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Abstract
In the paper, we prove that any threshold circuit computing the PAITY function of

$n$ variables has at least $n+1$ patterns, where a pattern is defined to be the sequence of
gate states that arise during computation for an assignment.

1 Introduction
Circuits consisting of threshold gates are called threshold circuits, and have been extensively
studied for a few decades[l, 2, 3, 4, 5, 6]. Recently, we have introduced a new notion of
pattems into threshold circuits [7]. For an input assignment $x$ , the pattem for $x$ is defined to
be the sequence of gate states that arise during computation for the assignment. In Ref. [7],
we show that the number of patterns that arise in a threshold circuit is closely related to
the size of the circuit,, where the size of a circuit is the number of gates contained in the
circuit. In particular, in Ref.[7], by estimating the number of patterns that arise in threshold
circuits, we prove that threshold circuits with some restrictions need an exponential number
of gates to compute a particular Boolean function, i.e., the Inner-Product function. However,
our argument fails to derive non-trivial lower bounds for many simpler functions, including
the PARITY function.

In the paper, we consider threshold circuits computing the PARITY function, and derive
a lower bound on the number of patterns of threshold circuits. More precisely, we prove that
threshold circuits computing the PARITY function of $n$ variables must have at least $n+1$
patterns.

Moreover, from the lower bound we derive a tight lower bound on the size of threshold
circuits computing the PARITY function. Note that one can find the same lower bound
derived by a different proof method in [6]. However, we derive the lower bound, since it is a
good example to give a insight into the relation between patterns and the size of circuits.

2 Definitions
In the section, we first give definitions and several terms needed to describe our results.

For every input $z=(z_{1}, \ , \ldots, *)\in\{0,1\}^{m}$ , a threshold gateg (with weights $w_{1},$ $ub,$ $\ldots,w_{m}$

and a threshold t) computes a linear threshold function given by

$g(z)=\{\begin{array}{ll}1 if \sum_{:\approx 1}^{m}w_{1}z:\geq t;0 otherwise.\end{array}$
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A threshold circuit $C$ with $n$ input variables is represented by a directed acyclic graph; the
graph has exactly $n$ nodes of in-degree $0$ , each associated with an input variable and called an
input node; each of the other nodes represents a threshold gate. For an assignment $x\in\{0,1\}^{n}$

to the $n$ Input variables, the output of all gates in $C$ are computed in topological order of the
nodes in the directed acyclic graph. For a gate $g$ in $C$, we denote by $g[x]$ the output of $g$ for
an input $x$ to circuit $C$ (although the actual input to gate $g$ will in general consist of some
variables from $x$ and, in addition, or even exclusively, the outputs of some other gates in $C$).

The size of a threshold circuit $C$ is the number of gates in $C$. Since we consider only a
threshold circuit that computes a Boolean function, one may assume without loss of generality
that the circuit has exactly one gate of out-degree $0$ , called the top gate. We say that a
threshold circuit $C$ computes a Boolean function $f$ : $\{0,1\}^{n}arrow\{0,1\}$ if the output of the top
gate for $x$ equals to $f(x)$ for every input $x\in\{0,1\}^{n}$ .

Assume that a threshold circuit $C$ consists of $m$ threshold gates, $g_{1},$ $g_{2},$
$\ldots,$

$g_{m}$ for some
$m\geq 1$ . For an input assignment $x$ for $C$ , we call the m-tuple of the gate outputs,

$(g_{1}[x],g_{2}[x], \ldots,g_{n}[x])$ ,

the pattem of $C$ for $x$ , and we say that the pattern amses for $x$ in $C$ . Let PAT$(C)$ be the
set of all patterns of $C$. That is,

$PAT(C)=$

$\{(g_{1}[x],g_{2}[x], \ldots,g_{m}[x])|x\in\{0,1\}^{\mathfrak{n}}\}$ .
For every input assignment

$x=(x_{1},x_{2}, \ldots,x_{n})\in\{0,1\}^{n}$ ,

the PARITY function of $n$ variables is defined to be

踏 RITY$(x)=\{\begin{array}{ll}1 if \sum_{1=1}^{n}x_{1} is odd;0 if \sum_{1=1}^{\mathfrak{n}}x_{i} is even.\end{array}$

3 Main Result
In the section, we prove the theorem below.

Theorem 1. Any threshold circuit $C$ computing the PARITY function ofn vareables has at
least $n+1$ pattems. That is,

$|PAT(C)|\geq n+1$ .
To give a proof of the theorem, we need the following two lemmas, Lemma 1 and Lemma 2.
We prove Lemma 1 in the section, while we prove Lemma 2 in the next section.

Lemma 1. Any threshold circuit $C$ computing the PARITYfunction of two variables has at
least three pattems. That is,

$|PAT(C)|\geq 3$ .
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Proof. Let $C$ be a threshold circuit computing the PARITY function of two variables, $x_{1}$

and $x_{2}$ . Assume that the circuit $C$ contains threshold gates $g_{1},$ $g_{2},$ $\ldots,g_{m}$ indexed in the
topological order, where $m$ is the size of $C$ . That is, for every index $i$ , the gate Sk receives
inputs only from $g_{1},g_{2},$

$\ldots,$ $g_{-1}$ as well as from input variables $x_{1}$ and $x_{2}$ . That is, for each
index $i,$ $1\leq i\leq m$ , we have

$g_{i}[x_{1,\Phi}]=$

$g_{i}(x_{1},x_{2},g_{1}[x_{1}, x_{2}], \ldots,g_{i-1}[x_{1},x_{2}])$

We prove the lemma by contradiction. Assume that the circuit has just two patterns.
Clearly, one of the two patterns must be for the case where $x_{1}+x_{2}$ is even, and the other
must be for the case where $x_{1}+x_{2}$ is odd. Therefore, one of the two pattems arises for inputs
$(x_{1},x_{2})=(0,0),$ $(1,1)$ , and the other does for $(x_{1},x_{2})=(0,1),$ $(1,0)$ . Then, let $i$ be the least
index such that Sk $[0,0]\neq g_{i}[0,1]$ . Note that Sk $[1, 1]=g_{i}[0,0]$ and Sk $[0,1]=g:[1,0]$ . Since the
outputs of the gates $g_{j}$ for $j<i$ are considered to be a constant , we can consider that the
gate $g_{i}$ computes a threshold function of $x_{1}$ and $x_{2}$ . More precisely, the function $f$ defined as

$f(x_{1},x_{2})=\mathfrak{g}[x_{1},x_{2}]=$

鮎 $(x_{1},x_{2},g_{1}[x_{1},x_{2}], \ldots,g_{-1}[x_{1},x_{2}])$

is a threshold function. Since $g_{i}[0,0]=g_{i}[1,1]\neq g[0,1]=g[1,0]$ , we have

$f(0,O)=f(1,1)\neq f(O, 1)=f(1,0)$ ,

which implies that $f$ computes the PARITY function of two variables. This contradicts the
fact that the PARITY function is not a threshold function. $\square$

Lemma 2. Let $C$ be any threshold circuit computing the PARITY function of $n$ variables.
Let $C_{0}$ be the threshold circuit obtained by replacing the input node $x_{n}$ of $C$ uyith constant
input $0$ . Then

$|PAT(C_{0})|\leq|PAT(C)|-1$ .
Using the two lemmas, we prove the theorem in the following.

Proof (of the theorem) We will prove by induction on $n$ that

I PAT$(C)|\geq n+1$ (1)

for any threshold circuit $C$ computing the PARITY function of $n$ variables.
Obviously, Lemma 1 confirms the basis, i.e., the case where $n=2$, of the induction.
Below we show the induction step. Let $C$ be any threshold circuit computing the PARITY

function of $n$ variables. Let $C_{0}$ be the circuit obtained by replacing the input node $x_{n}$ of $C$

with constant input $0$ . Since $C_{0}$ computes the PARITY function of $n-1$ variables, the
induction hypothesis implies that

$|PAT(C_{0})|\geq n$ . (2)

By Lemma 2 and Eq. (2), we have

$|PAT(C)|\geq|PAT(C_{0})|+1\geq n+1$,
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which confirms Eq. (1). 口

By Theorem 1, we can easily derive as below that any threshold circuit computing the
PARITY function of $n$ variables needs $\log(n+1)$ gates. Althogh one can find the same lower
bound derived by a different proof method in [6], we put it as corolary to give a insight into
the relation between pattems and the size of circuits.

Corollary 1. Every threshold circuit computing the PARITY function of $n$ variables has at
least $\log(n+1)$ gates.

Proof. By $Th\infty rem1$ , any threshold circuit computing the PARITY function of $n$ variables
needs $n+1$ patterns. To realize $n+1$ patterns, the circuit needs $\log(n+1)$ gates. $\square$

This lower bound is tight, since the PARITY function is computable by a threshold circuit
of size $O(\log n)[6]$ .

4 Proof of Lemma 2
In the rest of the paper, we prove Lemma 2.

Let $C$ be a threshold circuit computing the PARITY function of $n$ variables, and let $m$

be the size of $C$ . Assume that the circuit $C$ contains threshold gates $g_{1},\Phi,$ $\ldots,g_{m}$ indexed
in $topo\log!cal$ order. Let $C_{0}$ be a circuit obtained by replacing the input node $x_{n}$ of $C$ with
constant input $0$ . We prove that

$|PAT(C_{0})|\leq|PAT(C)|-1$ . (3)

We give a proof by contradiction. Assume that

$|PAT(C_{0})|=|PAT(C)|$ , (4)

that is,

PAT$(C_{0})=PAT(C)$ . (5)

Similarly to the definition of $C_{0}$ , let $C_{1}$ be a circuit $obta\dot{i}$ed by replacing the input node $x_{n}$

of $C$ with constant input 1. By Eq. (5), we have

PAT$(C_{1})\subseteq PAT(C_{0})=PAT(C)$ . (6)

Let
$X_{0}=\{(x_{1},x_{2}, \ldots,x_{n})\in\{0,1\}^{\mathfrak{n}}|x_{l}=0\}$ .

Now we $\infty nsider$ the following sequenoe of patterns, $P_{1},$ $h,$ $\ldots,$
$p_{\epsilon}$ of length $s=|PAT(C)|+$

1. The sequence starts with any pattem $p_{1}\in PAT(C_{1})$ . Let $x_{1}\in X_{0}$ be an input for which
the pattern $p_{1}$ arises in $C$. Equation (6) guarantees that there must exists such input $x_{1}$ .
For any positive integer $j,$ $1\leq j\leq s$ , the $j+1$-th pattern $p_{j+1}\in PAT(C)$ of the sequence is
the one that arises for the input $x_{j}’$ in which all bits but the n-th bit are the same as those
in $x_{j}$ . Let $x_{j+1}\in X_{0}$ be an input for which the pattem $p_{j+1}$ arises in $C$. Equation. (6) also
guarantees that there must exist such input $x_{j+1}$ .
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Since the length $s$ of the sequence is larger than $|PAT(C)|$ , there must exist a pattem
that appears twice in the sequence. Assume without loss of generality that the pattem $p_{1}$

appears twice. That is,

$p_{1}=p_{k}$ (7)

for some $k\geq 2$ .
Using the sequence, we next define a sequence of gates. For each integer $j,$ $1\leq j\leq k$ ,

we choose the j-th gate of the sequence as follows: the j-th gate has the least index among
the gates $g$ such that $g[x_{j}]\neq g[x_{j+1}]$ . Let $I_{j}$ be the index of the j-th gate of the sequence.
liurthermore, let

$t=$ 下 xg $\min_{1\leq t\leq k}I_{t}$ . (8)

Now we look at the outputs of the gate $g_{I_{t}}$ for inputs $x_{1},$ $x_{2},$
$\ldots,$

$x_{k}$ . Note that $g_{I_{l}}[x_{j}]$ is
the $I_{t^{-}}th$ bit of the t-th pattem $p_{l}$ . Assume without loss of generality that

$g_{I_{1}}[x_{1}]=0$. (9)

By the definition of $g_{I_{t}}$ , we have
$g_{I_{t}}[x_{j}]=0$

for every index $j,$ $1\leq j\leq t$, and

$g_{I_{t}}[x_{t}’]=g_{I:}[x_{t+1}]=1$

This implies that the gate $g_{I_{t}}$ has a positive weight for the input variable $x:$ . Equation (8)
together with the fact implies that

$g_{I_{t}}[x_{j}]=1$

for every index $j\geq t+1$ . Therefore, we have

$g_{I}[x_{k}]=1$ . (10)

Equations (9) and (10) contradict Eq. (7).
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