A generalization of a problem of Fremlin

中部大学・工学部・理学教室 滝野 昌 (Sakaé Fuchino)*
Department of Natural Science and Mathematics
School of Engineering, Chubu University
Kasugai, Japan
fuchino@isc.chubu.ac.jp
February 29, 2008

1 Fremlin-Miller Covering Principle

The following result is stated in A. Miller [3] as an answer to a question by David Fremlin:

Theorem 1. (Theorem 3.7 in A. Miller [3]) The following holds in the generic extension obtained by adding at least \(\aleph_3 \) Cohen reals to a model of CH:

\[
\text{(1.1) \quad For any family } \mathcal{F} \text{ of Borel sets with } |\mathcal{F}| = \aleph_2 \text{ such that } \bigcap \mathcal{F} = \emptyset, \text{ there is a subfamily } \mathcal{F}' \subseteq \mathcal{F} \text{ with } |\mathcal{F}'| \leq \aleph_1 \text{ such that } \bigcap \mathcal{F}' = \emptyset.
\]

Note that by moving to complements of elements of \(\mathcal{F} \), the assertion (1.1) can be also conceived as a covering property resembling Lindelöf property of topological spaces. Thus we shall call here the property (1.1) the Fremlin-Miller Covering Principle. More generally, for cardinals \(\kappa \geq \lambda \), let us denote with FMCP(\(\kappa, \lambda \)) the following parametrized Fremlin-Miller Covering Principle:

\[
\text{FMCP}(\kappa, \lambda): \quad \text{For any family } \mathcal{F} \text{ of Borel sets with } |\mathcal{F}| < \kappa \text{ such that } \bigcap \mathcal{F} = \emptyset \text{ there is } \mathcal{F}' \in [\mathcal{F}]^{< \lambda} \text{ such that } \bigcap \mathcal{F}' = \emptyset.
\]

*Supported by Grant-in-Aid for Scientific Research (C) No. 19540152 of the Ministry of Education, Culture, Sports, Science and Technology Japan.
Lemma 2. ([3]) (0) For cardinals $\kappa \geq \kappa' \geq \lambda' \geq \lambda$, FMCP($\kappa, \lambda$) implies FMCP($\kappa', \lambda'$).

(1) FMCP(κ, κ) holds for any cardinal κ.

(2) FMCP(c^+, c) does not hold.

(3) FMCP(\aleph_2, \aleph_1) does not hold.

(4) If κ is one of a, b, \ldots or b^* then FMCP(κ^+, κ) does not hold.

Proof. (0), (1): Trivial by definition.

(2): Let \mathcal{A} be a maximal almost disjoint family $\subseteq [\omega]^\omega$ of cardinality c. For each $a \in \mathcal{A}$, let

$$X_a = \{x \in P(\omega) : x \text{ is almost disjoint from } a\}.$$ Then $X_a \in \text{Borel}(P(\omega))$ for all $a \in \mathcal{A}$ and $\bigcap_{a \in \mathcal{A}} X_a = \emptyset$ by the maximality of \mathcal{A} but $\bigcap_{a \in \mathcal{A'}} X_a \neq \emptyset$ for any $\mathcal{A}' \subsetneq \mathcal{A}$.

(3): Let $(f_\alpha)_{\alpha < \omega_1}, (g_\beta)_{\beta < \omega_1}$ be a Hausdorff gap. For each $\alpha < \omega_1$, let

$$X_\alpha = \{f \in \omega^\omega : f_\alpha \leq^* f \leq^* g_\alpha\}.$$ Then X_α's are Borel sets and $\bigcap_{\alpha < \omega_1} X_\alpha = \emptyset$ but $\bigcap_{\alpha \in I} X_\alpha \neq \emptyset$ for any countable $I \subseteq \omega_1$.

(4): Similarly to (2) and (3).

By Lemma 2, "$\aleph_2 < \kappa \leq c$ and FMCP(κ, \aleph_2)" is the first non-trivial instance of the principle FMCP(κ, λ).

It is easy to show that the following principle for cardinals $\kappa \leq \lambda$ is a generalization of the corresponding parametrized Fremlin-Miller Covering Principle:

GFMCP(κ, λ): For any projective relation $R \subseteq \mathbb{R}^2$, and $X \in [\mathbb{R}]^{<\kappa}$, if X is unbounded in $\langle \mathbb{R}, R \rangle$, there is $X_0 \in [X]^{<\lambda}$ such that X_0 is unbounded in $\langle \mathbb{R}, R \rangle$.

Here we say X is unbounded in $\langle \mathbb{R}, R \rangle$ if

$$\forall r \in \mathbb{R} \exists x \in X - (x R r)$$

holds.

Proposition 3. GFMCP(κ, λ) implies FMCP(κ, λ) for any cardinals $\kappa \geq \lambda$.

Proof. Assume that GFMCP(κ, λ) holds and suppose that $\langle X_\alpha : \alpha < \delta \rangle$ is a sequence of Borel subsets of \mathbb{R} for some $\delta < \kappa$ such that $\bigcap_{\alpha < \delta} X_\alpha = \emptyset$.

For $\alpha < \delta$, let c_α be a Borel code of X_α and let $X^* = \{c_\alpha : \alpha < \delta\}$.

For any $x \in \mathbb{R}$, let
\[(1.2) \quad B_x = \begin{cases} \text{the Borel set coded by } x, & \text{if } x \text{ is a Borel code} \\ \emptyset, & \text{otherwise.} \end{cases} \]

Let \(R \subseteq \mathbb{R}^2 \) be defined by

\[x R y \iff B_y \text{ is a non empty subset of } B_x \]

for \(x, y \in \mathbb{R} \). The relation \(R \) is easily seen to be \(\Pi^1_1 \). Clearly, we have

\[(1.3) \quad \text{X is unbounded in } \langle \mathbb{R}, R \rangle \iff \bigcap \{B_x : x \in X\} = \emptyset \]

for any \(X \subseteq \mathbb{R} \). In particular, \(X^* \) above is unbounded in \(\langle \mathbb{R}, R \rangle \). By GFMCP(\(\kappa, \lambda \)), there is \(X^{**} \subseteq X^* \) of cardinality \(< \lambda \) such that \(X^{**} \) is already unbounded in \(\langle \mathbb{R}, R \rangle \).

Thus, again by \((1.3) \), \(\bigcap_{\alpha \in I} X_\alpha = \emptyset \) for \(I = \{\alpha < \delta : c_\alpha \in X^{**}\} \). \(\square \) (Proposition 3)

The proof of Theorem 1 in [3] can be recast to show the following consistency result on GFMCP(\(\kappa, \aleph_2 \)):

Theorem 4. Let \(\kappa < \mu \) be regular cardinals. Suppose that \(\mathbb{P}_{\{\alpha\}}, \alpha < \mu \) are posets such that

\[(1.4) \quad \mathbb{P}_{\{\alpha\}} \cong \mathbb{P}_{\{0\}} \text{ for all } \alpha < \mu; \]

\[(1.5) \quad \mathbb{P} = \prod_{\alpha < \mu}^{fin} \mathbb{P}_{\alpha} \text{ satisfies the c.c.c.}; \]

\[(1.6) \quad |\mathbb{P}_{\{0\}}| \leq \kappa = \kappa^{\aleph_0}, \kappa^+ < \mu. \]

Then \(\vdash \text{GFMCP}(\mu, \kappa^+) \).

We shall give the details of the proof of Theorem 4 in the next section.

The formulation of GFMCP(\(\kappa, \aleph_2 \)) has a certain resemblance to that of HP(\(\aleph_2 \)) of J. Brendle and S. Fuchino [1]. This feeling is also supported by the fact that they both hold in Cohen models. The following proposition shows however that these principles are rather independent to each other:

Proposition 5. (1) \(c \geq \aleph_3 \land \text{GFMCP}(\kappa, \aleph_2) \land \neg \text{HP}(\aleph_2) \) is consistent.

(2) \(\neg \text{GFMCP}(\aleph_3, \aleph_2) \land \text{HP}(\aleph_2) \) is consistent.

Proof. (1): The arguments used in the proof of Theorem 4 are also valid for the generic extension with (measure theoretic) side-by-side product of random forcing. It is known that \(\text{HP}(\aleph_2) \) does not hold in a random extension (see [1]).

(2): In a model of \(\text{HP}(\aleph_2) \land c = \aleph_2 \) we have \(\neg \text{GFMCP}(\aleph_3, \aleph_2) \) by Lemma 2, (2). \(\square \) (Proposition 5)

Problem 1. Is \(\neg \text{GFMCP}(\kappa, \aleph_2) \land \text{HP}(\aleph_2) \) consistent under \(c \geq \aleph_3 \)?
2 Proof of the consistency result

In this section we prove Theorem 4.

Let \(\kappa < \mu \) be regular cardinals and \(P(\alpha), \alpha < \mu \) satisfy (1.4), (1.5) and (1.6).

For \(X \subseteq \mu \), we denote
\[
(2.1) \quad P_X = \prod_{\alpha \in X}^{fin} P_\alpha.
\]

Thus \(P = P_\mu \). We assume that finite support product is introduced just as in [1]. In particular, we have \(P_X \leq P_Y \leq P \) for all \(X \subseteq Y \subseteq \mu \).

A bijection \(f : \mu \rightarrow \mu \) induces an automorphism of \(P \) and this induces in turn an automorphism on \(P \)-names. We shall denote both of these automorphisms by \(\tilde{f} \).

All of the following Lemmas 6, 7 and 8 are folklore:

Lemma 6. Suppose that \(X \subseteq \mu \) and \(\dot{x}_\xi, \xi < \delta \) are \(P \)-names of elements of \(H(\aleph_1) \) (in the sense of \(V^P \)) such that \(supp(\dot{x}_\xi) \subseteq X \) for all \(\xi < \delta \). If
\[
(2.2) \quad X \setminus \bigcup \{supp(\dot{x}_\xi) : \xi < \delta\} \text{ is uncountable,}
\]
then we have
\[
(2.3) \quad \models_P " < \langle H(\aleph_1), \{\dot{x}_\xi : \xi < \delta\}, \ldots, \epsilon \rangle \triangleright \langle H(\aleph_1), \{\dot{x}_\xi : \xi < \delta\}, \ldots, \epsilon \rangle " .
\]

Proof. Suppose that \(p \models " < \langle H(\aleph_1), \{\dot{x}_\xi : \xi < \delta\}, \ldots, \epsilon \rangle \models \exists x \varphi(x, \dot{a}_1, \ldots, \dot{a}_n) " \) for a \(\mathcal{L}_{ZF} \)-formula \(\varphi \) and \(P_X \)-names \(\dot{a}_1, \ldots, \dot{a}_n \) of elements of \(H(\aleph_1) \). By the Tarski-Vaught criterion, it is enough to show that
\[
p \models " < \langle H(\aleph_1), \{\dot{x}_\xi : \xi < \delta\}, \ldots, \epsilon \rangle \models \varphi(\dot{c}, \dot{a}_1, \ldots, \dot{a}_n) "
\]
for some \(P_X \)-name \(\dot{c} \) of an element of \(H(\aleph_1) \).

By (1.5), we may assume without loss of generality that
\[
(2.4) \quad supp(\dot{a}_1), \ldots, supp(\dot{a}_n) \text{ are all countable.}
\]

By (2.2), we may assume that \(supp(p) \subseteq X \). Let
\[
(2.5) \quad X' = \bigcup \{supp(\dot{x}_\xi) : \xi < \delta\} \cup \bigcup \{supp(\dot{a}_i) : i \in n+1 \setminus 1\} \cup supp(p).
\]

By the assumptions above, we have \(X' \subseteq X \). By (2.2) and (2.4), \(X \setminus X' \) is still uncountable. By Maximal Principle, there is a \(P \)-name \(\dot{b} \) of an element of \(H(\aleph_1) \) such that
\[
p \models " < \langle H(\aleph_1), \{\dot{x}_\xi : \xi < \delta\}, \ldots, \epsilon \rangle \models \varphi(\dot{b}, \dot{a}_1, \ldots, \dot{a}_n) " .
\]
By (1.5), we can find such \(b \) with countable \(\text{supp}(b) \).

Let \(f : \mu \to \mu \) be a bijection such that

\[
 f \upharpoonright X' = id_{X'} \text{ and } f'' \text{supp}(b) \subseteq X.
\]

Let \(\hat{c} = \tilde{f}(\dot{b}) \). Then \(\hat{c} \) is a \(P \)-name and

\[
p \models \varphi(\hat{c}, \dot{a}_1, \ldots, \dot{a}_n).
\]

\[\square \text{ (Lemma 6)}\]

Lemma 7. Suppose that \(X \subseteq \mu \), \(\mu \setminus X \) is infinite and \(X_0 \subseteq \mu \setminus X \) is countable. Let \(\dot{x}_\xi \), \(\xi < \delta \) be \(P \)-names of elements of \(\mathcal{H}(\aleph_1) \) (in the sense of \(V^P \)) such that \(\text{supp}({\dot{x}_\xi}) \subseteq X \) for all \(\xi < \delta \).

If \(p \models \varphi(\dot{x}_\xi, \ldots, \dot{a}_n) \) for some \(p \in \mathbb{P}_X \) and \(L_{\text{ZF}} \)-sentence \(\varphi \) then we have \(p \models \exists \dot{\eta}(\dot{x}_\xi, \ldots, \dot{a}_n) \).

Thus we have

\[
p \models \exists \dot{\eta}(\dot{x}_\xi, \ldots, \dot{a}_n).
\]

Proof. It is enough to show the following (2.6) for all \(L_{\text{ZF}} \)-formula \(\psi \) by induction on \(\psi \):

(2.6) \(\psi \) For any \(P \)-names \(\dot{a}_1, \ldots, \dot{a}_n \) of elements of \(\mathcal{H}(\aleph_1) \) such that

\[
(2.6a) \text{ supp}(\dot{a}_i) \subseteq X \cup X_0 \text{ for } i \in n + 1 \setminus 1 \text{ and}
\]

\[
(2.6b) X_0 \setminus \{\text{supp} \dot{a}_i : i \in n + 1 \setminus 1\} \text{ is infinite},
\]

if \(q \in \mathbb{P}_{X \cup X_0} \) and \(q \leq_p p \), then

\[
q \models \varphi(\dot{a}_1, \ldots, \dot{a}_n).
\]

if and only if

\[
q \models \exists \dot{\eta}(\dot{x}_\xi, \ldots, \dot{a}_n) \models \psi(\dot{a}_1, \ldots, \dot{a}_n).
\]

The crucial step in the induction proof of (2.6) \(\psi \) is when \(\psi(x_1, \ldots, x_n) \) is of the form \(\exists x \varphi(x, x_1, \ldots, x_n) \).

Suppose that \(\dot{a}_1, \ldots, \dot{a}_n \) are \(P \)-names of elements of \(\mathcal{H}(\aleph_1) \) satisfying (2.6a) and (2.6b), \(q \in \mathbb{P}_{X \cup X_0} \), \(q \leq_p p \) and

\[
q \models \varphi(\dot{a}_1, \ldots, \dot{a}_n).
\]

Then there is a \(P \)-name \(\dot{a} \) of an element of \(\mathcal{H}(\aleph_1) \) such that

\[
q \models \eta(\dot{a}, \dot{a}_1, \ldots, \dot{a}_n).
\]
By (1.5), we may assume that \(\text{supp}(\dot{a}) \) is countable. Let \(f : \mu \rightarrow \mu \) be a bijection such that

\[(2.7) \quad f \upharpoonright X' = id_{X'},\]

where \(X' = X \cup \bigcup \{\text{supp}(\dot{a}_{i}) : i \in n + 1 \setminus 1\} \cup \text{supp}(q) \);

\[(2.8) \quad f''(\text{supp}(r) \cup \text{supp}(\dot{a})) \subseteq X \cup X_{0} \text{ and}\]

\[(2.9) \quad X_{0} \setminus (\bigcup \{\text{supp}(\dot{a}_{i}) : i \in n + 1 \setminus 1\} \cup \text{supp}(\dot{a})) \text{ is infinite.}\]

Then by induction's hypothesis, we have

\[q \models \exists_{\mathcal{P}_{X \cup X_{0}}} \langle \mathcal{H}(\aleph_{1}), \{\dot{x}_{\xi} : \xi < \delta\}, \ldots, \in \rangle \models \eta(f(\dot{a}), \dot{a}_{1}, \ldots, a_{n}).\]

It follows that

\[q \models \exists_{\mathcal{P}_{X \cup X_{0}}} \langle \mathcal{H}(\aleph_{1}), \{\dot{x}_{\xi} : \xi < \delta\}, \ldots, \in \rangle \models \psi(\dot{a}_{1}, \ldots, \dot{a}_{n}).\]

The "only if" direction of this induction step can be shown similarly and more easily. \(\square\) (Lemma 7)

If \(G \) is a \((V, \mathbb{Q})\)-generic set for a poset \(\mathbb{Q} \) and \(M \) is a set, we denote with \(M[G] \) the set \(\{\dot{x}^{G} : \dot{x} \in V^{\mathbb{Q}} \cap M\} \).

Lemma 8. Suppose that \(\mathbb{Q} \) is a poset and \(P \in M \prec \mathcal{H}(\theta) \) for sufficiently large regular \(\theta \). If \(G \) is a \((V, \mathbb{Q})\)-generic set then we have

\[(2.10) \quad M[G] \prec \mathcal{H}(\theta)[G].\]

Proof. Note that \(\mathcal{H}(\theta)[G] = \mathcal{H}(\theta)^{V[G]} \). We check again the forcing version of Tarski-Vaught criterion.

Suppose that

\[(2.11) \quad p \models_{\mathbb{Q}} "\mathcal{H}(\theta) \models \exists x \varphi(x, \dot{a}_{1}, \ldots, \dot{a}_{n})"\]

for \(\mathcal{L}_{ZF} \)-formula \(\varphi \) and \(\mathbb{Q} \)-names \(\dot{a}_{1}, \ldots, \dot{a}_{n} \) of elements of \(M \). We may assume that \(\dot{a}_{1}, \ldots, \dot{a}_{n} \in M \). (2.11) is equivalent to

\[\mathcal{H}(\theta) \models p \models_{\mathbb{Q}} "\exists x \varphi(x, \dot{a}_{1}, \ldots, \dot{a}_{n})".\]

Then by elementarity we have

\[M \models p \models_{\mathbb{Q}} "\exists x \varphi(x, \dot{a}_{1}, \ldots, \dot{a}_{n})".\]
It follows that there is some \(a \in V^P \cap M \) such that \(M \models p \forces \varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n) \).

By elementarity of \(M \) this is equivalent to \(\mathcal{H}(\theta) \models p \forces \varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n) \). This, in turn, is equivalent to \(p \forces \varphi(\dot{a}, \dot{a}_1, ..., \dot{a}_n) \). \(\square \) (Lemma 8)

Proof of Theorem 4: Suppose that \(\kappa, \mu, P_{\dot{\alpha}}, \alpha < \mu, P \) are as in Theorem 4, \(p \in P \) and

\[
(2.12) \quad p \forces \{ \dot{x}_\alpha : \alpha < \delta \} \text{ is unbounded in } \mathcal{H}(\aleph_1) \text{ with respect to } R = \{(x, y) : \mathcal{H}(\aleph_1) \models \varphi(x, y, \dot{a}) \}
\]

where \(\delta \leq \kappa \), \(\varphi \) is a \(L_{ZF} \)-formula and \(\dot{a} \) is a \(P \)-name of an element of \(\mathcal{H}(\aleph_1) \).

Let \(X \subseteq \lambda \) be such that \(X \supseteq \{\text{supp}(\dot{x}_\alpha) : \alpha < \delta \} \cup \text{supp}(p) \cup \text{supp}(\dot{a}) \). Then \(|X| < \kappa \) and \(X \setminus \{\text{supp}(\dot{x}_\alpha) : \alpha < \delta \} \) is uncountable.

Let \(G \) be a \((V, P_X) \)-generic filter with \(p \in G \) and let \(\theta \) be a sufficiently large regular cardinal. By Lemma 7, we have

\[
(2.13) \quad \mathcal{H}(\theta)[G] \models p \forces \{ \dot{x}_\alpha^G : \alpha < \delta \} \text{ is unbounded in } \mathcal{H}(\aleph_1) \text{ with respect to } R''.
\]

Let \(M \prec \mathcal{H}(\theta) \) be such that

\[
(2.14) \quad P, \{ \dot{x}_\alpha : \alpha < \delta \} \in M; \\
(2.15) \quad [M]^\kappa \subseteq M; \text{ and} \\
(2.16) \quad |M| \leq \kappa.
\]

The last two conditions are possible since \(\kappa^\kappa = \kappa \). By Lemma 8, we have

\[
(2.17) \quad M[G] \prec \mathcal{H}(\theta)[G]
\]

and hence

\[
(2.18) \quad M[G] \models P \forces \{ \dot{x}_\alpha^G : \alpha < \delta \} \text{ is unbounded in } \mathcal{H}(\aleph_1) \text{ with respect to } R''.
\]

Note that \(P \) is an element of \(M \) but not \(P_{\mu \setminus Y} \) for \(Y \) as below and thus we cannot apply the elementary submodel argument to the latter poset.

Let \(Y = \delta \cap M \). Since \(|Y| \leq \kappa \) by (2.16), it is enough to show the following claim:

Claim 8.1. \(\mathcal{H}(\theta)[G] \models \forces P_{\mu \setminus X} \{ \dot{x}_\alpha^G : \alpha \in Y \} \text{ is unbounded in } \mathcal{H}(\aleph_1) \text{ with respect to } R'' \).

\(\vdash \) In the following we work always in \(\mathcal{H}(\theta)[G] \). Suppose that \(q \in P_{\mu \setminus X} \) and \(\dot{x} \) is a \(P_{\mu \setminus X} \)-name of an element of \(\mathcal{H}(\aleph_1) \). Let \(Z = \text{supp}(\dot{x}) \cup \text{supp}(p) \). Let \(X_0 \in M \) be a countable subset of \(\mu \) disjoint from \(Y \cup Z \). \(f : \mu \setminus X \to \mu \setminus X \) be a bijection such that
(2.19) \(f''Z \subseteq Y \cup X_0 \) and \(f \restriction Y = id_Y \).

Note that \(\tilde{f}(\dot{x}) \) is a \(\mathbb{P}_X \)-name of an element of \(\mathcal{H}(\mathcal{N}_1) \). By (1.5) and (2.15), we may assume that \(\tilde{f}(\dot{x}) \in M \). Also note that \(\mathbb{P}_{X_0} \cong \mathbb{P}_\omega \).

By (2.18), there are \(\tilde{r} \leq \mathbb{P}_{X_0} \tilde{f}(q) \) and \(\alpha^* \in \delta \cap M(= Y) \) such that

(2.20) \(M[G] \models \tilde{r} \models_{\mathbb{P}_X} \neg(\dot{x}_{\alpha^*} \ast \mathcal{R} \tilde{f}(\dot{x})) \).

By (2.17), it follows that \(\tilde{r} \models_{\mathbb{P}_X} \neg(\dot{x}_{\alpha^*} \ast \mathcal{R} \tilde{f}(\dot{x})) \).

By Lemma 6, it follows that

(2.21) \(\tilde{r} \models_{\mathbb{P}_\mu \setminus X} \neg(\dot{x}_{\alpha^*} \ast \mathcal{R} \tilde{f}(\dot{x})) \).

Let \(r = \tilde{f}^{-1}(\tilde{r}) \). Then \(r \leq \mathbb{P}_\mu \setminus X q \). By mapping the parameters in (2.21) by \(\tilde{f}^{-1} \), we obtain

(2.22) \(r \models_{\mathbb{P}_\mu \setminus X} \neg(\dot{x}_{\alpha^*} \ast \mathcal{R} \dot{x}) \).

Since \(q \) and \(\dot{x} \) were arbitrary, it follows that

(2.23) \(\models_{\mathbb{P}_\mu \setminus X} \{\dot{x}_{\alpha^*} : \alpha \in Y\} \) is unbounded in \(\mathcal{H}(\mathcal{N}_1) \) with respect to \(\mathcal{R} \).

\(\vdash \) (Claim 8.1)
\(\Box \) (Theorem 4)

References

