<table>
<thead>
<tr>
<th>Title</th>
<th>Evaluation modules for the three-point \mathfrak{sl}_2 loop algebra (Finite Groups and Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Tatsuro; Terwilliger, Paul</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1593: 51-60</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81658</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
The three-point \(\mathfrak{g}_2 \) loop algebra

The equitable basis for \(\mathfrak{g}_2 \)

polynomials in two variables

Reduction of the evaluation modules by

\(2 \gamma \) bases for evaluation module

The \(2 \gamma \) action on the evaluation modules

The evaluation modules

The C\(\ell \) irreducible modules

Three-point \(\mathfrak{g}_2 \) loop algebra

The transformation algebra realization of the

Overview
The sequence (dim(%) p) can be decomposed into a direct sum (\(\bigoplus \)).

We call the direct sum of the decompositions \(\bigoplus \).

Let \(V \) denote the free \(\mathbb{K} \)-module.

Decompositions

\[
\text{Finite-dimensional \textit{F}}_{\mathbb{K}} \text{-modules}
\]

After some general remarks we focus on the evaluation modules.

If \(\text{dim} \mathbb{K} \) is a tensor product of \(\text{evaluation modules} \),

then \(\text{dim} \mathbb{K} \) is a tensor product of \(\text{evaluation modules} \).

For these modules, there is a special case called \(\text{loop algebra} \).

Our goal is to describe the \(\text{loop algebra} \).

Theorem (Harthong) there exists an isomorphism of \(\mathbb{K} \)-modules

\[
\phi: \mathbb{K} \rightarrow \mathbb{K}
\]

and the three-point \(\mathbb{K} \)-loop algebra

The \(\text{loop algebra} \).

\[
\oplus
\]

For mutually distinct \(\phi, f \in \mathbb{K}
\]

\[
\oplus
\]

For mutually distinct \(\phi, f \in \mathbb{K}
\]

\[
\oplus
\]

For distinct \(\phi, f \in \mathbb{K}
\]
We call the evaluation parameter for λ^a_k.

The \mathbb{Z}-module Λ_k^a is not trivial and reducible.

(i) If a is a positive integer.

(ii) Λ_k^a is the reducible \mathbb{Z}-module with dimension d.

For an evaluation module Λ_k^a, we mean the module Λ_k^a.

Every element of Λ_k^a is a unique \mathbb{Z}-module.

The trivial \mathbb{Z}-module.

The evaluation modules for Λ_k^a.

We now define the evaluation modules for Λ_k^a.

The shape of Λ_k^a.

How the decompositions $[\lambda^a_k]$ are related.
Theorem I: Characterizing the Evaluation Module

Let \mathbb{A} be an arbitrary algebra, and let V be a finitely generated free \mathbb{A}-module. Then V is isomorphic to an evaluation module for some \mathbb{A}-module Λ.

Proof

1. **Existence:**
 - Choose a basis $\{e_1, e_2, \ldots, e_n\}$ for V.
 - Define a module homomorphism $\phi: \Lambda \to V$ by setting $\phi(e_i) = e_i$ for $1 \leq i \leq n$.
 - The map ϕ is surjective because V is free.
 - Let $V' = \ker(\phi)$. Then $V' = \{0\}$ by the rank-nullity theorem.
 - Therefore, ϕ is injective.
 - Hence, Λ is isomorphic to V as a module.

2. **Uniqueness:**
 - Assume $\Lambda' \to V$ is another module homomorphism.
 - Then we must have $\phi = \phi'$.
 - Hence, $\Lambda' = \Lambda$.

Modules II

Theorem I: Characterizing the Evaluation Module

Let \mathbb{A} be an arbitrary algebra, and let V be a finitely generated free \mathbb{A}-module. Then V is isomorphic to an evaluation module for some \mathbb{A}-module Λ.

Proof

1. **Existence:**
 - Choose a basis $\{e_1, e_2, \ldots, e_n\}$ for V.
 - Define $\phi: \Lambda \to V$ by setting $\phi(e_i) = e_i$ for $1 \leq i \leq n$.
 - The map ϕ is surjective because V is free.
 - Let $V' = \ker(\phi)$. Then $V' = \{0\}$ by the rank-nullity theorem.
 - Therefore, ϕ is injective.
 - Hence, Λ is isomorphic to V as a module.

2. **Uniqueness:**
 - Assume $\Lambda' \to V$ is another module homomorphism.
 - Then we must have $\phi = \phi'$.
 - Hence, $\Lambda' = \Lambda$.
The orbits of S^4 on $R^4 \setminus \{0\}$ cont.}

Here is another way to view the relative func-

In this section, we will return to the subgroup G later in the

(ii) The G-module $V(p_0)$, twisted via α.

(i) The G-module $V(p_0)$ twisted via α.

For $a \in (0,1)$ the following are isomorphic:

- (i) The subgroups G of S^4, cont.

- (ii) The G-module $V(p_0)$ twisted via α.

- (iii) The G-module $V(p_0)$ twisted via α.

Let G denote the kernel of this action.

Either we gave an action of G on the set $R^4 \setminus \{0\}$.

A subgroup G of S^4.

We now describe the orbits for the action

The orbits of S^4 on $R^4 \setminus \{0\}$.
We have now defined $2n$ bases for $V^n(a)$.

We denote this basis by $x_{a}^{(j)}$.

(i) $x_{a}^{(j)}$ is a component of the decomposition $(x_{a}^{(j)})$.

(ii) for $0 \leq n < d$ the vector w_{i} is contained in

there exists a unique basis $(w_{i})_{i=1}^{d}$ for $V^n(a)$ such

Lemma 4: Mutually disjoint $(x_{a}^{(j)})$ exist

The basis $(x_{a}^{(j)}|_{i}^{(k)})$ for $V^n(a)$

Location of $(x_{a}^{(j)})$ (I)

The vectors $x_{a}^{(j)}|_{i}^{(k)}$ in $V^n(a)$

For notational convenience, let $i \leq j$.

We are about to define $2n$ bases for this mod-

We consider the submodule $V^n(a)$.

(iii) $x_{a}^{(j)}$ is a scalar $\neq 0$.

For the time being we fix an integer $d \geq 2$ and

24 bases for $V^n(a)$

The orbits of S_4 on $V^n(a)$, cont.
Theorem 1.2: The transition matrix is the matrix $(I + \mathbf{a} \cdot \mathbf{b}^T)$ relative to \mathbf{a} for $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$. When $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$, the form is symmetric (parallel to the modulus). The form is unique up to multiplication by a nonzero scalar in \mathbb{F}_q.

The transition matrices are now considered in more detail. In order to describe these, it is convenient to introduce a certain bilinear form on $V(q)$.

We now consider the transition matrices of some transition matrices...

In the following, we consider the matrix representation of the groups \mathbb{F}_q^k, for q prime. The entries of the matrices are given in the form $[\alpha]_{i,j} = \alpha_{i,j}$, where $\alpha_{i,j}$ is the constant term of the polynomial $\alpha(x)$ of degree $\leq q-1$ with respect to the basis $\{x, x^2, \ldots, x^{q-1}\}$.

Theorem 1.3: For the moment, assume that q is a prime. Then the transition matrices are determined by the bilinear form.

We denote by $\mathfrak{a}(\beta)$ the bilinear form on $V(q)$.
By the definition of \mathbf{A} we mean an F-linear map $D: \mathbf{A} \rightarrow \mathbf{A}$ such that

We will use the following terms:

Definition of \mathbf{A}

The next goal is to display a G-module structure.

Example: Some basis for \mathbf{A}

Lemma: For distinct $f, g \in \mathbf{A}$ the elements

Some basis for \mathbf{A}

Comment: on the \mathbf{A} (i.e. 1)

Revising the evaluation modules

$D = m \phi + n \psi$
For any field \(K \) and for \(0 \leq n \leq m \) the nil component is described by the following:

\[
\frac{\mu(x^n)}{\nu(x^n)} = \frac{\mu(x)}{\nu(x)}^{m-n}
\]

where \(\mu, \nu \) are polynomials in \(K[x] \) and \(m \geq n \).

The basis \(\mathcal{B} \) of \(V \) is given by \(\{ e_i \} \) for \(0 \leq i \leq m \).

The elements \(\alpha \in \mathcal{B} \) for \(V \).

The decomposition \(\mathcal{D}_{\mathcal{B}} \) for \(V \).
THE END

Theorem 6.1

We have explained this fact using A.

Some automorphisms of A

We saw earlier that if we exist the 8-module $V(a)$ for an element of C then the result is isomorphic to $V(a)$.