0000000000
01599 0 2008 0 91-96 91

On Patterns of Threshold Circuits computing
the PARITY function

(L EVWERIRR DS Z— I DOWT)

BRAEARZEREDT - EHAEMAER AR & (Kei Uchizawa)
FRALRZAZEDT - THEAI AN 4 3 (Eiji Takimoto)
Graduate School of Information Sciences

Tohoku University

Abstract
In the paper, we prove that any threshold circuit computing the PAITY function of
n variables has at least n + 1 patterns, where a pattern is defined to be the sequence of
gate states that arise during computation for an assignment.

1 Introduction

Circuits consisting of threshold gates are called threshold circuits, and have been extensively
studied for a few decades|1, 2, 3, 4, 5, 6]. Recently, we have introduced a new notion of
patternsinto threshold circuits [7]. For an input assignment 2, the pattern for is defined to
be the sequence of gate states that arise during computation for the assignment. In Ref. [7],
we show that the number of patterns that arise in a threshold circuit is closely related to
the size of the circuit,, where the size of a circuit is the number of gates contained in the
circuit. In particular, in Ref.[7], by estimating the number of patterns that arise in threshold
circuits, we prove that threshold circuits with some restrictions need an exponential number
of gates to compute a particular Boolean function, i.e., the Inner-Product function. However,
our argument fails to derive non-trivial lower bounds for many simpler functions, including
the PARITY function.

In the paper, we consider threshold circuits computing the PARITY function, and derive
a lower bound on the number of patterns of threshold circuits. More precisely, we prove that
threshold circuits computing the PARITY function of n variables must have at least n + 1
pé,tterns.

Moreover, from the lower bound we derive a tight lower bound on the size of threshold
circuits computing the PARITY function. Note that one can find the same lower bound
derived by a different proof method in [6]. However, we derive the lower bound, since it is a
good example to give a insight into the relation between patterns and the size of circuits.

‘2 Definitions

In the section, we first give definitions and several terms needed to describe our results.
For every input z = (21,2, ..., 2n) € {0,1}™, a threshold gateg (with weights wy, un, ..., Wn
and a threshold t) computes a linear threshold function given by

m
o(z) = { 1 if Y wz >t

=1
0 otherwise.

92

A threshold circuit C with n input variables is represented by a directed acyclic graph; the
graph has exactly n nodes of in-degree 0, each associated with an input variable and called an
input node; each of the other nodes represents a threshold gate. For an assignment « € {0, 1}~
to the n input variables, the output of all gates in C are computed in topological order of the
nodes in the directed acyclic graph. For a gate g in C, we denote by g[z] the output of g for
an input @ to circuit C (although the actual input to gate g will in general consist of some
variables from x and, in addition, or even exclusively, the outputs of some other gates in C).

The size of a threshold circuit C is the number of gates in C. Since we consider only a
threshold circuit that computes a Boolean function, one may assume without loss of generality
that the circuit has exactly one gate of out-degree 0, called the top gate. We say that a
threshold circuit C' computes a Boolean function f : {0, 1} — {0, 1} if the output of the top
gate for ¢ equals to f(x) for every input « € {0,1}". :

Assume that a threshold circuit C consists of m threshold gates, g1, gs, ..., gm for some
m 2 1. For an input assignment & for C, we call the m-tuple of the gate outputs,

(gl[w]’g2[z]a tee :gm[w]),

the pattern of C' for z, and we say that the pattern arises for z in C. Let PAT(C) be the
set of all patterns of C. That is,

PAT(C) =
{(alz], g2l - . ., gm[a]) | = € {0,1}"}.

For every input assignment
T = (.'L‘1,$L'2, - ,a:,,) € {0, 1}",
the PARITY function of n variables is defined to be

_ [1 3k @ is odd;
PARITY(z) = { 0 if Y, ,; is even.

3 Main Result

In the section, we prove the theorem below.

Theorem 1. Any threshold circuit C computing the PARITY function of n variables has at
least n+ 1 patterns. That is,
|PAT(C)| 2 n+1.

To give a proof of the theorem, we need the following two lemmas, Lemma 1 and Lemma, 2.
We prove Lemma 1 in the section, while we prove Lemma 2 in the next section.

Lemma 1. Any threshold circuit C computing the PARITY function of two variables has at
least three patterns. That is, '

|PAT(C)| > 3.

93

Proof. Let C be a threshold circuit computing the PARITY function of two variables, z;
and z;. Assume that the circuit C contains threshold gates g, gs,...,gn indexed in the
topological order, where m is the size of C. That is, for every index ¢, the gate g; receives
inputs only from g, g2, ..., -1 as well as from input variables z; and z,. That is, for each
index i, 1 < ¢ < m, we have

gi[zla .’Dz] =
9i(Z1, T2, g1 [Ty, T2}, . . -y Gim1[Z1, T2))

We prove the lemma by contradiction. Assume that the circuit has just two patterns.
Clearly, one of the two patterns must be for the case where z; + z7 is even, and the other
must be for the case where z; + z; is odd. Therefore, one of the two patterns arises for inputs
(z1,z2) = (0, 0),(1,1), and the other does for (z;,z2) = (0,1), (1, 0). Then, let i be the least
index such that g[0,0] # g;[0,1]. Note that g;[1,1] = g;[0,0] and g[0, 1] = g;[1,0]. Since the
outputs of the gates g; for j < 1 are considered to be a constant , we can consider that the
gate g; computes a threshold function of z; and z;. More precisely, the function f defined as

f(931,$2) = 9i[$1,$2] =
g (1, z2, g1z, za), .. ., Gi—a[T1, 22])

is a threshold function. Since g;[0,0] = g;[1,1] # [0, 1] = g&[1, 0], we have

£(0,0) = £(1,1) # £(0,1) = £(1,0),

which implies that f computes the PARITY function of two variables. This contradicts the
fact that the PARITY function is not a threshold function. O

Lemma 2. Let C be any threshold circuit computing the PARITY function of n variables.

Let Cy be the threshold circuit obtained by replacing the input node x, of C with constant
input 0. Then

|PAT(Gy)| < |PAT(C)| - 1.
Using the two lemmas, we prove the theorem in the following,.
Proof (of the theorem) We will prove by induction on n that
|PAT(C)| 2 n +1 | 1)

- for any threshold circuit C' computing the PARITY function of n variables.
Obviously, Lemma 1 confirms the basis, i.e., the case where n = 2, of the induction.
Below we show the induction step. Let C be any threshold circuit computing the PARITY
function of n variables. Let Cy be the circuit obtained by replacing the input node z,, of C
with constant input 0. Since C, computes the PARITY function of n — 1 variables, the
induction hypothesis implies that

|PAT(Co)| 2 .)
By Lemma 2 and Eq. (2), we have
|PAT(C)| 2 |PAT(Cy)| +12n+1,

94

which confirms Eq. (1). O

By Theorem 1, we can easily derive as below that any threshold circuit computing the
PARITY function of n variables needs log(n + 1) gates. Althogh one can find the same lower
bound derived by a different proof method in [6], we put it as corolary to give a insight into
the relation between patterns and the size of circuits.

Corollary 1. Fvery threshold circuit computing the PARITY function of n variables has at
least log(n + 1) gates.

Proof. By Theorem 1, any threshold circuit computing the PARITY function of n variables
-needs n + 1 patterns. To realize n+ 1 patterns, the circuit needs log(n + 1) gates. O

This lower bound is tight, since the PARITY function is computable by a threshold circuit
of size O(logn) [6].

4 Proof of Lemma 2

In the rest of the paper, we prove Lemma 2.

Let C be a threshold circuit computing the PARITY function of n variables, and let m
be the size of C. Assume that the circuit C contains threshold gates g;,@,...,gm indexed
in topological order. Let Cj be a circuit obtained by replacing the input node z,, of C with
constant input 0. We prove that

| PAT(Gy)| < | PAT(C)] - 1. (3)
We give a proof by contradiction. Assume that
|PAT(Co)| = | PAT(C)|, (4)
that is,
PAT(Co) = PAT(C). (5)

Similarly to the definition of Cp, let C; be a circuit obtained by replacing the input node z,,
of C with constant input 1. By Eq. (5), we have

PAT(C,) C PAT(C) = PAT(C). (6)

Let
Xo = {(z1,22,...,24) € {0, 1}" | z; = 0}.

Now we consider the following sequence of patterns, p,, p,, ..., p, of length s = | PAT(C) |+
1. The sequence starts with any pattern p, € PAT(C;). Let &; € X, be an input for which
the pattern p, arises in C. Equation (6) guarantees that there must exists such input ;.
For any positive integer j, 1 < j < s, the j + 1-th pattern p;,; € PAT(C) of the sequence is
the one that arises for the input «; in which all bits but the n-th bit are the same as those
in ;. Let ;.1 € Xo be an input for which the pattern p;,, arises in C. Equation. (6) also
guarantees that there must exist such input ;..

95

Since the length s of the sequence is larger than |PAT(C)|, there must exist a pattern
that appears twice in the sequence. Assume without loss of generality that the pattern Dy
appears twice. That is,

P, =Py (7)

for some k > 2.

Using the sequence, we next define a sequence of gates. For each integer j, 1 < j < k,
we choose the j-th gate of the sequence as follows: the j-th gate has the least index among

the gates g such that g[x;] # g[x;+1]. Let I; be the index of the j-th gate of the sequence.
Furthermore, let

t = arg min I,. (8)

1<t<k

Now we look at the outputs of the gate gj, for inputs @1, &5, ..., ;. Note that gy, [=] is
the I-th bit of the ¢-th pattern p,. Assume without loss of genera.hty that

grlxz1] =0. 9)
By the definition of g;,, we have
gr, [mj] =0
for every index j, 1< j < t, and
gr.[x] = gr[®esa] = 1

This implies that the gate g7, has a pos1t1ve weight for the input variable z;. Equation (8)
together with the fact implies that

ai, [EJ] =1
for every index j >t + 1. Therefore, we have
grlz] = 1. (10)
Equations (9) and (10) contradict Eq. (7).

References

[1] E. Allender, Circuit complezity before the dawn of the new millennium, Foundations of
Software Technology and Theoretical Computer Science (1996), 1-18.

[2] M. Anthony, Boolean functions and artificial neural networks, CDAM Research Report
LSE-CDAM-2003-01 (2003).

(3] A. Bertoni and B. Palano, Structural complezity and neural networks, Proceedings of the
13th Italian Workshop on Neural Nets-Revised Papers 2486 (2002), 190-215.

[4] M. Minsky and S. Papert, Perceptrons: An introduction to computational geometry, MIT
Press, 1988.

96

[5] 1. Parberry, Circuit complezity and neural networks, MIT Press, 1994.

[6] K. Y. Siu, V. Roychowdhury, and T. Kailath, Discrete neural computation; a theoretical
foundation, Information and System Sciences Series, Prentice Hall, 1995.

[7] K. Uchizawa and E. Takimoto, An exzponential lower bound on the size of threshold cir-
cuits with small energy complerity, Proceedings of the 22nd Annual IEEE Conference on

Computational Complexity (2007), 169-178.

