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Reverse of Bebiano-Lemos-Providéncia inequality
and Complementary Furuta inequality
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We give a simultaneous extension of Bebiano-Lemos-Providéncia inequality and Araki-
Cordes one: Let A and B be positive operators. Then for each r > 0

| AT BIAT || < || AS(ASB°AS)FA5 | for s>t2>0.
In succession, we prove a reverse inequality: Let A and B be positive operators. Then
foreachr >0
| AF BIAT || > || AS(ATB*A$)AF || for t>s>r>0.

Furthermore, we discuss reverse of generalized BLP inequality in a general setting, in
which we point out that the restriction t > s > r in the above is quite reasonable.

1 Introduction

Let A be a bounded linear operator acting on a Hilbert spase H. Then A is positive,
denoted by A > 0, if (Az,z) > 0 for all z € H. In particular, A > 0 means that A is
invertible and positive.

Recently, Bebiano-Lemos-Providéncia showed an interesting norm inequality (BLP):
Let A and B be positive operators. Then

(1) | A BtAY || < || A¥(ASB AR AR | for s>t2>0.
If we delete A% on both sides in (1), we have the Araki-Cordes inequality (AC)
(@) | APBPA? || < || ABA P for 0<p<1.

In this sense, BLP inequality (1) is regarded as an extension of AC inequality (2).
In this note, we first give a simultaneous extension of (1) and (2) as follows generalized
BLP inequalty (GBLP): Let A and B be positive operators. Then for each r > 0

(3) | AF Bt AT || < || AS(A%B AR AT || for s>t>0.

Next we discuss a reverse inequaltiy of (3)(R-GBLP): Let A and B be positive oper-
ators. Then for each r > 0,

(4) ||ATBAF || > || AF(ASB°AH)iAT ||  for t>s>r and s> 0.

As a corollary, the case r = 1 in (4) coressponds to the reverse of BLP(R-BLP) inequality
and the case 7 = 0 in (4) corresponds to the reverse of AC inequality (2)(R-AC).



92

2 A generalization of BLP inequality

In this section, we generalize BLP inequality (1). For this, we cite Furuta inequality: Let
A > B for A and B be positive operators. Then for each r > 0.

(AFBPAR)s < (ASAPAS)T  for p>0, ¢>1 with (1+r)g>p+r.
We prove the following theorem including BLP inequality and AC one.
Theorem. 1. Let A and B be positive operators. Then for each r > 0
| A BIAS || < || AT(ABB*AR)SAS | for s >t>0.

Proof. Since this inequality is AC ihequality when r = 0, we may assume r > 0. It suffices
to prove that

AR(AIB*AR)IAF <1 = AFBAF <1 for s>t>0.
If A5(ASB*A%)i A% < 1, then (AB°A%): < A™". Weput

A=A", B = (A*B‘A%)% = —:— and p=g¢g=

+l»

Then

AlzBle, 7'1_>_0, p=q21 and (1+7‘1)q2p+r1,
so that Furuta inequality implies
(A1%31PA1%)% < (Al%AlpAl%)%,
that is, 3 t F] s .t
(Aﬁ'?BlfAﬁ%)? < (AI#AI?AIF):,
Since we have

1

A= A7, B=(A"5B,tA~%)t = (4,7 B 1A, %)%,
it follows that
AFBAT = (A4, 1) F (A4, 7B 1A %) (4, HF |
SATF(ATRAIA A E - A, F A, AR =T
O

Remark. It is obvious that the case r = 1 in Theorem 1 is just the BLP inequality and
the case r = 0 is AC one.
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3 Reverse inequalities

In this section, we show a reverse inequality of Theorem 1, in which we use the well-known
formula(Lemma of Furuta),

(5) (A¥BA%Y = A B} (BYABYP-1B3A} for p>1
and Lowner-Heinz inequality (LH)
(6) A>B>0 implies AP > BP foral0<p<1.
Theorem. 2. Let A and B be positive operators. Then for eachr > 0
() I AFBAF | > | A5(ASB A AT || for t>s>r and s> 0.

Proof. It suffices to prove that

AFBAF <1=— A5(ATB*AD)IA <1 for t>s>r and s> 0.

Suppose that [z] =2l — 1 or 2/ for some natural number . Then following equations
are obtained by (5). '

AF(ASB*A%): AS
= A" Bi(BtA°B%)i-1Bi A7
= AT B*AS(AS B A%)i2 48 B AT
- =A™ (B*A%)B3 (B A*B%)i3Bi(A* B AT
= A (B°A°)B° A% (A% B* A%)i~4 A% B* (A B*) A"
= A™H*(B*A*)(B°A°)B5 (B} A* B%)~°B(A° B*)(A° B*) AT

(1—1)-times (1=1)-times

— Az‘_-;_' ?B’A’) .‘: (B’A’iBé(B%A’Bé)%_(m—l)B* tAaBa) . (A'B’YALF

Since t > s > r > 0, we have

0<s—2_<1,0c8<1, ot =AMrs o 1o
Sr4to =3 t(r +t)
and t 2 — k
o< Hezn) +20 - 'S <1 for k=0,1,---,1—1.

= t(r +1)
We suppose that A BtA™ < 1, that is,

Bt < A~(r+) apd  ACH) < Bt
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So the Lowner-Heinz inequality (6) implies that

st a(r+t) t(r+8)—2(l—~h)rs rbs)~2(l—h)rs
A< B ™+, B*°<A” B ) SA"E‘L—)U;L' for h=1,2,---,1

At‘c—-r2+2$l—k2ra __tgo—r‘,i:tgl—kr-n for k 0 1 l _ 1

Now we assume that [ ] = 2l — 1 for some natural number I. Since 0 < E -(2-1)<1,
we have

AT (ASB*A%)L AS

(1=1)-times (1—1)-times
= A (B A% (B‘A‘)(B’A’)Bz(B’SA’Bf)“(” DB (A‘B’)(A’B’) -(A*B%) AT
< A (B*A) - (B*A*)(B°A°)Bi(B} B~ Bi)i-(-UB%(4°B*)(A°B’) . .. (A’ B*) AF*
= A (BA%) .- (B°A°)(B*A*) B (40 B%) (4° BY) - .- (4°B*) AT

(1—2)-times (1~2)-times

= A (B'A)... (B°A°) B A’ B po g (4 By ... (A4°B") A™S*
<A (B'AY). . (B A% B AT pe 4 Br) . (4°BY) A"H
< A (B'AY) .- (B A°)BUHRTEE (40BY) . (4°BY) AT

and

< A%_.B’A s. r!iﬂgl—‘ —l”rlB‘A_-;-_
< ALFB v+t A-;!

< A Ao g

= 1.

On the other hand, we assume that [ ] = 2! for some natural number [. Since 0 < -t— -21<1,
similarly we have the follwing, in Wthh the first equality is ensured in the first paragraph
Ai(Af B"A’I) s Al

(- 1) -times (l—-l)-tune!
= A (B*A’). .- (B*A°)(B"A") B} (B A°B#)i~-0 Bt (A" B*)(A°B*) .- - (A°B") A
(l—l) -times (1—1) times

= A (B°A%) ... (B°A")(B*A°) B’ A} $(ASB*A%)i~2A5B°(A'B")(A'B’) - - - (A*B*) A
< AF(BPAY) .- (B*A")(B*A%)B* AS (AS A7 A%)i-2 AR B*(A° B*)(A°BY) . . . (A° B AT
- ALF(B’A’) (B’A’)(B’A’)B‘AMB’(A’B’)(A’B’) . (A"B')ALP
< A% (B'A?)- - (B*A%)(B' A B* B~ B*(4B*)(4' B) - .. (A’ B") AF*
(1—2)-times (1—-2)-times

= A (B'A")--- (B°A") B A'B =" ' B* (4 B") ... (A’ B") A+

<L
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Hence the proof is complete. 0

4 Complementary Furuta inequality

In this section, we consider R-GBLP, in which Kamei’s theorem(Theorem K) on com-
plements of Furuta inequality corresponds to our result. So now recall it due to Kamei.

Theorem K. IfA> B >0, then for0<p< }
(8) A" Qapze B < A® for 0<t<p
and for 3 <p<1
9 Al n_‘;ﬁ BP<A for 0<t<p.
Here by, for g & 0,1} has been used as
Aly B:=A3(A"iBA 494  for A,B > 0.
First we prove the following Theorem.
Theorem. 3. Let A, B>0and0<p<1. Then
(10) | A B A 3655 > || Ab(aiBrreaf)ial |
for all s > 0 with s > 1 — 2p. |
Proof. It suffices to show that
(11) | B < A0+ o Ab(ASBrrAf)iAl <1
for 0 <p<1ands>0with s >1-— 2p. So we put
A =A%) B, = B+,
Then (11) is rephrased as
42B>0 = AT b B¥ <4,

for 0 <p<1ands>0 with s > 1— 2p. Moreover if we replace

_ 8 _p+s
T1+s P T Ixe

t

then we have ;11;_‘31- = %, and 3 < pi(L 1) if and only if 1 — 2p < s, so that (11) has the
following equivalent expression:

A1231>0=>A§_1h1;¢] BfSA1 for 0<t <p.

P1-t

Fortunately, since 1 < p; < 1, it has been ensured by Theorem A due to Kamei. 0
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Next we show a reserve inequality of BLP inequality (R-BLP) is obtained as colloary
of Teorem 3.

Proof of R-BLP We put p = ¢ fort > s > 0. Then we have 1 —2p < s if and only if

t-{-LZ < s. Since s > 1 is assumed, ?i—z < s holds for arbitrary ¢t > 0, so that Theorem 3 is
applicable.

‘ e
Now we take B; = B%Lt, ie., B = B;*. Then Araki-Cordes inequality and Theorem
3 imply that

14t Lbt s HIED 4L, 14 s 14s .
| AF B | > | A B A B < ) A a5

2 || A¥(A1BP AT AR || = || Ak(AfBIAS) Al ||
as desired.
R-BLP is generalized a bit as follows:
Corollary. For A, B> 0 andr >0
(12) | AFBATH || > || Af(afBeAR)i AT |
holds for allt > s> r. |
Proof. It is proved by applying R-BLP to A; = A", B, = B" and t, = Los=2 0

Finally we consider a reverse inequality of generalized BLP inequality which corre-
sponds to another Kamei’s complement (7): If A> B > 0, then for 0 < p < 3

Al hg}_—t_e BP < A*® for 0<t<p.
Theorem. 4. Let A,B>0and0<p<3. Then
(13) | A% e | BEEY > | arr(aspreoat) B ars |
forall0<s<1-2p. |

Proof. A proof is quite similar to that of Theorem 3. We put

A1=A-——(1+a)’ BI:BI+J; t, = . 8 p1=p+3.
Then (7) gives us that
A >B >0 = A} hapcu B < AP
for 0 < t1 < py < §, so that
A—(+e) > Blts 5 A hap+s Brts < A—2(p+a)
P

for 0 < s <1~ 2p. Obviously it-implies the desired norm inequality (12). O
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5 Remarks

We first consider a relation between Furuta inequality and Theorem K. Furuta inequality
has the following representation by a-geometric mean f,: For A> B >0

Atﬂl_::BP < Aforp>1,t<0
where Aff, B for 0 < a <1 is defined by

AfoB:= A}(A"1BA"1)*A}  for A,B > 0.

///////AP et

uruta. tn %
7900092/4/ .
PR
5 >
o 7 £

As a consequence we have relations among the inequalitys discussed abave.

Furuta inequality Theorem K
GBLP R-GBLP

BLP/ >c = / \

LH & R-AC R-BLP
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