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Ultrafilters and Higson compactifications
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Abstract
We prove the following theorem: If there is a base F of a non-
rapid ultrafilter on w, then we can approximate Sw by |F|-many
Higson compactifications of w in a nontrivial way. It is still open
whether we can eliminate the assumption that F is non-rapid.

MSC: Primary 03E17; Secondary 03E35, 54D35

1 Introduction

In this paper we give a partial answer to a question which was posed by
Kada, Tomoyasu and Yoshinobu [3].

We refer the reader to the book [1] for undefined set-theoretic notions.
For X,Y € [w]¥, we write X C* Y (or Y 2* X) if X \Y is finite. The
symbol w'® denotes the set of all strictly increasing functions in w*. For
f,g9 € w¥, we write f <* g if f(n) < g(n) holds for all but finitely many
n € w. A dominating family is a cofinal subset of w* with respect to
<*. The dominating number 0 is the smallest cardinality of a dominating
family.

For compactifications X and X of a completely regular Hausdorff
space X, we write aX < X if there is a continuous surjection ¢ from v X
onto aX such that ¢ [ X is the identity function on X, and aX ~ 4X
if aX < 4X < aX. The Stone-Cech compactification X of X is the
maximal compactification of X in the sense of the order relation < among
compactifications of X modulo the equivalence relation ~.

We introduce the following notation: For compactification aX of X and
disjoint closed subsets A, B of X, we write A || B (aX) ifclox ANclyx B =
@, and otherwise we write A J| B (aX). It is not so hard to show that
A || B (aX) if and only if there is a bounded continuous function f from
aX to R such that f’A = {0} and f"B = {1}. Note that aX < X
is equivalent to the assertion that, for disjoint closed subsets A, B of X,
A || B (aX) implies A || B (vX). For a normal space X, A || B (8X)
holds for any pair A, B of disjoint closed subsets of X.



We say a metric d on a space X is proper if each d-bounded subset of
X has a compact closure. We say a metric space is proper if its metric is
proper. For a proper metric space (X, d) and disjoint closed subsets A, B
of X, we say A and B diverge with respect to the metric d, or A and B
d-diverge in short, if for every R > 0 there is a compact subset K of X
such that d(A \ K, B \ K) > R holds.

The Higson compactification X of (X,d) is uniquely characterized (up
to ~-equivalence) by the property that A || B (fd) if and only if A and
B d-diverge. Note that Higson compactifications are metric-dependent.

In the paper [3] the authors introduced the following cardinal charac-
teristics to investigate approximability of Bw by sets of Higson compacti-
fications of w. For a metrizable space X, let PM'(w) be the set of proper

metrics d on X such that d is compatible with the topology on X and
@? % fw holds. For dy,ds € PM/(w), we write d; C dp if &% <@* holds.

Definition 1.1. hp' is the smallest cardinality of a subset D of PM’'(w)
such that D is directed with respect to the order relation C and sup{@® :
d € D} ~ Bw, where the supremum is in the sense of the order relation <
among compactifications of w.

Throughout the present paper, an ultrafilter means a nonprincipal ul-
trafilter on w. The cardinal u is the smallest cardinality of a subset of [w]*
which generates an ultrafilter.

In the paper [3] the authors asked the following question.

Question 1.2. hp’ < u?

This question is still open.

In Section 2 we prove that, if a subset F of [w]* generates a non-rapid
ultrafilter, then hp’ < |F| holds. We say a filter F on w is rapid if for all
h € w!* there is a set X € F such that for all n < w we have | XNh(n)| < n,
or equivalently, if the set of increasing enumerations of sets in F is a
dominating family. When an ultrafilter U is generated by a subset F of
[w]“, U is rapid if and only if the set of increasing enumerations of sets of F
is a dominating family. As a consequence, we see that u < 9 implies bp’ < u,
since an ultrafilter generated by a set of size less than ? cannot be rapid.
So the main result in Section 2 gives a partial answer to Question 1.2.
Remark 1.3. It is known that non-rapid ultrafilters can be constructed in
ZFC, but we do not know if we can find a non-rapid ultrafilter which is

generated by a subset of [w]“ of size u under ZFC. See Section 3 for further
discussion.
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2 The Main Result

First we prove a simple combinatorial lemma.

Lemma 2.1. Suppose that a subset F of w'¥ is not a dominating family.
Then there is a function h € w' such that, for all f € F there are
infinitely many m < w such that the interval [h(m), h(m+1)) contains two
consecutive values of f.

Proof. Suppose that F C w'%, g € w™ and for all f € F there are infinitely
many n < w which satisfy f(n) < g(n). Define h € W% by letting h(n) =
g(2n) for each n. We show that h satisfies the requirement. Suppose not.
Find an f € F such that, for all but finitely many m < w, the interval
[h(m), h(m+1)) contains at most one value of f. Then we can find a k < w
such that for all » < w we have f(n + k) > h(n). Since h(n) = g(2n) and
g is increasing, for all n > k we have f(n + k) > h(n) = g(2n) > g(n + k).
But it is impossible by the choice of g. ' O

Now we are going to prove the main theorem.

Theorem 2.2. Suppose that there is a subset F of [w]“ of size k which
generates a non-rapid ultrafilter on w. Then hp' < k.

Proof. Let F be a subset of [w]“ of size x which generates a non-rapid
ultrafilter. Then the set of increasing enumerations of sets in F is not a
dominating family. By the previous lemma, find a function h € w'™ such
that, for every X € F, for infinitely many m < w we have | XN[h(m), h(m+_
1))| = 2. We may assume that h(0) = 0. Define a function = € w* by
letting w(k) = m if h(m — 1) < k < h(m).

For each X € F, we define a function px with domain w X w in the
following way: :

0 ifk=1
px(k,) =141 ifk,l € X, k#1 and w(k) = w(l)
w(k) + 7(l) otherwise.

It is easily checked that px is a metric on w and any p x-bounded subset
of w is finite, and so px is a proper metric on w.

By the choice of h, For any X € F there are infinitely many pairs
k,l € w for which px (k, !) = 1 holds, and so we can construct a pair A, B
of disjoint infinite subsets of w so that A }f B (@w”X) holds. This ensures
that px € PM/(w) for all X € F.

Note that, for X,Y € F, X O* Y implies px C py. Since F generates an
ultrafilter, F is D*-directed (even D-directed), and so the set {px : X € F}
is C-directed.



We can easily see that, for B C w, if X C* B or X C* w \ B, then
B || w B (@fX). Since F generates an ultrafilter, for each B C w we
can find an X € F such that X C* B or X C* w \ B. This implies that,
for any pair A, B of disjoint subsets of w, there is an X € F such that
A || B (@*X) holds, which means that sup{w** : X € F} ~ fw. By the
definition of hp’, we have hp’ < |F| = k. O

In the paper [3] the authors also introduced the following variant of the
cardinal hp’.

Definition 2.3. bt is the smallest cardinality of a subset D of PM'(w)
such that D is well-ordered by C and sup{&?: d € D} ~ Bw (if such a set
D exists; otherwise we write ht = 00).

An ultrafilter is called a simple p,-point, where « is a regular uncountable
cardinal, if it is generated by a subset of [w]“ which is well-ordered by 2* in
order type x. The following result is obtained as a corollary of the previous
theorem. '

Corollary 2.4. Suppose that there is a subset F of [w]¥ of size k such
that F is well-ordered by D* and generates a non-rapid ultrafilter on w (so
F generates a simple p.-point). Then ht < k.

3 Consequences of the main result

The cardinal pp, which was introduced in [3], is the smallest cardinal
for which a simple p.-point exists (if such a x exists; otherwise we write
pp = oo). Here we introduce more cardinal characteristics.

Definition 3.1. u(non-rapid) is the smallest cardinality of a subset F of
[w]“ which generates a non-rapid ultrafilter.

pp(non-rapid) is the smallest cardinality of a subset F of [w]* which is
well-ordered by D* and generates a non-rapid ultrafilter (if such a set F
exists; otherwise we write pp(non-rapid) = 00).

Using the above cardinal characteristics, Theorem 2.2 and Corollary 2.4
are represented as follows.

Corollary 3.2. hp’ < u(non-rapid) and ht < pp(non-rapid).

It is clear that u < pp, u < u(non-rapid) and pp < pp(non-rapid). Also it
is easily observed that u < 9 implies u(non-rapid) = u, and pp < implies
pp(non-rapid) = pp. So we obtain the following result, which partially
answers Question 1.2.

Corollary 3.3. Ifu <09, then hp’ <u. If pp <, then hp' < pp.

It is known that CH implies the existence of a simple px,-point. Since the
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Miller forcing preserves p-points {1, Lemma 7.3.48] and the preservation of
p-points is preserved under countable support iteration [1, Theorem 6.2.6],
a generating set of a simple py,-point in the ground model still generates
an ultrafilter in the forcing model by iterated Miller forcing. On the other
hand, 9 = R3 holds in the model obtained by a countable support iteration
of Miller forcing of length ws over a model for CH. Hence pp < 0 is
consistent with ZFC.
But the following question is still open.

Question 3.4. u(non-rapid) =uf? pp(non-rapid) = pp?
In the paper [3], another upper bound for hp’ is given.

Definition 3.5 ([2, Section 5]). For a function h € w", I, is the smallest
size of a subset ® of [],.,[w]S?" such that for every f € [, h(n)
there is a ¢ € ® such that f(n) € ¢(n) for all but finitely many n. Let
[ =sup{ly: h € w¥}.

Theorem 3.6 ([3, Theorem 6.11]). hp’' <.
Now we can see that the above inequality is consistently strict.
Corollary 3.7. hp' < I (moreover, ht < ) is consistent with ZFC.

Proof. We know that there is a proper forcing notion P which satisfies the
following two properties (see Remark 3.8).

e P preserves p-points.

e In the forcing model by P, for any function H € w® NV, there
is a function g € [],., H(n) such that, for every function z €
[1,<o, H(n) NV there are infinitely many n < w with z(n) = g(n),
where V denotes a ground model.

We consider ‘a forcing model obtained by a countable support iteration
of alternation of Miller forcing and the above forcing notion P of length wo
over a model for CH.

Since every iterand preserves p-points and the preservation of p-points
is preserved under countable support iteration, a generating set of a simple
Py,-point in the ground model still generates an ultrafilter in our forcing
model, and so pp = N3 holds. On the other hand, it is easily observed that
9 = [ = Ry = ¢ holds in the same model. By Corollary 3.3, ®; = hp' =
bt < [ = N, holds in this model. O

Remark 3.8. The book [1] tells us in Subsection 7.4.C that the infinitely
equal forcing EE meets the requirements which appear in the proof of
Corollary 3.7. But Brendle pointed out (in private communication) that
‘EE does not preserve p-points, and the following “tree-like infinitely equal
forcing” TEE is what we actually need.



p € TEE if:

1. p is a subtree of (J,, ., [T<m 2™ without endpoints,
2. there is a C € [w]“ such that, for s € p, if |s| = n € C then
succp(s) = 2™,

and TEE is ordered by inclusion.

Appendix: Ultrafilter number for non-g-points

After the submission of the first version of this article, Blass pointed out
that the proof of the main theorem (Theorem 2.2) works under the as-
sumption that F generates an ultrafilter which is not a g-point.

An ultrafilter U is called a g-point if for any finite-to-one function f
with domain w there is an element X of U such that f [ X is a one-to-one
function.

It is easy to see that a g-point is a rapid ultrafilter, so the assumption
that F generates a non-g-point ultrafilter is weaker than that F generates
a non-rapid ultrafilter.

To modify the proof of Theorem 2.2 to fit in the weaker assumption, just
take a function 7w from w to w \ {0} which witnesses that the ultrafilter
generated by F is not a g-point. Then for any X € F there are infinitely
many m € w \ {0} for which #71({m}) N X has at least two elements.
Define px for each X € F in the same way as the original proof.

Let u(non-g-point) be the smallest size of a subset F of [w]“ which
generates a non-qg-point ultrafilter. Clearly we have the inequality u <
u(non-g-point) < u(non-rapid), and so u < 9 implies u = u(non-g-point).
Now we can refine the first inequality of Corollary 3.2 to the inequality
bp’ < u(non-g-point). Also, instead of the first equality of Question 3.4,
we should ask whether u(non-g-point) = u is proved under ZFC.
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