A generalization of a problem of Fremlin

中部大学・工学部・理学教室 渕野 昌 (Sakaé Fuchino)*

Department of Natural Science and Mathematics School of Engineering, Chubu University Kasugai, Japan

fuchino@isc.chubu.ac.jp

February 29, 2008

1 Fremlin-Miller Covering Principle

The following result is stated in A. Miller [3] as an answer to a question by David Fremlin:

Theorem 1. (Theorem 3.7 in A. Miller [3]) The following holds in the generic extension obtained by adding at least \aleph_3 Cohen reals to a model of CH:

(1.1) For any family \mathcal{F} of Borel sets with $|\mathcal{F}| = \aleph_2$ such that $\bigcap \mathcal{F} = \emptyset$, there is a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ with $|\mathcal{F}'| \leq \aleph_1$ such that $\bigcap \mathcal{F}' = \emptyset$.

Note that by moving to complements of elements of \mathcal{F} , the assertion (1.1) can be also conceived as a covering property resembling Lindelöf property of topological spaces. Thus we shall call here the property (1.1) the Fremlin-Miller Covering Principle. More generally, for cardinals $\kappa \geq \lambda$, let us denote with FMCP(κ, λ) the following parametrized Fremlin-Miller Covering Principle:

FMCP(κ, λ): For any family \mathcal{F} of Borel sets with $|\mathcal{F}| < \kappa$ such that $\bigcap \mathcal{F} = \emptyset$ there is $\mathcal{F}' \in [\mathcal{F}]^{<\lambda}$ such that $\bigcap \mathcal{F}' = \emptyset$.

^{*}Supported by Grant-in-Aid for Scientific Research (C) No. 19540152 of the Ministry of Education, Culture, Sports, Science and Technology Japan.

Lemma 2. ([3]) (0) For cardinals $\kappa \geq \kappa' \geq \lambda' \geq \lambda$, FMCP (κ, λ) implies FMCP (κ', λ') .

- (1) FMCP(κ, κ) holds for any cardinal κ .
- (2) $FMCP(c^+, c)$ does not hold.
- (3) FMCP(\aleph_2, \aleph_1) does not hold.
- (4) If κ is one of \mathfrak{a} , \mathfrak{b} , ... or \mathfrak{b}^* then $FMCP(\kappa^+, \kappa)$ does not hold.

Proof. (0), (1): Trivial by definition.

(2): Let \mathcal{A} be a maximal almost disjoint family $\subseteq [\omega]^{\aleph_0}$ of cardinality \mathfrak{c} . For each $a \in \mathcal{A}$, let

$$X_a = \{x \in \mathcal{P}(\omega) : x \text{ is almost disjoint from } a\}.$$

Then $X_a \in Borel(\mathcal{P}(\omega))$ for all $a \in \mathcal{A}$ and $\bigcap_{a \in \mathcal{A}} X_a = \emptyset$ by the maximality of \mathcal{A} but $\bigcap_{a \in \mathcal{A}'} X_a \neq \emptyset$ for any $A' \subsetneq A$.

(3): Let $\langle \langle f_{\alpha} \rangle_{\alpha < \omega_1}, \langle g_{\beta} \rangle_{\beta < \omega_1} \rangle$ be a Hausdorff gap. For each $\alpha < \omega_1$, let $X_{\alpha} = \{ f \in {}^{\omega}\omega : f_{\alpha} \leq^* f \leq^* g_{\alpha} \}.$

Then X_{α} 's are Borel sets and $\bigcap_{\alpha<\omega_1}X_{\alpha}=\emptyset$ but $\bigcap_{\alpha\in I}X_{\alpha}\neq\emptyset$ for any countable $I\subseteq\omega_1$.

By Lemma 2, " $\aleph_2 < \kappa \le \mathfrak{c}$ and $\mathrm{FMCP}(\kappa, \aleph_2)$ " is the first non-trivial instance of the principle $\mathrm{FMCP}(\kappa, \lambda)$.

It is easy to show that the following principle for cardinals $\kappa \leq \lambda$ is a generalization of the corresponding parametrized Fremlin-Miller Covering Principle:

GFMCP(κ, λ): For any projective relation $R \subseteq \mathbb{R}^2$, and $X \in [\mathbb{R}]^{<\kappa}$, if X is unbounded in $\langle \mathbb{R}, R \rangle$, there is $X_0 \in [X]^{<\lambda}$ such that X_0 is unbounded in $\langle \mathbb{R}, R \rangle$.

Here we say X is unbounded in (\mathbb{R}, R) if

$$\forall r \in \mathbb{R} \ \exists x \in X \ \neg(x \ R \ r)$$

holds.

Proposition 3. GFMCP(κ, λ) implies FMCP(κ, λ) for any cardinals $\kappa \geq \lambda$.

Proof. Assume that GFMCP(κ, λ) holds and suppose that $\langle X_{\alpha} : \alpha < \delta \rangle$ is a sequence of Borel subsets of \mathbb{R} for some $\delta < \kappa$ such that $\bigcap_{\alpha < \delta} X_{\alpha} = \emptyset$.

For $\alpha < \delta$, let c_{α} be a Borel code of X_{α} and let $X^* = \{c_{\alpha} : \alpha < \delta\}$. For any $x \in \mathbb{R}$, let

(1.2)
$$B_x = \begin{cases} \text{the Borel set coded by } x, & \text{if } x \text{ is a Borel code} \\ \emptyset, & \text{otherwise.} \end{cases}$$

Let $R \subseteq \mathbb{R}^2$ be defined by

 $x R y \Leftrightarrow B_y$ is a non empty subset of B_x

for $x, y \in \mathbb{R}$. The relation R is easily seen to be Π_1^1 . Clearly, we have

(1.3)
$$X$$
 is unbounded in $(\mathbb{R}, R) \iff \bigcap \{B_x : x \in X\} = \emptyset$

for any $X \subseteq \mathbb{R}$. In particular, X^* above is unbounded in $\langle \mathbb{R}, R \rangle$. By GFMCP(κ, λ), there is $X^{**} \subseteq X^*$ of cardinality $< \lambda$ such that X^{**} is already unbounded in $\langle \mathbb{R}, R \rangle$. Thus, again by (1.3), $\bigcap_{\alpha \in I} X_{\alpha} = \emptyset$ for $I = \{\alpha < \delta : c_{\alpha} \in X^{**}\}$. \square (Proposition 3)

The proof of Theorem 1 in [3] can be recast to show the following consistency result on $GFMCP(c, \aleph_2)$:

Theorem 4. Let $\kappa < \mu$ be regular cardinals. Suppose that $\mathbb{P}_{\{\alpha\}}$, $\alpha < \mu$ are posets such that

- (1.4) $\mathbb{P}_{\{\alpha\}} \cong \mathbb{P}_{\{0\}} \text{ for all } \alpha < \mu;$
- (1.5) $\mathbb{P} = \prod_{\alpha < \mu}^{fin} \mathbb{P}_{\alpha}$ satisfies the c.c.c.;
- $(1.6) \quad |\mathbb{P}_{\{0\}}| \leq \kappa = \kappa^{\aleph_0}, \kappa^+ < \mu.$

Then $\Vdash_{\mathbb{P}}$ "GFMCP (μ, κ^+) ".

We shall give the details of the proof of Theorem 4 in the next section.

The formulation of GFMCP(κ, \aleph_2) has a certain resemblance to that of HP(\aleph_2) of J. Brendle and S. Fuchino [1]. This feeling is also supported by the fact that they both hold in Cohen models. The following proposition shows however that these principles are rather independent to each other:

Proposition 5. (1) $c \ge \aleph_3 \wedge GFMCP(c, \aleph_2) \wedge \neg HP(\aleph_2)$ is consistent.

- (2) $\neg GFMCP(\aleph_3, \aleph_2) \land HP(\aleph_2)$ is consistent.
- **Proof.** (1): The arguments used in the proof of Theorem 4 are also valid for the generic extension with (measure theoretic) side-by-side product of random forcing. It is known that $HP(\aleph_2)$ does not hold in a random extension (see [1]).
- (2): In a model of $HP(\aleph_2) \wedge \mathfrak{c} = \aleph_2$ we have $\neg GFMCP(\aleph_3, \aleph_2)$ by Lemma 2, (2). \square (Proposition 5)

Problem 1. Is $\neg GFMCP(c, \aleph_2) \land HP(\aleph_2)$ consistent under $c \geq \aleph_3$?

2 Proof of the consistency result

In this section we prove Theorem 4.

Let $\kappa < \mu$ be regular cardinals and $\mathbb{P}_{\{\alpha\}}$, $\alpha < \mu$ satisfy (1.4), (1.5) and (1.6). For $X \subseteq \mu$, we denote

(2.1)
$$\mathbb{P}_X = \prod_{\alpha \in X}^{fin} \mathbb{P}_{\alpha}.$$

Thus $\mathbb{P} = \mathbb{P}_{\mu}$. We assume that finite support product is introduced just as in [1]. In particular, we have $\mathbb{P}_X \leq \mathbb{P}_Y \leq \mathbb{P}$ for all $X \subseteq Y \subseteq \mu$.

A bijection $f: \mu \to \mu$ induces an automorphism of $\mathbb P$ and this induces in turn an automorphism on $\mathbb P$ -names. We shall denote both of these automorphisms by $\tilde f$.

All of the following Lemmas 6, 7 and 8 are folklore:

Lemma 6. Suppose that $X \subseteq \mu$ and \dot{x}_{ξ} , $\xi < \delta$ are \mathbb{P} -names of elements of $\mathcal{H}(\aleph_1)$ (in the sense of $V^{\mathbb{P}}$) such that $\operatorname{supp}(\dot{x}_{\xi}) \subseteq X$ for all $\xi < \delta$. If

(2.2) $X \setminus \bigcup \{ \sup(\dot{x}_{\xi}) : \xi < \delta \}$ is uncountable,

then we have

$$(2.3) \quad \|\vdash_{\mathbb{P}} \text{``} \langle \mathcal{H}(\aleph_1)^{V[\dot{G} \cap \mathbb{P}_X]}, \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \ \prec \ \langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \text{''}.$$

Proof. Suppose that $p \models_{\mathbb{P}} (\mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in) \models \exists x \varphi(x, \dot{a}_1, ..., \dot{a}_n)$ for a \mathcal{L}_{ZF} -formula φ and \mathbb{P}_X -names $\dot{a}_1, ..., \dot{a}_n$ of elements of $\mathcal{H}(\aleph_1)$. By the Tarski-Vaught criterion, it is enough to show that

$$p \Vdash_{\mathbb{P}} ``\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \varphi(\dot{c}, \dot{a}_1, ..., \dot{a}_n)"$$

for some \mathbb{P}_X -name \dot{c} of an element of $\mathcal{H}(\aleph_1)$.

By (1.5), we may assume without loss of generality that

(2.4) $\operatorname{supp}(\dot{a}_1), \dots, \operatorname{supp}(\dot{a}_n)$ are all countable.

By (2.2), we may assume that $supp(p) \subseteq X$. Let

$$(2.5) \quad X' = \bigcup \{ \operatorname{supp}(\dot{x}_{\xi}) : \xi < \delta \} \cup \bigcup \{ \operatorname{supp}(\dot{a}_{i}) : i \in n+1 \setminus 1 \} \cup \operatorname{supp}(p).$$

By the assumptions above, we have $X' \subseteq X$. By (2.2) and (2.4), $X \setminus X'$ is still uncountable. By Maximal Principle, there is a \mathbb{P} -name \dot{b} of an element of $\mathcal{H}(\aleph_1)$ such that

$$p \Vdash_{\mathbf{P}} ``\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \varphi(\dot{b}, \dot{a}_1, ..., \dot{a}_n) ".$$

By (1.5), we can find such \dot{b} with countable supp(\dot{b}).

Let $f: \mu \to \mu$ be a bijection such that

$$f \upharpoonright X' = id_{X'}$$
 and $f'' \operatorname{supp}(\dot{b}) \subseteq X$.

Let $\dot{c} = \tilde{f}(\dot{b})$. Then \dot{c} is a P-name and

$$p \Vdash_{\mathbf{P}} ``\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \varphi(\dot{c}, \dot{a}_1, ..., \dot{a}_n)".$$

(Lemma 6)

Lemma 7. Suppose that $X \subseteq \mu$, $\mu \setminus X$ is infinite and $X_0 \subseteq \mu \setminus X$ is countable. Let \dot{x}_{ξ} , $\xi < \delta$ be \mathbb{P} -names of elements of $\mathcal{H}(\aleph_1)$ (in the sense of $V^{\mathbb{P}}$) such that $\sup(\dot{x}_{\xi}) \subseteq X$ for all $\xi < \delta$.

If $p \Vdash_{\mathbb{P}}$ " $\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \varphi$ " for some $p \in \mathbb{P}_X$ and $\mathcal{L}_{\mathbf{ZF}}$ -sentence φ then we have $p \Vdash_{\mathbb{P}_{X \cup X_0}}$ " $\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \varphi$ ".

Thus we have

$$\Vdash_{\mathbf{P}} `` \langle \mathcal{H}(\aleph_1)^{V[G \cap (X \cup X_0)]}, \{\dot{x}_{\xi} \, : \, \xi < \delta\}, \ldots, \in \rangle \equiv \langle \mathcal{H}(\aleph_1)^{V[G]}, \{\dot{x}_{\xi} \, : \, \xi < \delta\}, \ldots, \in \rangle ".$$

Proof. It is enough to show the following (2.6) ψ for all \mathcal{L}_{ZF} -formula $\psi = \psi(x_1, ..., x_n)$ by induction on ψ :

 $(2.6)_{\psi}$ For any P-names $\dot{a}_1,\ldots,\dot{a}_n$ of elements of $\mathcal{H}(\aleph_1)$ such that

(2.6a)
$$\operatorname{supp}(\dot{a}_i) \subseteq X \cup X_0$$
 for $i \in n+1 \setminus 1$ and

(2.6b)
$$X_0 \setminus \bigcup \{ \text{supp } \dot{a}_i : i \in n+1 \setminus 1 \}$$
 is infinite,

if $q \in \mathbb{P}_{X \cup X_0}$ and $q \leq_{\mathbb{P}} p$, then

$$q \Vdash_{\mathbb{P}} `` \langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} \, : \, \xi < \delta\}, ..., \in \rangle \models \psi(\dot{a}_1, ..., \dot{a}_n) "$$

if and only if

$$q \Vdash_{\mathbf{P}_{X \cup X_0}}$$
 " $\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in \rangle \models \psi(\dot{a}_1, ..., \dot{a}_n)$ ".

The crucial step in the induction proof of (2.6) ψ is when $\psi(x_1, ..., x_n)$ is of the form $\exists x \eta(x, x_1, ..., x_n)$.

Suppose that $\dot{a}_1,...,\dot{a}_n$ are P-names of elements of $\mathcal{H}(\aleph_1)$ satisfying (2.6a) and (2.6b), $q \in \mathbb{P}_{X \cup X_0}$, $q \leq_{\mathbb{P}} p$ and

$$q \Vdash_{\mathbf{P}} ``\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} \,:\, \xi < \delta\}, ..., \in \rangle \models \psi(\dot{a}_1, ..., \dot{a}_n) ".$$

Then there is a P-name \dot{a} of an element of $\mathcal{H}(\aleph_1)$ such that

$$q \Vdash_{\mathbf{P}} (\mathcal{H}(\aleph_1), \{\dot{x}_{\xi} : \xi < \delta\}, ..., \in) \models \eta(\dot{a}, \dot{a}_1, ..., \dot{a}_n)$$
.

By (1.5), we may assume that supp(\dot{a}) is countable. Let $f: \mu \to \mu$ be a bijection such that

$$(2.7) \quad f \upharpoonright X' = id_{X'}$$

where $X' = X \cup \bigcup \{ \operatorname{supp}(\dot{a}_i) : i \in n+1 \setminus 1 \} \cup \operatorname{supp}(q);$

- (2.8) $f''(\operatorname{supp}(r) \cup \operatorname{supp}(\dot{a})) \subseteq X \cup X_0$ and
- (2.9) $X_0 \setminus (\bigcup \{ \operatorname{supp}(\dot{a}_i) : i \in n+1 \setminus 1 \} \cup \operatorname{supp}(\dot{a}))$ is infinite.

Then by induction's hypothesis, we have

$$q \Vdash_{\mathbb{P}_{X \cup X_0}} ``\langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} \,:\, \xi < \delta\}, ..., \in \rangle \models \eta(\tilde{f}(\dot{a}), \dot{a}_1, ..., \dot{a}_n)".$$

It follows that

$$q \Vdash_{\mathbb{P}_{X \cup X_0}} \text{``} \langle \mathcal{H}(\aleph_1), \{\dot{x}_{\xi} \, : \, \xi < \delta\}, ..., \in \rangle \models \psi(\dot{a}_1, ..., \dot{a}_n) \text{''}.$$

The "only if" direction of this induction step can be shown similarly and more easily.

If G is a (V, \mathbb{Q}) -generic set for a poset \mathbb{Q} and M is a set, we denote with M[G] the set $\{\dot{x}^G: \dot{x} \in V^{\mathbb{Q}} \cap M\}$.

Lemma 8. Suppose that \mathbb{Q} is a poset and $\mathbb{P} \in M \prec \mathcal{H}(\theta)$ for sufficiently large regular θ . If G is a (V, \mathbb{Q}) -generic set then we have

(2.10)
$$M[G] \prec \mathcal{H}(\theta)[G]$$
.

Proof. Note that $\mathcal{H}(\theta)[G] = \mathcal{H}(\theta)^{V[G]}$. We check again the forcing version of Tarski-Vaught criterion.

Suppose that

(2.11)
$$p \Vdash_{\mathbb{Q}} \mathcal{H}(\theta) \models \exists x \varphi(x, \dot{a}_1, ..., \dot{a}_n)$$

for \mathcal{L}_{ZF} -formula φ and \mathbb{Q} -names $\dot{a}_1,...,\dot{a}_n$ of elements of M. We may assume that $\dot{a}_1,...,\dot{a}_n \in M$. (2.11) is equivalent to

$$\mathcal{H}(\theta) \models p \Vdash_{\mathbb{Q}} \text{``} \exists x \varphi(x, \dot{a}_1, ..., \dot{a}_n)$$
''.

Then by elementarity we have

$$M \models p \Vdash_{\mathbf{Q}} "\exists x \varphi(x, \dot{a}_1, ..., \dot{a}_n) ".$$

It follows that there is some $\dot{a} \in V^{\mathbb{P}} \cap M$ such that $M \models p \Vdash_{\mathbb{Q}} "\varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n)$ ". By elementarity of M this is equivalent to $\mathcal{H}(\theta) \models p \Vdash_{\mathbb{Q}} "\varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n)$ " This, in turn, is equivalent to $p \Vdash_{\mathbb{Q}} "\mathcal{H}(\theta) \models \varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n)$ ". \square (Lemma 8)

Proof of Theorem 4: Suppose that κ , μ , $\mathbb{P}_{\{\alpha\}}$, $\alpha < \mu$, \mathbb{P} are as in Theorem 4, $p \in \mathbb{P}$ and

(2.12)
$$p \Vdash_{\mathbb{P}} \{\dot{x}_{\alpha} : \alpha < \delta\} \text{ is unbounded in } \mathcal{H}(\aleph_1) \text{ with respect to } R = \{\langle x, y \rangle : \mathcal{H}(\aleph_1) \models \varphi(x, y, \dot{a})\}$$

where $\delta \leq \kappa$, φ is a \mathcal{L}_{ZF} -formula and \dot{a} is a \mathbb{P} -name of an element of $\mathcal{H}(\aleph_1)$.

Let $X \subseteq \lambda$ be such that $X \supseteq \bigcup \{ \operatorname{supp}(\dot{x}_{\alpha}) : \alpha < \delta \} \cup \operatorname{supp}(p) \cup \operatorname{supp}(\dot{a})$. Then $|X| < \kappa$ and $X \setminus \{ \operatorname{supp}(\dot{x}_{\alpha}) : \alpha < \delta \}$ is uncountable.

Let G be a (V, \mathbb{P}_X) -generic filter with $p \in G$ and let θ be a sufficiently large regular cardinal. By Lemma 7, we have

(2.13) $\mathcal{H}(\theta)[G] \models \| - \mathbb{P}_{\omega} \| \{\dot{x}_{\alpha}^{G} : \alpha < \delta\}$ is unbounded in $\mathcal{H}(\aleph_{1})$ with respect to R.

Let $M \prec \mathcal{H}(\theta)$ be such that

(2.14)
$$\mathbb{P}$$
, $\{\dot{x}_{\alpha}: \alpha < \delta\} \in M$;

$$(2.15)$$
 $[M]^{\aleph_0} \subseteq M$; and

$$(2.16) |M| \le \kappa.$$

The last two conditions are possible since $\kappa^{\aleph_0} = \kappa$. By Lemma 8, we have

(2.17)
$$M[G] \prec \mathcal{H}(\theta)[G]$$

and hence

(2.18)
$$M[G] \models \Vdash_{\mathbb{P}_{\omega}} {}^{"}\{\dot{x}_{\alpha}^{G} : \alpha < \delta\}$$
 is unbounded in $\mathcal{H}(\aleph_{1})$ with respect to R ".

Note that \mathbb{P}_{ω} is an element of M but not $\mathbb{P}_{\mu \setminus Y}$ for Y as below and thus we cannot apply the elementary submodel argument to the latter poset.

Let $Y = \delta \cap M$. Since $|Y| \leq \kappa$ by (2.16), it is enough to show the following claim:

Claim 8.1.
$$\mathcal{H}(\theta)[G] \models \Vdash_{\mathbb{P}_{\mu \setminus X}} "\{\dot{x}_{\alpha}^G : \alpha \in Y\} \text{ is unbounded in } \mathcal{H}(\aleph_1)$$
 with respect to R ".

⊢ In the following we work always in $\mathcal{H}(\theta)[G]$. Suppose that $q \in \mathbb{P}_{\mu \setminus X}$ and \dot{x} is a $\mathbb{P}_{\mu \setminus X}$ -name of an element of $\mathcal{H}(\aleph_1)$. Let $Z = \text{supp}(\dot{x}) \cup \text{supp}(p)$. Let $X_0 \in M$ be a countable subset of μ disjoint from $Y \cup Z$. $f : \mu \setminus X \to \mu \setminus X$ be a bijection such that

(2.19)
$$f''Z \subseteq Y \cup X_0$$
 and $f \upharpoonright Y = id_Y$.

Note that $\tilde{f}(\dot{x})$ is a \mathbb{P}_{X_0} -name of an element of $\mathcal{H}(\aleph_1)$. By (1.5) and (2.15), we may assume that $\tilde{f}(\dot{x}) \in M$. Also note that $\mathbb{P}_{X_0} \cong \mathbb{P}_{\omega}$.

By (2.18), there are $\tilde{r} \leq_{\mathbb{P}_{X_0}} \tilde{f}(q)$ and $\alpha^* \in \delta \cap M (=Y)$ such that

$$(2.20) \quad M[G] \models \tilde{r} \Vdash_{\mathbb{P}_{X_0}} \text{``} \neg (\dot{x}_{\alpha^*}^G R \, \tilde{f}(\dot{x})) \text{''}.$$

By (2.17), it follows that $\tilde{r} \Vdash_{\mathbb{P}_{X_0}}$ " $\neg (\dot{x}_{\alpha^*}^G R \tilde{f}(\dot{x}))$ ". By Lemma 6, it follows that

$$(2.21) \quad \tilde{r} \not\Vdash_{\mathbf{P}_{\mu \backslash X}} \text{``} \neg (\dot{x}_{\alpha^*}^G R \tilde{f}(\dot{x})) \text{''}.$$

Let $r = \tilde{f}^{-1}(\tilde{r})$. Then $r \leq_{\mathbb{P}_{\mu \setminus X}} q$. By mapping the parameters in (2.21) by \tilde{f}^{-1} , we obtain

$$(2.22) \quad r \Vdash_{\mathbf{P}_{\mu \setminus X}} \text{``} \neg (\dot{x}_{\alpha^*}^G R \, \dot{x}) \text{''}.$$

Since q and \dot{x} were arbitrary, it follows that

(2.23)
$$\Vdash_{\mathbf{P}_{\mu \setminus X}}$$
 " $\{\dot{x}_{\alpha}^G : \alpha \in Y\}$ is unbounded in $\mathcal{H}(\aleph_1)$ with respect to R ".

 ⊢ (Claim 8.1)

☐ (Theorem 4)

References

- [1] J. Brendle and S. Fuchino, Coloring ordinals by reals, Fundamenta Mathematicae, 196, No.2 (2007), 151-195.
- [2] J. Jasinski and D.H. Fremlin, G_{δ} covers and large thin sets of reals, Proceedings of London Mathematical Society (3) 53 (1986), 518-538.
- [3] A. Miller, Infinite Combinatorics and Definability, Annals of Pure and Applied Logic, 41 (1989), 179-203.