<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>生体内シグナル応答性高選択的DNA結合スモールプロテインの創製</td>
</tr>
<tr>
<td>著者</td>
<td>森井 孝</td>
</tr>
<tr>
<td>引用</td>
<td>(2002)</td>
</tr>
<tr>
<td>書誌期間</td>
<td>2002-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82006</td>
</tr>
<tr>
<td>版</td>
<td>学術雑誌掲載論文の抜き刷り、出版社に著作権許諾が得られていないため未掲載。</td>
</tr>
<tr>
<td>報道</td>
<td>京都大学</td>
</tr>
<tr>
<td>類型</td>
<td>Research Paper</td>
</tr>
<tr>
<td>出版社</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
生体内シグナル応答性高選択的DNA結合スモールプロテインの創製

課題番号 12680590

平成12〜13年度科学研究費補助金（基盤研究(C)(2)）研究成果報告書

平成14年3月

研究代表者 森井 孝
（京都大学 エネルギー理工学研究所・助手）
平成12～13年度科学研究費補助金（基盤研究(C)(2))

研究成果報告書

課題番号 12680590

課題 生体内シグナル応答性高選択的 DNA 結合スモールプロテインの創製

研究組織 研究代表者： 森井 孝
(京都大学 エネルギー理工学研究所・助手)

研究経費

<table>
<thead>
<tr>
<th>平成12年度</th>
<th>2,500千円</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成13年度</td>
<td>1,500千円</td>
</tr>
<tr>
<td>計</td>
<td>4,000千円</td>
</tr>
</tbody>
</table>
研究実績の内容

要約

本研究は、生理条件下で DNA 結合活性をもち、生体内信号分子の種類や濃度変化に応じて塩基配列選択的に DNA を認識できる新しい機能性スモールプロテインを創成することを目的とした。そこで BR ベプチドが特定の塩基配列を有する DNA 結合時に α ヘリックスへと構造転移を行う現象に注目し、（1）生理条件下で安定な折り畳み構造をとる新しい DNA 結合ドメインを既存のタンパク質の三次元構造をもとに設計する、（2）BR ベプチドの構造転移とヘリックス構造の安定性を金属イオンとの相互作用により変化させてベプチドの DNA 結合および塩基配列特異性を制御する、というアプローチを行った。

熱的に安定な新しいフォールディング構造を持つ DNA 結合ドメインの設計は、三次元構造が明らかになっている villin をもとに設計した。GCN4 と DNA 複合体の三次元構造をもとにして、villin が安定に折り畳み構造をとるための疎水性アミノ酸は保存したまま、塩基配列認識に必須なアミノ酸を C 末端側に延長した villin α ヘリックスの外側に導入した。また villin ドメインをもとにした DNA 結合部位にロイシンジッパー部位を導入し、天然のロイシンジッパートンパク質 GCN4 との DNA 結合活性の比較を行った。様々な DNA との複合体の安定性および選択性、そして複合体生成の速度論的解析をゲルシフトアッセイおよび表面プラズモン測定法により測定することにより、Induced Fit と Rigid Body や結合様式の違いによって、DNA 塩基配列認識能が変化することを見いだした。この DNA 結合ドメインの疎水性コア中のアミノ酸を改変することにより疎水性コアの安定性がコントロールできるため、DNA 結合活性を温度により制御できることが期待される。

金属イオン依存的にフォールディング構造を取る DNA 結合ドメインは三次元構造の明らかになっている Zif268 に由来する C2H2 タイプ Zn フィンガードメインを用いた。ここで得られる DNA 結合ドメインは金属イオンの種類または濃度に依存して、フォールディングパターンを変えることが予想でき、ランダムコイル状から安定な DNA 認識ヘリックスへ、金属イオンという外部シグナルにより構造を制御できる。この金属イオンにより構造を制御できる新しい DNA 結合ドメインを用いて、現在 Induced-Fit による構造転移を行うドメインとフォールディング構造を取るドメインとの DNA 結合能・認識能を比較している。

Abstract

We have employed a structure-based design to construct a small folding domain from the F-actin bundling protein villin that contains amino acids necessary for the DNA binding of the basic leucine zipper protein GCN4, and have compared its DNA binding with GCN4. The monomeric motif folds into a stable domain, and binds DNA in a rigid-body mechanism, while its affinity is not higher than that of the basic region peptide. Addition of the leucine zipper region to the folded domain restored its sequence-specific
DNA binding comparable to that of GCN4. Unlike the monomeric folded domain, its leucine zipper derivative undergoes a conformational change upon the DNA binding. CD spectral and thermodynamic studies indicate that the DNA-contacting region is folded in the presence or absence of DNA, and suggest that the junction between the DNA-contacting and the leucine zipper regions transits to a helix in the presence of DNA. These results demonstrate that the structural transition outside the direct-contacting region, which adjusts the precise location of the DNA-contacting region, plays a critical role in the specific complex formation of the basic leucine zipper proteins.

Another design strategy utilized a well-folded small domain of C2H2 zinc finger motif as scaffold for the DNA binding α-helix. Appropriate substitution of the α-helical portion of the C2H2 zinc finger motif with amino acid residues necessary for the sequence-selective binding of GCN4 would afford a novel DNA binding domain with a folded structure. Studies on structural aspects and the sequence-specific DNA binding of the novel protein in the presence of various metal ions are currently underway.
(1) 学会誌

1. Formation of 2’-Deoxyoxanosine from 2’-Deoxyguanosine and Nitrous Acid: Mechanism and Intermediates

2. Identification and Characterization of a Reaction Product of 2’-Deoxyoxanosine with Glycine.

3. Influence of Ring Opening-Closure Equilibrium of Oxanine, a Novel Damaged Nucleobase, on Migration Behavior in Capillary Electrophoresis.

4. Products of the Reaction between a Diazoate Derivative of 2’-Deoxycytidine and L-Lysine and Its Implication for DNA-Nucleoprotein Cross-Linking by NO or HNO2.

5. DNA Binding of a Basic Leucine-Zipper Protein with Novel Folding Domain.
 S. Sato, K. Makino, and T. Morii

6. NO Induced Novel DNA Lesions: Formation Mechanism.

7. Design of Sequence Specific DNA Binding Peptide Dimers.
 T. Morii
 Protein Science, 9, 148 (2000).

8. Formation of 2-chloroinosine from guanosine by treatment of HNO2 in the presence of NaCl.
 T. Suzuki, H. Ide, M. Yamada, T. Morii, and K. Makino

9. Recognition of small molecules by a ribonucleopeptide.
 M. Hagihara, T. Morii and K. Makino

11. Formation of a Fairly Stable Diazoate Intermediate of 5-Methyl-2'-deoxycytidine by HNO₂ and NO, and Its Implication to a Novel Mutation Mechanism in CpG Site.

12. A General Strategy to Determine a Target DNA Sequence of Short Peptide: Application to a D-Peptide.
T. Morii, T. Tanaka, S. Sato, M. Hagihara, Y. Aizawa and K. Makino

T. Morii, K. Sugimoto, K. Makino, M. Otsuka, K. Imoto, and Y. Mori

T. Morii, S. Sato, M. Hagihara, Y. Mori, K. Imoto and K. Makino

15. In Vitro Selection of ATP-binding Receptors Using a Ribonucleopeptide Complex.
T. Morii, M. Hagihara, S. Sato and K. Makino

(2) 学会発表

1. 森井 孝、佐藤 慎一、牧野 圭祐、“塩基性領域を新しいドメインに変化したライシンジッパータンパク質による DNA 認識”蛋白質同様会東京 2000 年 6 月
T. Morii, S. Sato, and K. Makino, DNA binding of a new basic leucine-zipper protein with a novel DNA contacting domain.

2. 佐藤慎一・森井孝・牧野圭祐、“新しい DNA 結合ドメインをもつルイシンジッパータンパク質による DNA 認識”第 15 回生体関連化学シンポジウム、2000 年 9 月
Takashi Morii, Shin-ichi Sato, Keisuke Makino, DNA binding of a new basic leucine-zipper protein with a novel DNA contacting domain.

3. 杉本健二、森井 孝、牧野圭祐、森 泰生、井本敬二、井上照彦、杉浦幸雄、大塚雅巳“生体内セカンドメッセージジャによる分子センサーの構築”第 15 回生体機能関連シンポジウム 2000 年 9 月 奈良

4. 萩原正規、森井孝、牧野圭祐 “RNA-ペプチド複合体による分子認識”第 15 回生体
5. 佐藤 慎一、森井 孝、牧野 圭祐、 "新しい DNA 結合ドメインをもつロイシンジッパータンパク質による DNA 認識"

Shin-ichi Sato, Takashi Morii and Keisuke Makino, "DNA binding of a basic leucine-zipper protein with novel folding domain" 第 27 回核酸化学シンポジウム 2000 年 10 月 岡山県・三木ホール

6. Masaki Yamada, Toshinori Suzuki, Kenji Kanaori, Kunihiko Tajima, Takashi Morii, Keisuke Makino "NO induced novel DNA lesions: formation mechanism" 2000 年 10 月 第 27 回核酸化学シンポジウム 岡山県・三木ホール

7. S. Sato, T. Morii, and K. Makino, "DNA binding of a basic leucine-zipper protein with novel folding domain" 環太平洋国際化学会議（PACIFICHEM 2000）ハワイ・ホノルル 2000 年 12 月

8. M. Hagihara, T. Morii, K. Makino "In Vitro Selection of RNA Aptamers that Respond to a Small RNA-Binding Ligand" 環太平洋国際化学会議（PACIFICHEM 2000）2000 年 12 月 ホノルル

9. 杉本健二、森井孝、森泰生、井本敬二、大塚雅巳、牧野圭祐 “イノシトール三リン酸に対する分子センサーの構築” 日本化学会 79 春季年会 神戸 2001 年 3 月 28 日

10. 佐藤慎一、森井孝、牧野圭祐 “Structure-based design による新しい DNA 結合ドメインの設計と DNA 認識機構の解明” 日本化学会 79 春季年会 神戸 2001 年 3 月 28 日

Shin-ichi Sato, Keisuke Makino and Takashi Morii, DNA binding of a new basic leucine-zipper protein with a novel DNA contacting domain.

11. 萩原正規、森井孝、牧野圭祐 “リボヌクレオペプチドによる分子認識” 日本化学会 79 春季年会 神戸 2001 年 3 月 28 日

Masaki Hagihara, Takashi Morii, Keisuke Makino, Recognition of small molecules by a ribonucleopeptide.

12. 森井 孝、牧野圭祐 “化学から見たタンパク質と DNA による超分子複合体生成” 第 6

14. 萩原正規・森井孝・牧野圭祐 “RNA-ペプチド複合体による分子認識” 第16回生体機能関連化学シンポジウム 2001年9月20日、21日 千葉
Masaki Hagihara, Takashi Morii, Keisuke Makino, Recognition of small molecules by a RNA-peptide complex.

15. 杉本健二・森井 孝・森 泰生・井本敬二・大塚雅巳・牧野圭祐 “生体内セカンドメッセージに対する分子センサーの構築” 第16回生体機能関連化学シンポジウム 2001年9月20日、21日 千葉

16. 佐藤 慎一、何 冬蘭、森井 孝、牧野 圭祐 “ロイシンジッパータンパク質によるDNA認識と構造転移の役割” 第16回生体機能関連化学シンポジウム 2001年9月20日、21日 千葉
Shin-ichi Sato, He Donglan, Takashi Morii and Keisuke Makino, Role of the structural transition for DNA recognition by bZIP proteins.

17. 萩原正規、森井孝、牧野圭祐 “RNA-ペプチド複合体による人工リセプター（リボヌクレオペプチドリセプター）の創製” 第74回日本生化学会大会 2001年10月25〜28日 京都
M. Hagihara, K. Makino, T. Morii, In vitro selection of a ribonucleopeptide receptor.

18. 杉本健二・森井 孝・森 泰生・井本敬二・大塚雅巳・牧野圭祐 “イノシトール三リン酸に対する分子センサーの構築” 第74回日本生化学会大会 2001年10月25〜28日 京都

19. 森井 孝、○佐藤 慎一、牧野 圭祐 “bZIP構造によるDNA塩基配列特異的認識における構造転移の役割” 第74回日本生化学会大会 2001年10月25〜28日 京都
Takashi Morii, Shin-ichi Sato,Keisuke Makino, Role of the structural
transition for DNA recognition by bZIP proteins.

20. 萩原正規・森井孝・牧野圭祐 “リボヌクレオペプチドリセプターによる分子認識” 第28回核酸化学シンポジウム 2001年11月7～9日 横浜
Masaki Hagihara, Takashi Morii, Keisuke Makino, Recognition of small molecules by a ribonucleopeptide.

21. 萩原正規、森井孝、牧野圭祐 “RNA・ペプチド複合体 (リボヌクレオペプチド) による分子認識” 日本化学会第81春季年会 2002年3月26～29日 東京
Masaki Hagihara, Takashi Morii, Keisuke Makino, Recognition of small molecules by ribonucleopeptides.

22. 杉本健二・森井 孝・森 泰生・井本敬二・大塚雅巳・牧野圭祐 “イノシトール三リン酸に対する分子センサーの構築” 日本化学会第81春季年会 2002年3月26～29日 東京

23. 佐藤 慎一、田中 智久、萩原 正規、相沢 康則、森井 孝、牧野 圭祐 “短鎖ペプチドによる認識 DNA塩基配列決定法の確立” 日本化学会第81春季年会 2002年3月26～29日 東京
Shin-ichi Sato, Tomohisa Tanaka, Masaki Hagihara, Yasunori Aizawa, Takashi Morii and Keisuke Makino, A New Strategy to Determine the Target DNA Sequence of a Short Peptide.