行列環のテンソル積空間上の部分転置写像について

山形大学・理学部数理科学科 佐野隆志 (Takashi SANO)

Department of Mathematical Sciences
Faculty of Science, Yamagata University

This is a survey of [1], which is a joint work with Tsuyoshi Ando. Here are some of the results in [1]. For more details, we refer the reader to [1].

1. 部分転置写像とその関連

Theorem 1.1. Let $A_k \in M_m$, $B_k \in M_n$. Then for every unitarily invariant norm $|||\cdot|||$

$$\sup_{X \in M_{m,n}} \frac{|||\sum_{k} A_{k} X B_{k}^{T}|||}{|||X|||} \leq \sqrt{\min(m,n)} \| \sum_{k} A_{k} \otimes B_{k} \|_{\infty}.$$

Theorem 1.2. Let $A_k \in M_m$, $B_k \in M_n$. Then for every unitarily invariant norm $|||\cdot|||$

$$\sup_{X \in M_{m,n}} \frac{||| \sum_{k} A_k X B_k |||}{|||X|||} \leq \min(m,n) \| \sum_{k} A_k \otimes B_k \|_{\infty}.$$

The partial transpose map Θ on $M_m \otimes M_n$ is defined as

$$\Theta(\sum_{k} A_{k} \otimes B_{k}) = \sum_{k} A_{k} \otimes B_{k}^{T}.$$

Theorem 1.3. For every unitarily invariant norm $||| \cdot |||$

$$|||\Theta(\mathbf{X})||| \leq \min(m, n) |||\mathbf{X}|||.$$

For the Hilbert-Schmidt norm $\|\cdot\|_2$

$$\|\Theta(\mathbf{X})\|_2 = \|\mathbf{X}\|_2.$$

Notice that this inequality for the spectral norm was originally established by Tomiyama

2. 部分転置写像の制限

Let

$$K_{m,n} := \{A \otimes I_n + I_m \otimes B : A \in M_m, B \in M_n\}.$$

We observe the restriction Θ_0 of the map Θ to the subspace $K_{m,n}$:

$$\Theta_0(\mathbf{X}) = A \otimes I_n + I_m \otimes B^T \quad \text{for } \mathbf{X} = A \otimes I_n + I_m \otimes B.$$

Theorem 2.1. The restriction Θ_0 is positive:

$$\mathbf{X} \geq 0 \implies \Theta_0(\mathbf{X}) \geq 0.$$

Theorem 2.2. Let $X = A \otimes I_n + I_m \otimes B$.

- (i) If n = 2 or B is normal, then X and $\Theta_0(X)$ are unitarily similar in $M_m \otimes M_n$.
- (ii) If m = 2 or A is normal, then X and $\Theta_0(X)^T$ are unitarily similar in $M_m \otimes M_n$.

In any case, $|\mathbf{X}|$ and $|\Theta_0(\mathbf{X})|$ are unitarily similar in $M_m \otimes M_n$; hence, $|||\Theta_0(\mathbf{X})||| = |||\mathbf{X}|||$ for every unitarily invariant norm $|||\cdot|||$.

Theorem 2.3. If $X \in K_{m,n}$ is normal, then X and $\Theta_0(X)$ are unitarily similar and $|||\Theta_0(X)||| = |||X|||$ for every unitarily invariant norm $|||\cdot|||$.

Theorem 2.4. For every unitarily invariant norm $||| \cdot |||$

$$|||\Theta_0(\mathbf{X})||| \leq 2 |||\mathbf{X}||| \quad (\mathbf{X} \in K_{m,n}).$$

We recall the definition of the numerical range W(X) of a square matrix $X \in M_n$:

$$W(X) := \{ \langle Xa, a \rangle : a \in \mathbb{C}^n, ||a|| = 1 \}$$

The numerical radius w(X) is defined as

$$w(X) = \sup\{|\xi|: \xi \in W(X)\} = \sup\{|\langle Xa, a \rangle|: a \in \mathbb{C}^n, ||a|| = 1\}$$

Theorem 2.5. For $X \in K_{m,n}$

$$w(\Theta_0(\mathbf{X})) = w(\mathbf{X})$$
 and more precisely, $W(\Theta_0(\mathbf{X})) = W(\mathbf{X})$.

Theorem 2.6. Let $A \in M_m$, $B \in M_n$. Then for every unitarily invariant norm $|||\cdot|||$

$$\sup_{X \in M_{m,n}} \frac{|||AX + XB^T|||}{|||X|||} \leq \sqrt{2} \|A \otimes I_n + I_m \otimes B\|_{\infty},$$

and

$$\sup_{X \in M_{m,n}} \frac{|||AX + XB|||}{|||X|||} \leq \sqrt{2} ||A \otimes I_n + I_m \otimes B||_{\infty}.$$

Theorem 2.7. For $A \in M_m$ and $B \in M_n$

$$||A \otimes I_m + I_n \otimes B^T||_{\infty} \le \sqrt{2} ||A \otimes I_n + I_m \otimes B||_{\infty}.$$

Recall the definition of the Schatten p-norm $\|\cdot\|_p$ for $1 \leq p < \infty$:

$$||X||_p := \{ \sum_i s_i(X)^p \}^{1/p}.$$

Theorem 2.8. For p = 2k (k = 1, 2, 3, 4, 5)

$$\|\Theta_0(\mathbf{X})\|_p = \|\mathbf{X}\|_p \quad (\mathbf{X} \in K_{m,n}).$$

REFERENCES

[1] T. Ando and T. Sano, Norm estimates of the partial transpose map on the tensor products of matrices, Positivity, 12 (2008), 9-24.