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Abstract

A minimal clone is an atom of the lattice of clones. For a
prime power k we consider the base set with k elements
as a finite field GF(k) and express generating functions
of minimal clones as polynomials over GF(k).

In the joint works with M. Pinsker and T. Waldhauser,
we have found explicitly some polynomials generating
minimal clones. In this paper, as a brief summary of
those results obtained so far, some binary idempotent
polynomials and ternary majority polynomials are pre-
sented which generate minimal clones.

1 Introduction

Let Ex = {0,1,...,k— 1} for a fixed k > 1. For an
integer n > 0 let O{™ be the set of all n-variable
functions on Ej, that is, maps from (Ej)"® into Ex,
and let '

_ 1o
Ok—-UOk .

n=1

Denote by Jx the set of all projections e} on Ey,

1 < i < n, where e? is a function in O,(c") defined by
eM(T1y. 0y Ziy. .., &n) =x; for all zq,...,2, € Ex.

Definition 1.1 A subset C of O is a clone on
Ey, if the following conditions are satisfied:

(i) C contains Ji.
(ii) C 1s closed under (functional) composition.

For every k > 1 the set of all clones on Ej, forms a
lattice ordered by inclusion. It is called the lattice
of clones on Fj and is denoted by L.

Since E. Post ([Po 41}) the structure of £, is com-
pletely known. However, the structure of L for
every k > 3 is extremely complex and still mostly

unknown. The cardinality of the lattice of clones
is known for each k > 2: |£2| = No ([Po 41]) and
|Lx| = 2%0 if 3 < k < Ny ([IM 59)).

Minimal clones are defined as follows:

Definition 1.2 A clone C on Ei is ¢ minimal
clone if it is an atom of Li. In other words, C is a
minimal clone if it satisfies the following conditions:

(i) Jx c C (proper inclusion).
(i) For¥C'€Ly, JkCC' CC = C' =0k

Thus, a minimal clone is a clone which sits just
above the least clone Ji in the lattice L of clones
on Ex. The other ‘extreme’ clone is a maximal clone
which is defined to be a co-atom of L, that is, a
clone which sits just below the greatest clone O in
the lattice Ly of clones on Ei. The complete char-
acterization of all maximal clones was obtained by
I. G. Rosenberg [Ro70], which is one of the greatest
achievements in the theory of clones. In contrast
to maximal clones, however, the characterization of
all minimal clones is not yet settled. The complete
determinination of all minimal clones is known only
for kK = 2, 3. The problem of determinining all min-
imal clones is now widely recognized as one of the
most challenging problems in universal algebra and
discrete mathematics.

With M. Pinsker and T. Waldhauser, the author
has been working on this problem for these few years
([MP 06], [MP 07a}, [MP 07b] and [MW 08]). The
basic idea of our work is to consider the base set
E as Galois field GF(k) for a prime power k and
to express generating functions of minimal clones
as polynomials over GF (k). In this paper, summa-
rizing the results obtained so far, we present some



polynomials generating minimal clones over GF(k)
for any prime power k.

2 Minimal Clones

For F C Oy, (F) denotes the clone generated by F,
that is, (F) is the least clone containing F. When
F is a sigleton, i.e., FF = {f}, (F) is simply denoted
by (f).

Lemma 2.1 A minimal clone is generated by a
single function. That is, for any minimal clone C €
Ly there ezists f € O such that C = (f).

Complete list of minimal clones is known only for
k = 2 and 3 ([Cs 83]). For more general cases we
have the type theorem due to I. G. Rosenberg, which
gives a rough picture of the classification of minimal
clones.

Definition 2.1 An function f on Ej is minimal
if (i) it generates a minimal clone and (ii) every
Sfunction from (f) whose arity is smaller than the
arity of [ is a projection.

Theorem 2.2 ([Ro 86]) Every minimal function
belongs to one of the following five types:

(1) Unary functions f on Ej such that either (i)
f2(=fof)=f or(i) f is a permutation of
prime order p (i.e., fP=1id).

(2) Idempotent binary functions; i.e., f € O®
such that f(z,z) = z for every x € Ej.

(3) Majority functions; i.e., f € OB guch that
f(z,z,y) = f(z,9,2) = f(y,z,2) = = for ev-
ery z,y € Ey.

(4) Semiprojections; ie., f € O™ (3 < n < k)
such that there exists i (1 < ¢ < n) satisfying
flay,...,apn) = a; whenever ai,...,ap, € Ej
are not pairwise distinct.

(5) If k = 2™, the ternary functions f(z,y,2) =
z+y+2z where (Ey; +) is an elementary 2-group
(i.e., the additive group of an m-dimensional
vector space over GF(2) ).
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For k = 3, B. Csék4ny [Cs 83] determined all min-
imal clones by explicitly giving minimal functions
generating them. There are 84 minimal clones on
E;.

3 Polynomials over a Finite
Field

In the sequel, let k be a prime power and (Ej;+, )
be a finite field, i.e., Galois field GF(k). We shall
express functions defined on E} as polynomials de-
fined over GF(k). Over a field GF(k) a function
fe O,(cz), for example, can be expressed as

fay)= Y ayztyl
0<i <k
where a;; € Ef for 0 <4, j < k.
Note that z* = z for every z € GF(k). Hence, if
z # 0 then z¥~1 = 1 for z € GF(k).

4 Minimal Clones Generated
by Binary Idempoint Func-
tions

First, we consider idempotent binary functions gen-
erating minimal clones (Item (2) in Theorem 2.2).
According to B. Csékény [Cs 83], there are 48 min-
imal clones generated by idempotent binary func-
tions for k = 3.

In Csékdny’s paper, a binary idempotent function
f is denoted by b,, if n = f(0,1) - 3%+ £(0,2) - 3* +
F£(1,0) - 33 + £(1,2) - 32 4+ £(2,0) - 3+ £(2,1).

We proceed according to the following strategy.

Qur Strategy :

Step 1 : Take arbitrary binary function b(z,y) €
O from Csékény’s list of generators of mini-
mal clones over Fjs.

Step 2 : Search for a polynomial g(z,y) € Ofcz) for
k > 3 whose counterpart for k = 3 is b(z, y).

Step 3 : Verify that g(z,y) is minimal.



4.1 Linear Polynomials

Consider binary linear polynomials az+by for a, b €
Ej. There is only one linear polynomial which is
minimal on Fj3.

Step 1: For k = 3, the binary linear polynomial
be2a(x,y) = 22+ 2y

is minimal.
Step 2: We have:

Theorem 4.1 (A. Szendrei) Let k be a prime. Let
g(z,y) be a binary linear polynomial on Ey. Then
g ts minimal if and only if

gz, y)=az+(k+1-a)y

for some 1 < a < k. Moreover, all such linear
polynomials generate the same minimal clone.

4.2 Monomials

Consider monomials z° y* for 1 < s < t < k. There
is only one monomial which is minimal on Fjs.
Step 1: For k = 3, b;;(z,y) = zy? is minimal.
Step 2: We have:

Theorem 4.2 Let k be a prime.

1) g(z,y) =zy*!

(2) Foranyl<s<k—1, z°y** is not a mini-
mal function.

18 a minimal function.

For the proof see [MP 07a).

4.3 Some Generalizations

We shall add more minimal polynomials to our list
of minimal polynomials obtained by the above pro-
cedure. For the proof of the minimality of polyno-
mials for k > 3 we rely on the following lemma.

For f € O}cz) let 'y be the following set of expres-
sions:

{ f(=z, f(z,)),
f(f(z,9), ),

f(z, f(y,2)), [f(f(z,9),x),
F(f(z,y), f(y,z)) }
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Lemma 4.3 Let f € Of) be a binary idempotent
function which is not a projection. Suppose that for
every v € I'y one of the following holds:

y(z,y) = f(z,y) or ~(z,y)=~ f(y,z)

Then f is minimal.

Here, by hi(z,y) = ha(z,y) for hy,hp € 01(3) we
mean hy(z,y) = ha(z,y) for all (z,y) € (Ex)2.

For the proof of the lemma the reader is refered
to [MP 07b].

(1) Generalization of byg

Step 1 : (Basis)
For k = 3, baso(z,y) = T+y+2zy? is minimal.

Step 2 : (Generalization)
For k > 3,
gz, y) =z +y+ (k- 1)zy*?
is minimal. '

Step 3 : (Proof of Step 2)
It is clear that

(z,y) = x ify=0,
IBY = z+y+(k-1)z=y ifys#0.
Then for each expression in I'y we have the fol-

lowing:

)
- (z,z) = ify=0,
9(@,9(,3)) = { Pt T

Hence g(z, 9(z,y)) = 9(z,y).

(ii)
_J 9(zy)=y ifz=0,
9(z,9(y, 7)) = { 9(z,z) =2 ifz#£0.
Note that g(z,y) = y for x = 0 follows from
the definition of g(z,y). Hence g(z, g(y,z)) ~

9(y, z).
(iii)

sate = { 497V {220

Hence g(g(z,y), ) ~ g(y,z)-
(iv)

9(g(z,),y) = { z(z’y) - gﬁgf



Hence g(g(z,y),y) = g(z,y)-

(v) Furthermore, we obtain

g(g(z,y),9(y, 7))

0 fz=y=0,
_) vy frx=0,y#0,
I fz#0,y=0,

g(y,z) fz#0,y#0.

Hence g(g(z,v), 9(v, ) = g(y, ).
Therefore g(z,y) is minimal by Lemma 4. 3. O

(2) Generalization of begz

Step 1 : (Basis)
For k = 3, bgga(z,¥y) = = + 2y* + 2% y? is mini-
mal.

Step 2 : (Generalization)
For k > 3,
9(z,y) =z + (k= 1yF~1 +gk-1y+1
is minimal.
Step 3 : (Proof of Step 2)
It is easy to see that

k-1 if £=0,y+#0,
] otherwise.

9(z,y) = {

Then for each expression in Iy we have the fol-
lowing;:
)
9(z,9(z,y)) = {
Hence g(z,g(z,y)) = g(z,y)-
(ii) Similarly, we have

9(z, 9(y, 7)) ~ g(z,y).
(ili) ~ (v): Note that g(z,y) =0iff z =y =0.
Then it is easy to see that

k-1 ifz=0,y#0,
g(z,z) =z otherwise.

9(g(z,y), ) =~ g9(g9(z, y), v)
~ g(g(z,v),9(y, 7)) =~ g(z, ).

Therefore g(z,y) is minimal by Lemma 4. 3. O

(3) Generalization of bggg

Step 1 : (Basis)
For k = 3, baes(z,y) = = + y? + 222 y? is mini-
mal.
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Step 2 : (Generalization)
For k > 3,
9(z,y) = T+ yF 1+ (b~ 12k
is minimal.
Step 3 : V(Proof of Step 2)
For this g(z,y) we see that

_J1 if x=0,y#0,
g(w,y)—{ z  otherwise.

(i) We have

9(0,1)=1 ifz=0,y#0,
g(z,z) = z otherwise,

g(z, g(z,y)) = {

which implies g(z, 9(z,v)) = g(z, ).
(ii) Also we have

_Jg(z, )=z ifx#0, y=0,
g(wag(y’ z)) = {g(m,y) otherwi;e.

Hence 9(z,9(y, z)) ~ g(z,y).
(iii) ~ (v): Note, as in (2), that g(z,y) = 0 iff
z = y = 0. Then it is easy to see that

9(9(z, ), z) ~ g9(9(z,),)

~ 9(9(z,),9(y, 7)) = g(=,y)
Therefore g(z, y) is minimal by Lemma 4. 3. O

4.4 More Generalizations

We shall give more examples of generalization. For
the proof of these generalizations, Lemma 4.3 is
not applicable and we need other ways to prove the
minimality which we omit here. (See [MW 08].)

(4) Generalization of by

Step 1 : (Basis)
For k = 3, bn(z,y) = zy?> + 222 + 222 is
minimal.

Step 2 : (Generalization)
For k > 3,
9(z,y) = zy* 1 + (k— 1)zk-1 4 gh=1 41
is minimal.



Observation :
0 if =0,
¢ glzy)=¢ k-1 if z#0,y=0,
T if z#£0,y#0.

O g(z,9(z,y)) = =,
9(z, 9(y, 2)) ~ g(9(z,v), ) =~ g(9(x,v),v)
~ 9(9(z,y),9(y, 7)) =~ g(z,y). =
(5) Generalization of by;

Step 1 : (Basis)
For k = 8, bu(z,y) = 22 + zy? + 2222 is
minimal.

Step 2 : (Generalization)

For k > 3,
glz,y) =¥ +2yh~1 4 (k- 1)zh-1 9k
is minimal.
Observation : ,
0 if z=0,
¢ g9l=zy)=q 1 if z#0,y=0,
F if z#0,y#0.

© é(x,g(x, Y) = z,
9(z, 9(y, 7)) =~ g9(g9(z,y), z) =~ g(9(z, ¥), )
~ g(g(x,¥),9(y, 7)) ~ g(z,y). o

(6) Generalization of beg

Step 1 : (Basis)
For k = 3, beg(z,y) = 2z + 2z y2 is minimal.
Step 2 : (Generalization)
For k > 3,
9(z,y) = (k-1 z+2zy*?
is minimal.
Note: In this case, simple replacement of 2 by
k — 1 does not work.
Observation :
_ | (k=Dz if y=0,
¢ g(:c,y)—{z if y#0.
0 g(=z,9(z,9)) = 9(9(z,y),v)
~ g(9(z, ), 9(y,2)) = =,
9(z,9(y,2)) ~ 9(9(z,y),z) = g(z,y). O
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(7) Generalization of by
Step 1 : (Basis)
For k = 3, bo(z,y) = 22%y + 2z y? is minimal.

Step 2 : (Generalization)

For k > 3, .
k—l . .
9(z,y) = (k—1) Y a4y
i
is minimal. '

Step 3 : (Sketch of Proof) We have f(z,z) =z
since (k — 1)2 = 1. For = # y, let

k-1

D= Z k=i,

i=1
Then zy~!D = D. Hence zD = yD which
implies D = 0. Therefore f(z,y) =z ifz =y
and f(z,y) = 0if z # 5. Now it is easy to see
that f is minimal.

5 Minimal Clones Generated
by Ternary Majority Func-
tions

In this section we consider ternary majority func-

tions generating minimal clones (Item (3) in The-

orem 2.2). The results stated in this section come
from [MW 08].

5.1 Majority Polynomials over GF(3)

A ternary function f(z,y,z) on GF(3) can be ex-
pressed as a polynomial of the following form

E : Cstu z° yt 24

0<stu<2

flx,y,2) =

where a,, € FE5 for all 8,t,u € Ej3.

Proposition 5.1 A polynomial f(z,y,z) over
GF(3) is a majority function if and only if f(z,y, 2)
s expressed as

f(z,y,2)
= (azy+ bxz + cyz)
+(pzy? + (2p + 1)z?y) + (quz® + (20 + 1)122)



+(rzlz + (2r + V)z2%) + 2yz
+2(az?y? + cy?2? + bz?2?)

+2(azyz? + bry?z + cx’yz)

+(2p+ 1+ Dzy?2? + (29 + p+ 1)z?y2?
+(2r + g + Da?y?2 + (a + b+ c)z?y?2®

for some a,b,c,p,q,7 € Ej3.

5.2 Majority Minimal Polynomials
over GF(3)

According to B. Csdkény [Cs 83], there are seven
minimal clones on Ej3; which are generated by
ternary majority functions. As in [Cs 83}, a ternary
majority function f on E3 will be denoted by m; if
t = £(0,1,2) - 3% + f(0,2,1) - 3* + £(1,0,2) - 3% +
£(1,2,0) 3% + £(2,0,1) - 3+ £(2,1,0).

The following are ternary majority functions
which generate minimal clones on Ej.

1. mo - 2(xy? + 22y) + 2(y2? + y%2)
+2(z%z + 22%) + zyz
+(zy?2? + 2y2® + 2%y%2)

2. mass = (zy+z2+y2)
+2(zy? + 2%y) + 2(y2% + y%2)
+2(z22 + 22%) + zyz
+2(22y? + 2222 + 222)
+2(z%yz + zyz + xy2?)
+(xy?2? + 2y2? + 2%y%2)

3. mps = 2(xy+xz+y2)
+2(zy? + z%y) + 2(y2* + y22)
+2(z?2 + z2%) + zyz
+(z?y? + 2222 + 222)
+(z%yz + zy?2 + 2Y2?)
+(zy?2? + 2?y2® + 2yP2)

4. myge = 2(zy+zz+y2)
+(zy? + y2? + 222) + zyz
+(z2y? + 2222 + y222)
+(z%yz + 2922 + xy2?)
+Hay?2? + 22y + 22Pz)

' Step 1 :
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5. mars = (zy® +y2®+2%2) + zy2
+(zy?22 + 2y2? + 22y22)
6. msi0 = (zy+z2+y2)
+(zy? +y2? + 2%2) + zy2
+2(z%y? + 2%2% 4 1222)
+2(zy2? + zyz + o?yz)
+(zy?2? + 22y2? + z%y22)
7. meas = 2(xy® +2%y) +yP2 + 2z 4+ ay2
Note that mgzgs and mryeg are conjugate to myg,
ie., mass = (mo)®) and mpg = (mg)©®?, and

ma73 and ms10 are conjugate to mygg, i.e., myr3 =
(m109)®® and ms1o = (M109)*?.

5.3 Generalizations
We take the same strategy as above.
Qur Strategy :

Take arbitrary majority function
m(x,y,2) € 0:(,3) from Csékény’s list of gen-
erators of minimal clones over Fj.

Step 2 : Search for a polynomial h(z,y,2) € OS)
for k > 3 whose counterpart for £k = 3 is
m(z,y, z).

Step 3 : Verify that h(z,y, 2) is minimal.

In the sequel, we shall make use of two binary
polynomials §(z,y) and u(z,y) defined as follows:

k

bz,y) = Y ot iyh

i=1

k-1
wa,y) = (k=1 zy*
i=1

Note: It is verified that

1 if
6z, 1) = { oopary

and

u(w,y)={0 if o #y

T if z=y.



We present, without proof, generalizations for
ternary majority functions mez4, mo and my73. For
the details, see [MW 08].

(1) Generalization of mga4
Step 1 : For k = 3, take mgo4(2,¥, 2).
Step 2 : For £ > 3,
he2a(z,y,2) = plz, y) +26(z, y)
is minimal.
(2) Generalization of mq
Step 1 : For k = 3, take mo(z, v, 2).
Step 2 : For k > 3,
ho(z,y,2) = w(z, y) + uly, 2) + u(z, =)
— 2-p(z, y) - u(y, 2) - plz, ) - 2F 3
is minimal.
(3) Generalization of myr3
Step 1 : Fér k = 3, take mq73(z, ¥, 2).

Step 2 : For k > 3,

h473(maya Z) = ho (13, Y, z)
+6(.’I},y) '6(3/,2) '6($,Z) -p(:v,y,z)

is minimal, where ho(z,¥, z) is a polynomial
given in (2) and

p(x,y,2) = ay* 4 y2Fl 4+ 22k

—(zy2)* 1 (z+y).

Remark: Examples show the importance of §(z, y)
and u(z,y) in constructing minimal polynomials.

References

[CsG 80] Csékdny, B. and Gavalcové, T. (1980). Finite
homogeneous algebras I, Acta Sci. Math. (Szeged),
42, 57-65.

[Cs 83] Csékény, B. (1983). All minimal clones on the
three element set, Acta Cybernet., 8, 227-238.

[Cs 86] Csékény, B. (1986). On conservative minimal
operations, Collog. Math. Soc. J. Bolyai, 43, North
Holland, 49-60.

41

[Du 90] Dudek, J. (1990). The unique minimal clone
with three essentially binary operations, Algebra
Universalis, 27, 261-269.

[IM 59] Ianov, Iu. I. and Mutchnik, A.A. (1959). Ex-
istence of k-valued closed classes without a finite
basis (in Russian), Dokl. Akad. Nauk., 127, 44-46.

[KS 99] Kearnes, K. A. and Szendrei, A. (1999). The
classification of commutative minimal clones, Dis-
cuss. Math. Algebra Stochastic Methods, 19, 147-
178.

[LP 96] Lévai, L. and P4lfy, P. P. (1996). On binary
minimal clones, Acta Cybernet., 12, 279-294.

[MP 06] Machida, H. and Pinsker, M. (2006). Some ob-
servations on minimal clones, Proceedings 36th In-
ternational Symposium on Multiple- Valued Logic,
IEEE.

[MP 07a] Machida, H. and Pinsker, M. (2007). Polyno-
mials as generators of minimal clones, Proceedings
387th International Symposium on Multiple- Valued
Logic, IEEE.

[MP 07b] Machida, H. and Pinsker, M. (2007). Some
polynomials generating minimal clones, Journal of
Multiple- Valued Logic and Soft Computing, Vol. 13,
353-365.

[MW 08] Machida, H. and Waldhauser, T. (2008). Ma-~
jority and Other Polynomials in Minimal Clones,
to appear in Proceedings $8th International Sym-
posium on Multiple- Valued Logic, IEEE.

[Po 41] Post, E.L. (1941). The two-valued iterative sys-
tems of mathematical logic, Ann. Math. Studies, 5,
Princeton Univ. Press.

[Ro70] Rosenberg, I. G. (1970). On the functional
completeness in many-valued logics (Uber die
funktionale Vollstindigkeit in dem mehrwertigen
Logiken, in German), Rozpravy Ceskoslovenské.
Akad. Véd. Kada Mat. Prirod. Véd., 80, 3-93.

[Ro 86] Rosenberg, I. G. (1986). Minimal clones I: The
five types, Collog. Math. Soc. J. Bolyai, 43, North
Holland, 405-427.

[Szc 95] Szczepara, B. (1995). Minimal clones gener-
ated by groupoids, Ph.D. Thesis, Université de
Montréal.

[Wa 00] Waldhauser, T. (2000). Minimal clones gener-
ated by majority operations, Alg. Universalis, 44,
15-26.

[Wa 03] Waldhauser, T. (2003). Minimal clones with

weakly abelian representations, Acta Sci. Math.
(Szeged), 69, 505-521.

[Wa 07] Waldhauser, T. (2007). Minimal clones with
few majority operations, to appear in Acta Sci.
Math. (Szeged).



