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1 Fremlin-Miller Covering Principle

The following result is stated in A. Miller [3] as an answer to a question by David
Fremlin:

Theorem 1. (Theorem 3.7 in A. Miller [3]) The following holds in the generic
extension obtained by adding at least X3 Cohen reals to a model of CH:

(1.1) For any family F of Borel sets with | F | = Ry such that (\F = 0, there is
a subfamily F' C F with | F'| < Ny such that NF' = 0.

Note that by moving to complements of elements of F, the assertion (1.1) can be
also conceived as a covering property resembling Lindel6f property of topological
spaces. Thus we shall call here the property (1.1) the Fremlin-Miller Covering
Principle. More generally, for cardinals x > ), let us denote with FMCP(x, A) the
following parametrized Fremlin-Miller Covering Principle:

FMCP(k,)): For any family F of Borel sets with | F | < & such that (| F = @
there is 7’ € [F]<* such that " F' = 0.
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Lemma 2. ([3]) (0) For cardinals « > ' > XN > A\, FMCP(k, ) implies
FMCP(x', X).

(1) FMCP(k, k) holds for any cardinal .

(2) FMCP(c*,¢) does not hold.

(3) FMCP(Ry, R;) does not hold. |

(4) Ifk is one ofa, b, ... or b* then FMCP(x*, k) does not hold.

Proof. (0),(1): Trivial by definition.
(2): Let A be a maximal almost disjoint family C [w]™® of cardinality ¢. For
each a € A, let
X, = {z € P(w) : z is almost disjoint from a}.
Then X, € Borel(P(w)) for all a € A and [, Xa = 0 by the maximality of A
but (e 4 Xa # 0 for any A’ C A.
(3): Let ({fa)a<wss (98)s<wr) be a Hausdorff gap. For each a < wi, let

Xa={f€“W : fo <*f<*ga}.

Then X,’s are Borel sets and [ X, = 0 but N,y Xo # 0 for any countable

I Q wi.
(4): Similarly to (2) and (3). 0 (Lemma 2)

a<wi

By Lemma 2, “N; < k < ¢ and FMCP(k, X;)” is the first non-trivial instance of
the principle FMCP(k, ).

It is easy to show that the following principle for cardinals k < X is a general-
ization of the corresponding parametrized Fremlin-Miller Covering Principle:

GFMCP(k,)): For any projective relation R C R?, and X € []R]'<", if X is
unbounded in (R, R), there is X, € [X]<* such that X, is unbounded
in (R, R).

Here we say X is unbounded in (R, R) if
VreR3Ize X ~(zRr)
holds.
Proposition 3. GFMCP(k, \) implies FMCP(k, \) for any cardinals k > A.

Proof. Assume that GFMCP(k, )\) holds and suppose that (X, : o < §) is a
sequence of Borel subsets of R for some § < & such that [),s Xa = 0.

For a < 6, let co be a Borel code of X, and let X* = {cy : a < §}.

For any z € R, let



the Borel set coded by z, if z is a Borel code

0, otherwise.
Let R C R? be defined by
z Ry 4 B, is a non empty subset of B,
for z, y € R. The relation R is easily seen to be IIl. Clearly, we have
(1.3) X isunbounded in (R,R) & ({B;:z€ X} =10

for any X C R. In particular, X* above is unbounded in (R, R). By GFMCP(k, 1),
there is X** C X* of cardinality < A such that X** is already unbounded in (R, R).
Thus, again by (1.3), Nee; Xoa =0 for I = {a <6 : ¢, € X**}. O (Proposition 3)

The proof of Theorem 1 in [3] can be recast to show the following consistency
result on GFMCP(c, R,):

Theorem 4. Let k < u be regular cardinals. Suppose that P(,}, a < p are posets
such that

(14) Proy & Pyoy for all o < p;

(1.5) P= Hﬁ‘:y P, satisfies the c.c.c.;

(1.6) [Py | < &=k, Kt < p.
Then |p “GFMCP(u,x*)”.

We shall give the details of the proof of Theorem 4 in the next section.

The formulation of GFMCP(k, R,) has a certain resemblance to that of HP(R;)
of J. Brendle and S. Fuchino [1]. This feeling is also supported by the fact that
they both hold in Cohen models. The following proposition shows however that
these principles are rather independent to each other:

Proposition 5. (1) ¢>R; A GFMCP(c,R;) A —~HP(R;) is consistent.
(2) -~GFMCP(N3,R;) A HP(R;) is consistent.

Proof. (1): The arguments used in the proof of Theorem 4 are also valid for the
generic extension with (measure theoretic) side-by-side product of random forcing.
It is known that HP(X;) does not hold in a random extension (see [1]).

(2): In a model of HP(R;) A ¢ = N we have “GFMCP(R3, ;) by Lemma
2,(2). 0 (Proposition 5)

Problem 1. Is ~GFMCP(c,R2) A HP(R;) consistent under ¢ > N3 ¢



2 Proof of the consistency result

In this section we prove Theorem 4.
Let & < u be regular cardinals and P(o}, o < p satisfy (1.4), (1.5) and (1.6).
For X C p, we denote

(21) Px =15y P

Thus P = P,. We assume that finite support product is introduced just as in [1].
In particular, we have Px <Py <Pforall X CY C .

A bijection f : 4 — p induces an automorphism of P and this induces in turn
an automorphism on P-names. We shall denote both of these automorphisms by
f.

All of the following Lemmas 6, 7 and 8 are folklore:

Lemma 6. Suppose that X C u and ¢, £ < § are P-names of elements of H(X:)
(in the sense of V¥ ) such that supp(z¢) C X for all £ < 4. If

(2.2) X\ U{supp(z¢) : € < 8} is uncountable,
then we have
(2.3)  |Fp“(HQ)VIC ] {3, : £ <6}, ...,€) < (H(R),{ze : £ <6},...,€)".

Proof. Suppose that p |lp “ <H(N1),‘{.’fg : £ <6}, ..., €) E 3zp(z,01,...,8s) " for 8
Lzp-formula ¢ and Px-names a;,..., ay, of elements of H(X;). By the Tarski-Vaught
criterion, it is enough to show that

plFe “ (HQR), {ge : £ <68}, ..., €) Ep(éa,...,0n)"

for some Px-name ¢ of an element of H(X,).
By (1.5), we may assume without loss of generality that

(2.4) supp(ay),...,supp(a,) are all countable.
By (2.2), we may assume that supp(p) € X. Let
(2.5) X’ = |J{supp(s¢) : € < 8} UU{supp(a:) : i € n+ 1\ 1} Usupp(p).

By the assumptions above, we have X' C X. By (2.2) and (2.4), X \ X’ is still
uncountable. By Maximal Principle, there is a P-name b of an element of H(X;)
such that

plFp“ (H®), {&e : € <8}, €) = (b, a1, vy Gn) .
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By (1.5), we can find such b with countable supp(b).
Let f: u — u be a bijection such that

f 1 X' =idx and f"supp(h) C X.
Let ¢ = f(b). Then ¢ is a P-name and
plle “ (HR1), {2¢ : £ <6}, €) = 0(é 01,00, Gn) ",
0 (Lemma 6)

Lemma 7. Suppose that X C p, p\ X is infinite and Xo C pu\ X is countable.
Let ¢, £ < 0 be P-names of elements of H(R,) (in the sense of V?) such that
supp(z¢) € X for all £ < 4.

IfplFp “ (H(Xy), {&¢ : £ <6},...,€) =" for some p € Px and Lzrp-sentence

¢ then we have p|Fpxux, “ (H(R1), {2 : £ <6},...,€) = .
Thus we have

I “ (H(Ry)VICNXUX) (50 : € < 6},...,€) = (HO)VO, {d¢ : €< 6},..., e)

Proof. It is enough to show the following (2.6) ,, for all Lzp-formula v = (3, ..., Zp)
by induction on : : |

(2.6)y For any P-names dy,..., dy, of elements of H(R,;) such that
(2.6a) supp(a;) C XUXofori€n+1\1and
(2.6b) Xo\ U{suppa; : i € n+ 1)\ 1} is infinite,
if ¢ € Pxux, and ¢ <p p, then
e “ (HR), {#¢ : £ <6},..., €) = (a1, ..y Gn)”
if and only if
2l Py “ (RO, (¢ : € < 8}, 0, €) | P(d1, s i) .

" The crucial step in the induction proof of (2.6) 4 is when 9(z;, ..., Z,) is of the form
Azn(z, 24, -, Tn)-

‘Suppose that @;,..., @, are P-names of elements of H(X;) satisfying (2.6a) and
(26b), q€Pxux,, g<pp and

gll—p “(HR), {&¢ : € <8}, ..., €) = ¥(ay, ..., a5)".

Then there is a P-name a of an element of H(X,) such that

q “—P ¢ (H(Nl)’ {j:f 1§ < 6}’ ooy G) |= ?7(&, a, ~~°’dn) ”.
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By (1.5), we may assume that supp(a) is countable. Let f : 4 — p be a bijection
such that

(27) f rX' = idxl
where X’ = X U|J{supp(&;) : i € n+ 1\ 1} Usupp(q);

(2.8)  f"(supp(r) Usupp(d)) € X U X, and
(2.9) Xo\ (U{supp(é:) : i € n+ 1\ 1} Usupp(a)) is infinite.

Then by induction’s hypothesis, we have

q "_PXUXO “ (H(Nl)a {:tE €< 6}’ sy G) '= n(f(d), A1y eery dn) .
It follows that

q ”-PXUXO ¢ <H(N1)’ {z'f : f < 6}a sy G) # 11)(@1, "-)dn) .

The “only if” direction of this induction step can be shown similarly and more
easily. QO (Lemma 7)

If G is a (V, Q)-generic set for a poset Q and M is a set, we denote with M[G]
the set {2¢ : £ € V@n M}. |

Lemma 8. Suppose that Q is a poset and P € M < H(0) for sufficiently large
reqular 8. If G is a (V, Q)-generic set then we have

(2.10) MIG] < H(6)[G).

Proof. Note that H(8)[G] = H(8)VI€l. We check again the forcing version of
Tarski-Vaught criterion.
Suppose that

(211) D ""Q “H(e) % ax‘P(xa @1y ey dn) ?

for Lzp-formula ¢ and Q-names d;,..., G, of elements of M. We may assume that
ay,..., 0, € M. (2.11) is equivalent to

H(6) = plFq “3zp(z, a1, ..  Gn) "

Then by elementarity we have

M Ep|o“Ize(z,d1,...,0n)".
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It follows that there is some ¢ € V¥ N M such that M = pllg “@(@, a1, ..., @n) 7.
By elementarity of M this is equivalent to H(6) &= p|lq “ ¥(a, a1, ..., a,)” This, in
turn, is equivalent to p |q “H(0) k= ¢(a, a1, ..., an) . 0 (Lemma 8)

Proof of Theorem 4: Suppose that &, 4, P(a}, @ < p, P are as in Theorem 4,
p € P and '

plFp “{%s : @ < d} is unbounded in H(R;) with respect to
R={(z,y) : H(X) E ¢(z,¥,4)}”

where § < K, ¢ is a Lzp-formula and a is a P-name of an element of H(R;).

Let X C X be such that X 2 | J{supp(z4) : & < 8} Usupp(p) Usupp(a). Then
| X | < k and X \ {supp(Z4) : a < 8} is uncountable.

Let G be a (V,Px)-generic filter with p € G and let § be a sufficiently large
regular cardinal. By Lemma 7, we have

(2.12)

(2.13) H()[G] = |Fr, “{2S : a < 6} is unbounded in H(R,;) with respect to R”.
Let M < H(6) be such that
(2.14) P, {4 : a < 6} € M;

(2.15) [M]* C M; and
(2.16) | M| < &.

The last two conditions are possible since k*° = k. By Lemma 8, we have

(2.17) M[G] < H(9)[G]

and hence

(2.18) MI[G] = |Fe, “{2S : o < 6} is unbounded in H(R;) with respect to R”.

Note that P, is an element of M but not P,\y for Y as below and thus we cannot
apply the elementary submodel argument to the latter poset.

Let Y = §N M. Since |Y | < & by (2.16), it is enough to show the following
claim:

Claim 8.1. H(0)[G] E |Fp,x “{25 : a € Y} is unbounded in H(R;)
with respect to R”.

I In the following we work always in H(6)[G]. Suppose that g € P,\x and % is a
P,\x-name of an element of H(X;). Let Z = supp(#) Usupp(p). Let Xo € M be a
countable subset of u disjoint from Y UZ. f: pu\ X — p\ X be a bijection such
that '
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(2.19) f"ZCYUX,and f Y = idy.

Note that f(&) is a Px,-name of an element of H(R;). By (1.5) and (2.15), we may
assume that f(z) € M. Also note that Px, = P,,.
By (2.18), there are 7 <p,_ f(q) and o* € 6N M(=Y) such that

(220) M[G] k=7 ey, “ (25 R F(2))”.

By (2.17), it follows that 7 |F-p,, “~(zS R f(2))".
By Lemma 6, it follows that

(2'21) T ”'-P“\x ¢ _'(j:g' R f(z)) 7.

Let r = f~1(7). Then r <p,x ¢- By mapping the parameters in (2.21) by 1, we
obtain

(2.22) rle,x “—~zS R%)".
Since q and £ were arbitrary, it follows that
(223) |Fp,x “{4§ : @ € Y} is unbounded in H(R;) with respect to R”.

— (Claim 8.1)
0 (Theorem 4)
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