are given in
the following table. All entries not displayed
are zero.

gen. | {n.n— 1)-entry (n,n)-entry (n-1n)entry
I 0 TTd- [ T
e | 0 ___2n-d 0

e o T T T TTm & H-Z=m+2
TS o d-2n 2n-2d-2

T —2n 2n-d [

T 2n d- 2n 0

E) 2an d-2n [)

EM -2an m-d 0

e [] d-2n 2(n—d-1)a""

Zij o 2n-d L

Tn 2an{a -1y 7 {d- mYla+1}a-1) ' 2d-a+1)1-a)”
ES 2an(l - a)™"' (d-2n)(a+1)1-a)' 20d-m+1)e-1)"'

In the above table the scalar a denotes the
(i, j, k, £)-retative of a.

37

The matrix Z

The following matrix will play a role in our
discussion.

For an integer d > 0 let Z = Z(d) denote the
matrix in Matg4 (F) with entries

1, if i+j=d;
Zij= * it

0, ifit+j#d
We observe

(0<ij<d).

Z22=1

40

Some transition matrices

We now consider the transition matrices be-
tween our 24 bases.

In order to describe these, it is convenient to
introduce 3 certain bilinear form on Vy(a).

The transition matrices

Theorem Referring to Vy(a). pick mutually
distinct i, j,k,£ € I and consider the transition
matrices from the basis {i,7j,k, ] to the bases

c-ﬁ.wk-uu ﬂﬂ.n”-.ﬁ‘nﬂ—- —m-.&-“-*a.

(i) The first transition matrix is diagonal with
(r,r)-entry
{nj1e)
Ad-,. th .
for 0 < r < d, where a is the (i, j, k, £)-relative
of a.

Q-

(i) The second transition matrix is tower tri-
angular with (r,s)-entry

AUQ —5(1 - a)*

for 0 < s < r < d, where a is the (i,j,k,&)-
relative of a.

(iii) The third transition matrix is the matrix
Z.

41

A bitinear form on Vj(a)

Lemma There exists a nonzero bilinear form
(,) on Vy(a) such that

(wu,v) = —{u,w.v) welB, uveV.

The form is nondegenerate.

The form is unique up to multiplication by a
nonzero scalar in F.

The form is symmetric (resp. antisymmetric)
when d is even (resp. d is odd).

We call {, ) a standard bilinear form for Vy(a).

Realizing the evaluation modules
for @ using polynomials in two
variables

Let zg,z; denote commuting indeterminates.

let F{zg, z1] denote the F-algebra of ail polyno-
mials in zg,z1 that have coefficients in F.

We abbreviate A = F(zg, 21].

We often view A as a vector space over F.
For an integer d > O let A4 denote the subspace
of A consisting of the homogeneous polynomi-
als in zg, z; that have total degree d.

Thus {z8 "27}4_ is a basis for Aq.

42
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Realizing the evaluation modules

Note that
oC
A=Y Ay (direct sum)
n=0

and that

ArAs = }L.u (r,s2 0).

We fix mutually distinct ;€ F (i€ 1).

Then there exist unique z,z3 € A such that

Yu=0 Y Au=0.

icl iel

43

Some bases for Ay

Lemma For an integer d > 0 and distinct i,j €
I the elements Tus:uw.vuuo form a basis for
Ag.

Comments on the z; (i €1)

temma For mutually distinct i,j,k,2 € I we
have

ualu.,nm+m~tm~

* = BB BB
= BB BB

By B BB

Example: Some bases for Az

47

Some bases for A

Lemma For distinct i,j € I the elements
nmnm 0<rs<

form a basis for A.

45

Derivations of A

Our next goat is to display a @-module struc-
ture on A.

We will use the following terms.

By a derivation of A we mean an F-linear map
D: A-— A such that

D(uv) = D(u)v + uD(v) (u,v € A).
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A is a X-module

Theorem There exists a unique 8-module struc-
ture on A such that:

(i) each element of ® acts as a derivation on
A,

(ii) Zij.2i = —z and x;;.2; = 25 for distinct i,j €
L

49

The decomposition [i, j] for A,

Earlier in the talk we described the &-module
f\ambv.

We now consider how things look from the
point of view of A,.

Proposition For an integer d > 0 and for dis-
tinct i, € I the decomposition {i,j] on A is
described as follows.

For 0 < n < d the nth component is spanned

d n.n
by z; 25

52

The eigenvectors for the z;; on A
Lemma for distinct 4,5 € I and integers r.s > 0

the element 2]z is an eigenvector for z;; with
eigenvaiue s —r.

The elements 5; (i€ l) for Ay

For an integer d > 1 and i € I the element 2
is @ scalar multiple of ;.

Recall 7, is defined up to scalar multiplication.

For the rest of talk we choose n; = uw .

53

The irreducible 8-submodules of A

Proposition Referring to the B-module A,

(i) For d > O the subspace A, is an irreducible
®-submodule of A.

(ii) The B-module Aq is trivial.

(iii) For d > 1 the B-module Ay is isomorphic
to V(a) where

51

The basis [i,7,k,¢ for Ay

Proposition For an integer d > 1 and for mu-
tually distinct 4,j,k,£ € I the basis [4,7,k,4 of
Ay is described as follows.

For 0 < n < d the nth component is

d-n_nyd (B; - B3 ™(8; - B)"
* T T E Y
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The group G revisited
We saw earlier that if we twist the ®-module
Vy(e) via an element of G then the result is

isomorphic to Vy(a).

We now explain this fact using A.

Some automorphisms of A

Lemma For mutually distinct i, j,k,£ € 1 there
exists a unique automorphism of A that sends

I\muluk .qu.l.uh.
CRoaT TTE-A
L BB L B=Pi
m g Tl z

u... —Be

Some automorphisms of A
Theorem .wsm following hold for o € G:

(i) There exists an automorphism g, of A that
sends zr to a scalar muitiple of z,, for all

.rek

(ii) For u € ® the equation
o(u) = goug;"

holds on A.

(i) The map go is 2n isomorphism of 8-modules
from A to A twisted via o.

THE END
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