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Abstract
In this report, we shall show that inequalities

$(TT)^{\frac{n}{n}}+1\geq(T^{n}T^{n})^{\frac{\mathfrak{n}+p}{n}}$ and $(T^{n}T^{n})n\underline{n}\pm R\geq(T^{n+1}T^{n+1})^{\frac{n+r}{n+1}}$

for $0<p\leq 1$ and all positive integer $n$ hold for weaker conditions than p-
hyponomality, that is, class $F(p, r, q)$ defined by Fujii-Nakamoto or class $wF(g, r, q)$

defined by Yang-Yuan under appropriate conditions of $p,$ $r$ and $q$ .

1 Introduction
In this report, a capital letter means a bounded linear operator on a complex Hilbert
space $\mathcal{H}$ . An operator $T$ is said to be positive (denoted by $T\geq 0$ ) if $(Tx, x)\geq 0$ for all
$x\in \mathcal{H}$ , and also an operator $T$ is said to be strictly positive (denoted by $T>0$) if $T$ is
positive and invertible.

As an extension of hyponormal operators, i.e., $T^{*}T\geq TT^{*}$ , it is well known that
p-hyponormal operators for $p>0$ are defined by $(T^{*}T)^{p}\geq(TT^{*})^{p}$ , and also an operator
$T$ is said to be p-quasihyponormal for $p>0$ if $T^{*}\{(T^{*}T)^{p}-(TT^{*})^{p}\}T\geq 0$ . It is easily
obtained that every p-hyponormal operator is q-hyponormal for $p>q>0$ by Lowner-
Heinz theorem $A\geq B\geq 0$ ensures $A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1]$ . ”

On powers of p-hyponormal operators, Aluthge-Wang [1] showed that “If $T$ is a p-
hyponormal operator for $0<p\leq 1$ , then $T^{n}$ is $2n$ -hyponormal for any positive integer
$n$ . As a more precise result than theirs, Furuta-Yanagida [8] obtained the following.

Theorem 1.A ([8]). Let $T$ be a p-hyponormal operator for $0<p\leq 1$ . Then

$(T^{n^{r}}T^{n})^{z\pm\underline{1}}n\geq\cdots\geq\lrcorner 2_{L}+\Delta^{1}(T^{2^{*}}T^{2})^{\epsilon_{\frac{+1}{2}}}\geq(T^{*}T)^{p+1}$
,

that is, $|^{r}T^{n}|$ $\mathfrak{n}$ $\geq\cdots\geq|T^{2}|^{p+1}\geq|T|^{2(p+1)}$

and
$(TT^{*})^{p+1}\geq(T^{2}T^{2^{*}})^{r\pm\underline{1}}2\geq\cdots\geq(T^{n}T^{n})n_{2}*E\pm 1\lrcorner g\lrcorner$

that is, $|T^{*}|^{2(p+1)}\geq|T^{2^{*}}|^{p+1}\geq\cdots\geq|T^{n^{*}}|$ $n$

hold for all positive integer $n$ .
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Recently, Gao-Yang [9] obtained the results on comparison of nth power and $(n+1)th$

power of p-hyponormal operators for $0<p\leq 1$ .

Theorem 1.B ([9]). Let $T$ be a p-hyponormal operator for $0<p\leq 1$ . Then

$(T^{n+1^{*}}T^{n+1})^{\lrcorner e}nn+1\geq(T^{n^{*}}T^{n})n\underline{n}\pm\epsilon$ that is, $|Tn+1^{2}|^{\lrcorner L+}n+n\neq\geq|T^{n}|^{\frac{2(p+n)}{n}}$

and
$(T^{n}T^{n^{*}})\lrcorner ngn\geq(T^{n+1}T^{n+1})^{\Rightarrow+}nn$ that is, $|T^{n^{*}}|^{\lrcorner}n2_{L}+\lrcorner n\geq|T^{n+1^{*}}|^{\lrcorner}n+12_{L}+\lrcorner n$

hold for all positive integer $n$ .

As an extension of hyponormal operators, it is also well known that invertible log-
hyponormal operators are defined by log $T^{*}T\geq$ log $TT$“ for an invertible operator $T$ .
We remark that we treat only invertible log-hyponormal operators in this paper (see
also [17]). It is easily obtained that every invertible p-hyponormal operator for $p>$
$0$ is log-hyponormal since log $t$ is an operator monotone function. We note that log-
hyponormality is sometimes regarded as O-hyponormality since $\frac{X^{p}-I}{p}arrow\log X$ as $parrow+O$

for $X>0$ . An operator $T$ is paranormal if II $T^{2}x\Vert\geq$ I $Tx\Vert^{2}$ for every unit vector
$x\in \mathcal{H}$ . Ando [2] showed that every p-hyponormal operator for $p>0$ and invertible
log-hyponormal operator is paranormal. (Invertiblity of a log-hyponormal operator is
not necessarily required.)

Yamazaki [18] showed that “If $T$ is an invertible log-hyponormal operator, then $T^{n}$

is $al_{8}o$ log-hyponormal for any positive integer $n$ , “ and also he obtained the following
results.

Theorem 1.C ([18]). Let $T$ be an invertible log-hyponormal operator. Then

$(T^{n}T^{n})^{\perp}\mathfrak{n}\geq\cdots\geq(T^{2}T^{2})^{\frac{1}{2}}\geq T^{*}T$ , that is, I $T^{n}|^{\frac{2}{n}}\geq\cdots\geq|T^{2}|\geq|T|^{2}$

and

$TT^{*}\geq(T^{2}T^{2})^{\frac{1}{2}}\geq\cdots\geq(T^{n}T^{n^{*}})^{\frac{1}{n}}$ , that is, $|T^{*}|^{2}\geq|T^{2}|\geq\cdots\geq|T^{\mathfrak{n}^{*}}|^{\frac{2}{n}}$

hold for all positive integer $n$ .

Theorem 1.D ([18]). Let $T$ be an invertible log-hyponormal operator. Then

$(T^{n+1}‘ T^{n+1})^{\frac{n}{n+1}}\geq T^{n}T^{n}$ , that is, $|T^{n+1}|^{\frac{2n}{n+1}}\geq|T^{n}|^{2}$

and
$T^{n}T^{n^{r}}\geq(T^{n+1}T^{n+1})^{\frac{n}{n+1}}$ , that is, $|T^{n}|^{2}\geq|T^{n+1}|^{l^{n}}\dot{n}\mp 1$

hold for all positive integer $n$ .
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We remark that Theorems 1.C and 1.D correspond to Theorems 1.A and 1.B, respec-
tively. On powers of p-hyponormal and log-hyponormal operators, related results are
obtained in [7], [13], [22], [24] and so on.

On the other hand, in [6], we introduced class A defined by $|T^{2}|\geq|T|^{2}$ where
$|T|=(T^{*}T)^{\frac{1}{2}}$ , and we showed that every invertible log-hyponormal operator belongs to
class A and every class A operator is paranormal. We remark that class A is defined
by an operator inequality and paranormality is defined by a norm inequality, and their
definitions appear to be similar forms.

As we have pointed out in [14], we have the following result by combining [20, Theo-
rem 1] and [15, Theorem 3] as a result on powers of class A operators. We remark that
Theorem 1.E in case of invertible operators was shown in [11].

Theorem 1.E ([20][15][14]). If $T$ is a class $A$ operator, then

(i) $|T^{n+1}|^{\frac{2n}{n+1}}\geq|T^{n}|^{2}$ and $|T^{n}|^{2}\geq|T^{n+1^{*}}|^{\frac{2n}{n+1}}$ hold for all positive integer $n$ .
(ii) I $T^{n}|^{\frac{2}{n}}\geq\cdots\geq|T^{2}|\geq|T|^{2}$ and $|T$“ $|^{2}\geq|T^{2}|\geq\cdots\geq|T^{n}|^{\frac{Y}{n}}$ hold for all positive

integer $n$ .

(i) (resp. (ii)) of Theorem 1. $E$ is an extension of Theorem 1.D (resp. Theorem 1.C)
since every invertible log-hyponormal operator belongs to class A.

As generalizations of class A and paranormality, Fujii-Jung-S.H.Lee-M.Y.Lee-Nakamoto
[3] introduced class $A(p, r)$ , Yamazaki-Yanagida [19] introduced $absolute-(p, r)$-paranormality,
and Fujii-Nakamoto [4] introduced class $F(p, r, q)$ and $(p, r, q)$-paranormality as follows:

Definition.

(i) For each $p>0$ and $r>0$ , an operator $T$ belongs to class $A(p, r)$ if
$(|T^{*}|^{r}|T|^{2p}|T^{*}|^{r})^{\frac{r}{p+r}}\geq|T^{*}|^{2r}$ .

(ii) For each $p>0$ and $r>0$ , an operator $T$ is $absolute-(p, r)$ -paranormal if
$\Vert|T|^{p}|T^{*}|^{r}x\Vert^{r}\geq\Vert|T^{*}|^{r}x\Vert^{p+r}$

for every unit vector $x\in H$ .

(iii) For each $p>0,$ $r\geq 0$ and $q>0$ , an operator $T$ belongs to class $F(p, r, q)$ if
$(|T^{*}|^{r}|T|^{2p}|T^{*}|^{r})^{\frac{1}{q}}\geq|T^{*}|^{\lrcorner\epsilon}q2+\lrcorner r$
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(iv) For each $p>0_{f}r\geq 0$ and $q>0$ , an operator $T$ is $(p, r, q)$ -paranormal if
$\Vert|T|^{p}U|T|^{r}x\Vert^{\frac{1}{q}}\geq\Vert|T|^{gf^{\underline{r}}}qx\Vert$ (1.1)

for every unit vector $x\in H$ , where $T=U|T|$ is the polar decomposition of T. $In$

particular, if $r>0$ and $q\geq 1$ , then (1.1) is equivalent to

$\Vert|T|^{p}|T^{*}|^{r}x\Vert^{\frac{1}{q}}\geq\Vert qr$

for every unit vector $x\in H$ ([12]).

We remark that class $F(p,r, zr\pm r)$ equals class $A(p, r)$ . and also class $F(1,1,2)$ (i.e.,
class $A(1,1))$ equals class A. Similarly $(p, r, R \frac{+r}{r})$-paranormallty equals $absolute-(p, r)-$

paranormality and also (1, 1, 2)-paranormality (i.e., $absolute-(1,1)$-paranormality) equals
paranormality.

Inclusion relations among these classes were shown in [3], [4], [12], [14], [15], [19] and
so on (see also Theorems 3. $A$ and 3. $B$ ). The following Figure 1 represents the inclusion
relations among thefamilies of class $F(p, r, q)$ and $(p, r, q)$ -paranormality.

We can pick up inclusion relations among classes discussed in this report as follows:
For $0<\delta<p<1$ and $0<r<1$ ,
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$\delta- hyponormal\cap$

$\subset$ class F
$(pr, \delta L++\frac{r}{r})\cap’$

$\subset$ class F
$(11, \frac{2}{\delta+1})\cap’$

log-hyponormal $\subset$ class $A(p, r)$ $\subset$ class A

We remark that we assume invertibility on log-hyponormal operators.

In this report, as a parallel result to Theorem 1.E, we shall show that inequalities
in Theorems 1.A and 1.B hold for weaker conditions than p-hyponomality, that is, class
$F(p, r, q)$ defined by Fujii-Nakamoto or class $wF(p, r, q)$ recently defined by Yang-Yuan
[23][21] (see Section 3) under appropriate conditions of $p,$ $r$ and $q$ .

2 Main results
In this section, we shall show our main results.

Theorem 2.1. If $(|T" ||T|^{2}|T"|)^{\underline{\delta}\pm\underline{1}}2\geq|T$
“

$|^{2(\delta+1)}$ ($i.e.,$ $T$ belongs to class $F(1,1,$ $\frac{2}{\delta+1})$) for
some $0\leq\delta\leq 1$ , then

(i) $|T^{n+1}|^{\frac{2(\delta+\mathfrak{n})}{\mathfrak{n}+1}}\geq|T^{n}|^{\frac{2(\delta+n)}{n}}$ holds for all positive integer $n$ .
(ii) I $T^{n}|^{\frac{2(\delta+1)}{n}}\geq\cdots\geq|T^{2}|^{\delta+1}\geq|T|^{2(\delta+1)}$ holds for all positive integer $n$ .

Theorem 2.2. $If|T|^{2(\gamma+1)}\geq(|T||T^{n}|^{2}|T|)^{\iota_{\frac{+1}{2}}}$ for some $0\leq\gamma\leq 1$ holds and either

(a) $(|T^{*}||T|^{2}|T^{*}|)^{1}z\geq|T$ “
$|^{2}$ ($i.e.,$ $T$ belongs to class $A$) or

(b) $N(|T|)\subseteq N(|T^{*}|)$

holds, then

(i) $|T^{n^{*}}|^{\frac{2(\gamma+n)}{n}}\geq|T^{n+1^{r}}|^{\Delta L}2+\lrcorner nn+1$ holds for all positive integer $n$ .

(ii) $|T^{*}|^{2(\gamma+1)}\geq|T^{2}|^{\gamma+1}\geq\cdots\geq|T^{n^{r}}|^{\frac{2(\gamma+1)}{\mathfrak{n}}}$ holds for all positive integer $n$ .

We need the following results in order to prove Theorems 2.1 and 2.2.

Theorem 2.$A$ ([15]). Let $A$ and $B$ be positive operators. Then for each $p\geq 0$ and
$r\geq 0$ ,

(i) If $(B\pi A^{p}B^{r}z)^{\frac{r}{p+r}}’\geq B^{r}$, then $A^{p}\geq(A^{e}2B^{r}A^{gR}2)\overline{P}+\overline{r}$

(ii) If $A^{p}\geq(A^{g}2B^{r}A^{gR}2)\overline{p}+\overline{r}$ and $N(A)\subseteq N(B)$ , then $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}}\geq B^{r}$ .
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Theorem 2. $B$ ([20]). Let $A$ and $B$ be positive operators. Then

(i) If ( $2\Delta^{\beta}2\geq B^{\beta_{0}}$ holds for fixed $\alpha_{0}>0$ and $\beta_{0}>0$ , then

$(B^{\rho g\Delta_{\overline{\beta}}}2A^{\alpha_{0}}B2)^{\overline{\alpha}}0+\geq B^{\beta}$

holds for any $\beta\geq\beta_{0}$ . Moreover,

$A^{\alpha_{2}}B^{\beta_{1}}A^{\underline{a_{2}}\mathfrak{g}}\Delta\geq(A^{\alpha_{2}}B^{\beta_{2}}A^{\alpha_{2}})^{\alpha_{0+2}}n\Delta^{\alpha+\rho_{\iota}}+$

holds for any $\beta_{1}$ and $\beta_{2}$ such that $\beta_{2}\geq\beta_{1}\geq\beta_{0}$ .

(ii) If $A^{a0}\geq()\circ 0+0$ holds for fixed $\alpha_{0}>0$ and $\beta_{0}>0$ , then

$A^{\alpha}\geq(A^{\alpha}\tau B^{\beta_{0}}A^{\frac{\alpha}{2}})^{\frac{\alpha}{\infty+\rho_{0}}}$

holds for any $\alpha\geq\alpha_{0}$ . Moreover,

$(B^{\beta}2A^{\alpha_{2}}B^{-})^{\alpha}2^{+\beta}nn-\lrcorner+\geq B^{\rho_{2}}A^{\alpha_{1}}B^{\underline{\rho}_{2}}nn$

holds for any $\alpha_{1}$ and $\alpha_{2}$ such that $\alpha_{2}\geq\alpha_{1}\geq\alpha_{0}$ .

Lemma 2. $C$ ([20][16]). Let $A,$ $B$ and $C$ be positive operators. Then for $p>0$ and
$0<r\leq 1$ ,

(i) If $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}}\geq B^{r}$ and $B\geq C$ , then $(C^{\frac{r}{2}}A^{p}C^{\frac{r}{2}})^{\frac{r}{p+r}}\geq C^{r}$ .

(ii) If $A\geq B,$ $B^{r}\geq(2$ and $N(A)=N(B)$ , then $A^{r}\geq(A^{\frac{r}{2}}C^{p}A^{\frac{r}{2}})^{\frac{r}{p+r}}$ .

Lemma 2.$D$ ([5]). Let $A>0$ and $B$ be an invertible operator. Then

$(BAB^{*})^{\lambda}=BA^{1}f(A^{1}rB^{*}BA^{\frac{1}{2}})^{\lambda-1}A^{\frac{1}{2}}B^{\cdot}$

holds for any real number $\lambda$ .

We remark that Lemma 2. $D$ holds without invertibility of $A$ and $B$ when $\lambda\geq 1$ .

Proof of Theorem 2. 1. Let $T=U|T|$ be the polar decomposition of $T$ , and put $A_{k}=$

$(T^{k}T^{k})^{1}\tau=|T^{k}|^{2}\tau$ and $B_{k}=(T^{k}T^{k})^{\frac{1}{k}}=|T^{k}|^{2}\kappa$ for a positive integer $k$ . We remark that
$\tau*=U^{*}|T^{*}|$ is also the polar decomposition of $T$“.
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Firstly we shall show $|T^{2}|^{\delta+1}\geq|T|^{2(\delta+1)}$ . By the hypothesis $(|T^{*}||T|^{2}|T^{*}|)^{\underline{\delta}}2\pm 1\geq$

$|T^{*}|^{2(\delta+1)}$ for some $0\leq\delta\leq 1$ , we have

$|T^{2}|^{\delta+1}=(U^{*}|T^{*}||T|^{2}|T^{*}|U)^{arrow 1}s_{2}^{l}$

$=U^{*}(|T^{*}||T|^{2}|T^{*}|)^{\underline{\delta}\pm}z^{1}U$

$\geq U^{*}|T^{*}|^{2(\delta+1)}U$

$=|T|^{2(\delta+1)}$ .
Next we assume that

$|T^{n+1}|^{\frac{2(\delta+n)}{\mathfrak{n}+1}}\geq|T^{n}|^{\frac{2(\delta+n)}{\mathfrak{n}}}$ , that is, $A_{n+1}^{\delta+n}\geq A_{n}^{\delta+n}$ (2.1)

holds for $n=1,2,$ $\ldots,$
$k$ . By (2.1) and L\"owner-Heinz theorem, we have

$A_{k+1}\geq A_{k}\geq\cdots\geq A_{2}\geq A_{1}$ (2.2)

since $\frac{1}{\delta+n}\in(0,1$ ] in (2.1). The hypothesis $(|T^{*}||T|^{2}|T^{*}|)^{\delta 1}+\geq$ I $T^{*}|^{2(\delta+1)}$ can be rewrit-
ten by $(B^{\frac{1}{12}}A_{1}B^{\frac{1}{12}})^{\delta 1}+\geq B_{1}^{\delta+1}$ , and also this yields $A_{1}\geq(A^{\frac{1}{12}}B_{1}A_{1}^{f})^{\frac{1}{2}}1$ by L\"owner-Heinz

theorem and (i) of Theorem 2. $A$ . $(2.2)$ and $A_{1}\geq(A^{\frac{1}{12}}B_{1}A^{\frac{1}{12}})^{\frac{1}{2}}$ ensure
$A_{k}\geq(A^{\frac{1}{k2}}B_{1}A^{\frac{1}{k2}})^{\frac{1}{2}}$ (23)

by (ii) of Lemma 2. $C$ since $N(A_{k})=N(A_{1})$ holds. We remark that $N(A_{k})\subseteq N(A_{1})$

holds by (2.2) and $N(A_{k})=N(T^{k})\supseteq N(T)=N(A_{1})$ always holds. Then we get

$A_{k}^{k}\geq(A^{\frac{k}{k2}}B_{1}A^{\frac{k}{k2}})^{\frac{k}{k+1}}$ (2.4)

by (2.3) and (ii) of Theorem 2. $B$ . Similarly, (2.2) and $A_{1}\geq(A_{1}^{l}B_{1}A^{\frac{1}{\iota^{2}}1})^{\eta}1$ ensure
$A_{k+1}\geq(A_{+1}^{\frac{1}{k2}}B_{1}A_{k+1}^{\frac{1}{2}})^{\frac{1}{2}}$ . (25)

Therefore we have
$|T^{k+1}|^{\frac{2(\delta+k+1)}{k+1}}=(U^{*}|T^{*}||T^{k}|^{2}|T^{*}|U)^{\frac{\delta+h\neq 1}{k+1}}$

$=U^{*}(B^{\frac{1}{1^{2}}}A_{k}^{k}B^{\frac{1}{12}})^{\frac{\delta+k+1}{k+1}U}$

$=U^{*}B^{\frac{1}{12}}A^{\frac{h}{k2}}(A^{\frac{k}{k2}}B_{1}A_{k}^{\mathfrak{T}})^{r^{\frac{\delta}{+1}}}A_{k}^{T}B_{1}^{f}Ukh1$ by Lemma 2. $D$

$\leq U^{*}B^{\frac{1}{12}}A^{\frac{k}{k2}}A_{k}^{\delta}A^{\frac{k}{k2}}B^{\frac{1}{12}}U$ by (2.4) and L\"owner-Heinz theorem
$=U^{*}B^{\frac{1}{12}}A_{k}^{\delta+k}B_{\iota^{2}}^{1}U$

$\leq U^{*}B^{\frac{1}{12}}A_{k+1}^{\delta+k}B^{\frac{1}{12}}U$ by (2.1)
$\leq U^{*}(B_{1}^{f}A_{k}^{k}\ddagger^{1}1B_{1}^{F})^{\frac{\delta+k)+1}{(k+1)+1}}11U$

$=(U^{*}|T^{*}||T^{k+1}|^{2}|T^{*}|U)^{\frac{\delta+k+1}{k+2}}$

$=|T^{k+2}|^{\frac{2(\delta+k+1)}{k+2}}$ .
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We remark that the last inequality holds by (ii) of Theorem 2. $B$ since (2.5) holds and
$k+1\geq\delta+k\geq 1$ .

Consequently the proof of (i) is complete. We can easily obtain (ii) by (i) and
L\"owner-Heinz theorem, so we omit its proof. $\square$

Proof of Theorem 2.2. Let $T=U|T|$ be the polar decomposition of $T$ , and put $A_{k}=$

$(T^{k}T^{k})^{1}\tau=|T^{k}|\tau 2$ and $B_{k}=(T^{k}T^{k^{n}})^{\frac{1}{k}}=|T^{k^{r}}|^{\frac{2}{k}}$ for a positive integer $k$ . We remark that
$\tau*=U^{*}|T$“ 1 is also the polar decomposition of $\tau*$ .

$|T|^{2(\gamma+1)}\geq(|T||T^{*}|^{2}|T|)^{L+\underline{1}}2$ and condition (b) ensure condition (a) by L\"owner-Heinz
theorem and (ii) of Theorem 2. $A$ , so that we have only to prove the case where condition
(a) holds.

Firstly we shall show $|T$
“ $|^{2(\gamma+1)}\geq|T^{2}|^{\gamma+1}$ . By the hypothesis $|T|^{2(\gamma+1)}\geq(|T||T^{*}|^{2}|T|)\#^{1}$

for some $0\leq\gamma\leq 1$ , we have

$|T^{2^{*}}|^{\gamma+1}=(U|T||T^{*}|^{2}|T|U^{*})^{\iota i^{\underline{1}}}2$

$=U(|T||T^{*}|^{2}|T|)^{\alpha\pm\underline{1}}2U^{*}$

$\leq U|T|^{2(\gamma+1)}U^{*}$

$=|T^{*}|^{2(\gamma+1)}$ .

Next we assume that

$|T^{n^{n}}|^{\Delta\iota_{\hslash}\Delta^{\mathfrak{n}}}2+\geq|T^{n+1}|^{\lrcorner}n+12_{l}+\Delta^{n}$ that is, $B_{n}^{\gamma+n}\geq B_{n}^{\gamma}\ddagger^{n}1$ (2.6)

holds for $n=1,2,$ $\ldots,$
$k$ . By (2.6) and L\"owner-Heinz theorem, we have

$B_{1}\geq B_{2}\geq\cdots\geq B_{k}\geq B_{k+1}$ (2.7)

since $\frac{1}{\gamma+n}\in(0,1$ ] in (2.6). Condition (a) can be rewritten by $(B^{\frac{1}{1^{2}}}A_{1}B)z\geq B_{1}$ . (2.7)

and $(B^{\frac{1}{1^{2}}}A_{1}B^{\frac{1}{1^{2}}})^{\frac{1}{2}}\geq B_{1}$ ensure
$(B_{k}^{2}A_{1}B_{k}^{2})^{\frac{1}{2}}\perp\perp\geq B_{k}$ . (2.8)

by (i) of Lemma 2. $C$ Then we get

$(B^{\frac{k}{k2}}A_{1}B^{\frac{k}{k2}})\tau^{k}\overline{+1}\geq B_{k}^{k}$ . (2.9)

by (2.8) and (i) of Theorem 2. $B$ . Similarly, (2.7) and $(B^{\frac{1}{1^{2}}}A_{1}B^{\frac{1}{12}})^{\frac{1}{2}}\geq B_{1}$ ensure

$(B_{+1}^{\frac{1}{k2}}A_{1}B_{+1}^{\frac{1}{k2}})^{\frac{1}{2}}\geq B_{k+1}$ . (2.10)
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Therefore we have

$|T^{k+1}|^{\frac{2(\gamma+k+1)}{k+1}}=(U|T||T^{k^{*}}|^{2}|T|U^{*})^{\frac{\gamma+k+1}{k+1}}$

$=U(A^{\frac{1}{12}}B_{k}^{k}A^{\frac{1}{12}})^{\frac{\gamma+k+1}{k+1}U^{*}}$

$=UA^{\frac{1}{12}}B^{\frac{k}{k2}}(B^{\frac{k}{k2}}A_{1}B^{\frac{k}{k2}})^{\text{�}}B^{\frac{k}{k2}}A^{\frac{1}{12}}U^{*}$ by Lemma 2. $D$

$\geq UA^{\frac{1}{12}}B^{\frac{h}{k2}}B_{k}^{\gamma}B^{\frac{k}{k2}}A^{\frac{1}{\iota^{2}}}U^{*}$ by (2.9) and L\"owner-Heinz theorem
$=UA^{\frac{1}{12}}B_{k}^{\gamma+k}A^{\frac{1}{12}}U^{*}$

$\geq UA^{\frac{1}{12}}B_{k+1}^{\gamma+k}A^{\frac{1}{12}}U^{*}$ by (2.6)
$\geq U(A^{\frac{1}{12}}B_{k+1}^{k+1}A^{\frac{1}{\iota^{2}}})^{\frac{(\gamma+k)+1}{(k+1)+1}}U^{*}$

$=(U|T||T^{k+1}|^{2}|T|U^{*})^{\frac{\gamma+k+1}{k+2}}$

$=|T^{k+2}|^{\frac{2(\gamma+k+1)}{k+2}}$ .
We remark that the last inequality holds by (i) of Theorem 2. $B$ since (2.10) holds and
$k+1\geq\gamma+k\geq 1$ .

Consequently the proof of (i) is complete. We can easily obtain (ii) by (i) and
L\"owner-Heinz theorem, so we omit its proof. 口

Remark. By putting $\delta=0$ in Theorem 2.1 and $\gamma=0$ in Theorem 2.2, we get Theorem
1.E since $(|T"||T|^{2}|T"|)^{\frac{1}{2}}\geq|T^{*}|^{2}$ (i.e., $T$ belongs to class A) ensures $|T|^{2}\geq(|T||T^{*}|^{2}|T|)^{\frac{1}{2}}$

by (i) of Theorem 2. $A$ .

3 Classes $F(p, r, q)$ and $wF(p, r, q)$ operators

Recently, in order to continue the study of class $F(p, r, q)$ , Yang-Yuan [23][21] introduced
class $wF(p, r, q)$ operators as follows: For each $p\geq 0,$ $r\geq 0$ and $q\geq 1$ with $(p, r)\neq(O, 0)$

and $(p, q)\neq(O, 1)$ , an operator $T$ belongs to class $wF(p, r, q)$ if

$(|T^{*}|^{r}|T|^{2p}|T^{*}|^{r})^{\frac{1}{q}}\geq|T^{*}|^{\lrcorner g}q2+\Delta^{r}$ (3.1)

and
$|T|^{2(p+r)(1-\frac{1}{q})}\geq(|T|^{p}|T^{*}|^{2r}|T|^{p})^{1-\frac{1}{q}}$ , (3.2)

denoting $(1-q^{-1})^{-1}$ by $q^{*}$ when $q>1$ because $q$ and $(1-q^{-1})^{-1}$ are a couple of conjugate
exponents. On discussions of class $wF(p, r, q)$ (or class $F(p,$ $r,$ $q)$ ), we frequently consider
class $wF(p, r,\delta L++\frac{r}{r})$ (or class $F(p,$ $r,\delta g+\mp rr)$ ) by putting $q=2\delta^{\frac{+r}{+r}}$ as follows: For $p\geq 0,$ $r\geq 0$

and $-r<\delta\leq p$ with $(p, r)\neq(0,0)$ and $(p, \delta)\neq(0,0)$ , an operator $T$ belongs to class
$wF(p, r,\delta g+\mp rr)$ if

$(|T^{*}|^{r}|T|^{2p}|T^{*}|^{r})^{\frac{\delta}{p}}+r\perp r\geq|T^{*}|^{2(\delta+r)}$ (3.3)
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and
$|T|^{2(-\delta+p)}\geq(|T|^{p}|T^{*}|^{2r}|T|^{p})^{\frac{-\delta+}{p+r}\epsilon}$ . (3.4)

We remark that (3.1) is the definition of class $F(p, r, q)$ . We also remark that class
$wF(p, r, Lr+\underline{r})$ equals class $wA(p, r)$ defined in [10], and also it was shown in [15] that class
$wA(p, r)$ (i.e., class $wF(p,$ $r,$ $ar\pm r)$ ) coincides with class $A(p, r)$ . On inclusion relations of
classes $A(p, r),$ $F(p, r, q)$ and $wF(p, r, q)$ , the following results were obtained.

Theorem 3.$A$ .
(i) For invertible operator $T,$ $T$ is log-hyponormal if and only if $T$ belongs to dass

$A(p, r)$ for all $p>0$ and $r>0$ ([3]).

(ii) If $T$ belongs to class $A(p_{0}, r_{0})$ for $p_{0}>0,$ $r_{0}>0$ , then $T$ belongs to class $A(p, r)$

for any $p\geq Po$ and $r\geq r_{0}$ ([15]).

We note that log-hyponormality can be regarded as class $A(O, 0)$ by Theorem 3.$A$ .

Theorem 3. $B$ .
(i) For a fixed $\delta>0,$ $T$ is $\delta$ -hyponormal if and only if $T$ belongs to class $F(2\delta p, 2\delta r, q)$

for all $p>0,$ $r\geq 0$ and $q\geq 1$ with $(1+2r)q\geq 2(p+r),$ $i.e.,$ $T$ belongs to class
$F(p, r, q)$ for all $p>0,$ $r\geq 0$ and $q\geq 1$ with $(\delta+r)q\geq p+r$ ([4]).

(ii) For each $p>0$ and $r>0,$ $T$ is p-quasihyponormal if and only if $T$ belongs to class
$F(p, r, 1)$ . ([12]).

(iii) If $T$ belongs to class $F(p_{0}, r_{0}, q_{0})$ for $p_{0}>0,$ $r_{0}\geq 0$ and $q_{0}\geq 1$ , then $T$ belongs to
class $F(p_{0},r_{0}, q)$ for any $q\geq q_{0}$ ([4]).

(iv) If $T$ belongs to class $F(p_{0}, r_{0,+r0}\Phi_{\delta}\ovalbox{\tt\small REJECT})$ for $p_{0}>0,$ $r_{0}\geq 0$ and $0\leq\delta\leq p_{0z}$ then $T$

belongs to class $F(p, r, \delta a++\frac{r}{r})$ for any $p\geq p_{0}$ and $r\geq r_{0}$ ([14]).

(v) If $T$ bdongs to class $F(p_{0}, r_{0,+r_{0}}2\delta^{flR}+r)$ for $p_{0}>0,$ $r_{0}\geq 0and-r_{0}<\delta\leq p_{0}$, then $T$

belongs to class $F(p_{0}, r, E\delta L+\pm rr)$ for any $r\geq r_{0}$ ([12]).

Theorem 3. $C$ ([23]).

(i) If $T$ belongs to class $wF(p_{0}, r_{0}, q_{0})$ for $p_{0}>0,$ $r_{0}\geq 0$ and $q_{0}\geq 1_{f}$ then $T$ belongs to
class $wF(p_{0}, r_{0}, q)$ for any $q\geq q_{0}$ with $r_{0}q\leq p_{0}+r_{0}$ .

(ii) If $T$ belongs to class $wF(p_{0}, r_{0}, q_{0})$ for $p_{0}>0,$ $r_{0}\geq 0_{f}q_{0}\geq 1$ and $N(T)\subseteq N(T$“
$)$ ,

then $T$ belon9s to class $wF(p_{0}, r_{0},q)$ for any $q$ such that $q^{*}\geq q_{0}^{*}$ with $p_{0}q^{*}\leq p_{0}+r_{0}$ .
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(iii) If $T$ belongs to class $wF(p_{0}, r_{0}, E\delta\frac{0+r_{0}}{+ro})$ for $p_{0}>0,$ $r_{0}\geq 0$ and-r $<\delta\leq p_{0}$ , then $T$

belongs to class $wF(p, r,iL++ \frac{r}{r})$ for any $p\geq p_{0}$ and $r\geq r_{0}$ .

(iv) If $p>0,$ $r\geq 0,$ $q\geq 1$ with $rq\leq p+r$ , then class $wF(p, r, q)$ coincides with dass
$F(p, r, q)$ . In other words, if $p>0,$ $r\geq 0,0\leq\delta\leq p$ and $\delta+r\neq 0$ , then dass
$wF(p, r, \delta L++\frac{r}{r})$ coincides with class $F(p, r, \delta L++\frac{r}{r})$ .

In this section, firstly we shall get a relation between p-hyponormality and class
$wF(p, r, q)$ (or class $F(p,$ $r,$ $q)$ ). We remark that Theorem 3.1 is a parallel result to (i) of
Theorem 3. $A$ .

Theorem 3.1.

(i) For a fixed $\delta>0,$ $T$ is $\delta$-hyponormal ($i.e$., $Tbelong_{8}$ to class $F(p_{0},0,\delta \ )$ for some
$p_{0}\geq\delta)$ if and only if $T$ belongs to class $F(p, r, \delta r\frac{+r}{+r})$ for all $p\geq\delta$ and $r\geq 0$ .

(ii) For a fxed $\delta<0,$ $T$ is $(-\delta)$ -hyponormal ($i.e.,$ $T$ belongs to class $wF(O, r_{0},\delta\mp^{rn}r_{0}-)$

for some $r_{0}>-\delta$) if and only if $T$ belongs to class $wF(p, r,\delta E+\mp rr)$ for all $p\geq 0$ and
$r>-\delta$ .

For $0<\delta<p<1$ and $0<-\delta’<r<1$ , inclusion relations among class $wF(p, r, q)$

and other classes can be expressed as the following diagram. We remark that we assume
invertibility on log-hyponormal operators, and also $N(T)\subseteq N(T^{*})$ is required in $(*)$ .

$\delta- hyponormal\cap$

$\subset$ class
$F(pr,\delta L++\frac{r}{r})\cap’$

$\subset$ class
$F(11, \frac{2}{\delta+1})\cap’$

log-hyponormal $\subset$ class $A(p, r)$ $\subset$ class A
$\cup$ $\cup(*)$ $\cup(*)$

$(-\delta’)$-hyponormal $\subset$ class $wF(p, r,\delta 2\frac{+r}{+r:})$ $\subset$ class $wF(1,1, \frac{2}{\delta+1})$

Next we shall obtain the following corollaries led by Theorems 2.1 and 2.2, and also
Theorems 1.A and 1.B follow from these corollaries.

Corollary 3.2. If $T$ belongs to class $F(p, r, e \delta\frac{+r}{+r})$ for some $0\leq\delta\leq 1,0<p\leq 1$ and
$0\leq r\leq 1$ such that-r $<\delta\leq p$ , then

(i) I $T^{n+1}|^{\frac{2(\delta+n)}{n+1}}\geq|T^{n}|^{\frac{(\delta+n)}{n}}$ holds for all positive integer $n$ .

(ii) $|T^{n}|^{\frac{2(\delta+1)}{n}}\geq\cdots\geq|T^{2}|^{\delta+1}\geq|T|^{2(\delta+1)}$ holds for all positive integer $n$ .
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Corollary 3.3. If $T$ belongs to class $wF(p, r, \delta E\frac{+r}{+r})$ for some-l $\leq\delta\leq 0,0\leq p\leq 1$ and
$0\leq r\leq 1$ such that-r $<\delta<p$ , and $T$ satisfies $N(T)\subseteq N(T^{*})$ , then

(i) $|T^{n^{*}}|^{\frac{2(-\delta+n)}{n}}\geq|T^{n+1}|^{\frac{2(-\delta+n)}{n+1}}$ holds for all positive integer $n$ .

(ii) $|T^{*}|^{2(-\delta+1)}\geq|T^{2}|^{-\delta+1}\geq\cdots\geq|T^{n}|^{\frac{2(-\delta+1)}{n}}$ holds for all positive integer $n$ .

We omit proofs of the results in this section.
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