<table>
<thead>
<tr>
<th>Title</th>
<th>The number of orthogonal permutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nozaki, Akihiro; Miyakawa, Masahiro; Pogosyan, Grant</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1991), 754: 206-219</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82101</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The number of orthogonal permutations

Akihiro Nozaki
(野崎昭弘)
Interenational Christian University
3-10-2, Ósawa, Mitaka-shi
Tokyo 181, Japan
Grant Pogosyan
Yerevan Polytechnic Institute
Teryan 105, Yerevan
Armenia, USSR

Masahiro Miyakawa
(宫川正弘)
Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba
Ibaraki 305, Japan
Ivo G. Rosenberg
Université de Montréal
C.P.6128, Succ. “A”, Montréal
P.Q. H3C 3J7, Canada

概要

A problem on maximal clones in universal algebra leads to the natural concept of orthogonal orders and their characterisation. Two (partial) orders on the same set P are orthogonal if they share only trivial endomorphisms i.e. if the identity selfmap of P is the sole non-constant selfmap preserving (i.e. compatible with) both orders. We start with a neat and easy characterisation of orthogonal pairs of chains (i.e. linear or total orders) and then proceed to the study of the number $q(k)$ of chains on $\{0, 1, \ldots, k-1\}$ orthogonal to the natural chain $0 < 1 \ldots < k - 1$. We obtain a recurrence formula for $q(k)$ and prove that the ratio $q(k)/k!$ (of such chains among all chains) goes to $e^{-2} = 0.1353\ldots$ as $k \to \infty$. Results are formulated in terms of permutations.

1. Introduction

1.1.

Let k be an integer, $k > 2$ and $k := \{0,1,\ldots,k-1\}$. For a positive integer n an n-ary k-valued logic function is a map $f : k^n \to k$ assigning a value from k to every n-tuple (a_1, \ldots, a_n) over k. For example, for $i = 1, \ldots, n$ and $a \in k$ the i-th projection (or trivial function) e_i^a and the constant c_i^a are defined by setting $e_i^a(a_1, \ldots, a_n) := a$; and $c_i^a(a_1, \ldots, a_n) := a$ for all $a_1, \ldots, a_n \in k$. Denote $P_k^{(n)}$ the set of all n-ary k-valued logic functions and put $P_k := \cup_{n=1}^{\infty} P_k^{(n)}$. A composition closed subset of P_k containing all projections is a clone on k. Clones may be seen as multiple-valued analogs of transformation monoids (whereby the projections replace the neutral element) and they are basic for universal algebra, the propositional calculus of k-valued logics (or k-valued switching functions), theoretical computer science and automata theory. The set J_k of clones on k, ordered by inclusion, is an (algebraic) lattice. The dual atom (or co-atoms, i.e. clones covered by the clone P_k), called maximal (or precomplete) clones, are known. In the difficult problem of basis classification (known only for $k = 2$ [Jab52] and $k = 3$ [Miy71] and some other clones, cf. [MSLR87]) a subproblem is to find all sets of maximal clones intersecting in a proper clone and maximal with respect to this property (i.e. if we add any maximal clone to the set, the intersection will be the least clone J_k of all projections). We address this problem in a very special case.
1.2.

Let \(\leq \) be a (partial) order on \(k \) (i.e. a reflexive, antisymmetric and transitive binary relation on \(k \)). The order is bounded if it has a least element \(0 \) and a greatest element \(e \) (i.e. \(0 \leq x \leq e \) holds for all \(x \in k \)). A function \(f \in P_k^{(n)} \) is \(\leq \)-isotone (monotone, order preserving or order-compatible) if \(f(a_1, \ldots, a_n) \leq f(b_1, \ldots, b_n) \) whenever \(a_1 \leq b_1, \ldots, a_n \leq b_n \). Denote \(\text{Pol} \) the set of all \(\leq \)-isotone \(f \in P_k \). It is easy to see that \(\text{Pol} \leq \) is a clone. Martiniuk [Mar60] showed that \(\text{Pol} \leq \) is a maximal clone if and only if \(\leq \) is bounded. Let \(\leq \) and \(\leq' \) be two orders on \(k \). Denote \(T \) the set of all projections and constants on \(k \). It is easy to see that \(T \) is a clone and that \(\text{Pol} \leq \cap \text{Pol} \leq' \geq T \).

The discussion of Subsection 1.1 leads to the following problem: when is \(\text{Pol} \leq \cap \text{Pol} \leq' = T \)? This problem actually reduces to the following simpler problem (cf [DMRSS90]). A unary \(\leq \)-isotone operation is an endomorphism of \(\leq \) and \(\text{End} \leq := P_k^{(1)} \cap \text{Pol} \leq \). The orders \(\leq \) and \(\leq' \) are orthogonal if

\[
\text{End} \leq \cap \text{End} \leq' = T^{(1)} := \{ c_a^{1} : a \in k \} \cup \{ e_1^{1} \},
\]

i.e. if the identity selfmap is the only non-constant joint endomorphism of both \(\leq \) and \(\leq' \). Clearly \(\text{End} \leq = \text{End} \geq \) and therefore \(\leq \) and \(\leq' \) are orthogonal exactly if \(\geq \) and \(\leq' \) are orthogonal. In other words, \(\leq \) and \(\leq' \) are orthogonal if and only if \((\leq, \leq') \) is a semirigid relational system [LaPo84]. In [DMRSS90] we found a pair of orthogonal orders of height 1 for all \(k > 5 \) (with the exception of \(k = 7 \) but this can be fixed by another construction).

If we ask the question for bounded orders, chains (linear or total orders) are the simplest bounded orders to investigate. The above result easily yields the existence of 4 chains \(\leq_1, \ldots, \leq_4 \) on \(k \) such that \(\cap_{i=1}^{4} \text{End} \leq = T^{(1)} \). A computer program found all pairs of chains orthogonal to \(0 < 1 < \ldots < k - 1 \) for \(k \leq 7 \) (cf. Tables 1-3) and this lead directly to a very simple characterization of orthogonal chains in Lemma 11 below. Now it was natural to ask about the number \(q(k) \) of chains orthogonal to the natural chain \(0 < 1 < \ldots < k - 1 \). Our results for this enumeration problem, obtained in May-July 1990, are presented below. The fourth author presented the results of [DMRSS90] and work in progress at the CMS Summer Meeting (Halifax, N.S., Canada, June 1-3, 1990) and this lead to M. Haiman's independent results [Hai90] mentioned at the conclusion of this paper.

2. The number \(q(k) \)

2.1. Permutations and chains

We prefer to work with permutations rather than chains.

Definition 1. A permutation \(\sigma \) (i.e. a injective selfmap) of \(k \) induces the following chain (linear order relation) \(\mathcal{R}(\sigma) \) on \(k \)

\[
\sigma(0) \subset \sigma(1) \subset \cdots \subset \sigma(k-1).
\]

For example, the identity \(e_k \) induces the natural order \(\mathcal{R}(e_k) \):

\[
0 < 1 < \ldots < k - 1.
\]

Example 2. We represent a permutation \(\sigma \) by the \(k \)-tuple \((\sigma(0) \sigma(1) \ldots \sigma(k-1)) \). For example, \((021)\) represents the permutation \((012)\), and therefore \(\mathcal{R}(021) \) stands for the order \(0 \subset 2 \subset 1 \).
Definition 3. Permutations σ and τ are orthogonal if the chains $\mathcal{R}(\sigma)$ and $\mathcal{R}(\tau)$ are orthogonal, i.e. if

$$\text{End}(\mathcal{R}(\sigma)) \cap \text{End}(\mathcal{R}(\tau)) = T^{(1)}.$$

A permutation can be regarded as a “renaming” of elements of k. From this it follows that permutations σ and τ are orthogonal iff σ^{-1} and e are orthogonal. Thus the set of permutations orthogonal to an arbitrary permutation τ can be obtained if one knows the set $Q(k)$ of permutations orthogonal to the identity permutation e_k. Put

$$R(k) := S_k \setminus Q(k), q(k) := |Q(k)| \quad \text{and} \quad r(k) := |R(k)|$$

where S_k denotes the symmetric group of all permutations of k. We have $q(k) + r(k) = k!$.

Definition 4. A segment E of a permutation σ is a set of consecutive elements in σ:

$$\{\sigma(i), \sigma(i+1), \ldots, \sigma(i+l-1)\}.$$

and E is nontrivial if $1 < l < k$.

Example 5. The nontrivial segments of the permutation $e_4 = (0123)$ are $\{\{0, 1\}, \{0, 1, 2\}, \{1, 2\}, \{1, 2, 3\}, \{2, 3\}\}$. The nontrivial segments of the permutation $\sigma := (2031) = (1230)$ are $\{\{0, 2\}, \{0, 2, 3\}, \{0, 3\}, \{0, 1, 3\}, \{1, 3\}\}$.

Lemma 6. Two permutation σ and τ of k are orthogonal if and only if they share no nontrivial segment.

Proof. (\Leftarrow). Let σ and τ be not orthogonal. Then a non-constant selfmap h of k different from e is both $\mathcal{R}(\sigma)$-isotone and $\mathcal{R}(\tau)$-isotone. Since $\mathcal{R}(\sigma)$ is a chain, clearly h is not a permutation and so $1 < |h^{-1}(a)| < k$ for some $a \in k$. It is easy to see that $h^{-1}(a)$ is a segment of both σ and τ.

(\Rightarrow). Let E be a common nontrivial segment of σ and τ, and a be an arbitrary element of E. Define a function h as follows:

$$h(x) := \begin{cases} x & \text{if } x \not\in E, \\ a & \text{if } x \in E. \end{cases}$$

It is easy to see that h is nontrivial and both $\mathcal{R}(\sigma)$-isotone and $\mathcal{R}(\tau)$-isotone. Hence the permutations σ and τ are not orthogonal. \Box

Example 7. It is easy to check that $q(2) = q(3) = 0$. The permutations e and σ in Example 5 share no nontrivial segments. The permutation σ and its reverse $\sigma' = (1302)$ are the only permutations orthogonal to the permutation e_4 and so $q(4) = 2$. For example, the cyclic permutation $\tau := (1230)$ shares nontrivial segments $\{1, 2\}, \{1, 2, 3\}$ and $\{2, 3\}$ with e_4.

2.2. A recursive formula for $q(k)$

Definition 8. A natural segmentation is a nontrivial partition π of k into intervals. A permutation σ is compatible with π if each interval of π is a segment of σ.

Denote $R(k, s)$ the set of all permutations of k compatible with some natural segmentation having exactly s segments. Further put $R^{*}(k, 2) := R(k, 2)$ and

$$R^{*}(k, s) := R(k, s) \setminus \cup_{r=2}^{s-1} R^{*}(k, r)$$

for all $s \geq 3$.

Lemma 9.
(1) $R(k) = \bigcup_{a=2}^{k-1} R(k,a) = \bigcup_{a=2}^{k-1} R^*(k,a)$,
(2) $R^*(k,s) \cap R^*(k,s') = \emptyset$ if and only if $s \neq s'$.

Note that $\sigma \in R(k)$ belongs to $R^*(k,s)$ if and only if s is the least size of a natural segmentation π such that σ is compatible with π.

Definition 10. For a natural segmentation π of k with at least s intervals denote by $R^*(k,s;\pi)$ the set of all permutations in $R^*(k,s)$ compatible with π and put $r^*(k,s;\pi) := |R^*(k,s;\pi)|$.

Example 11. Consider the segmentation $\pi := \{\{01\},\{23\}\}$. Then

$$R^*(4,2;\pi) = \{(0123),(0132),(1023),(1032),(2301),(2310),(3201),(3210)\}.$$

For an order \leq on k we say that $E \subset k$ precedes $E' \subset k$ in \leq if $a \leq b$ for all $a \in E$ and $b \in E'$.

Lemma 12. Let E and E' be segments of a permutation σ.
(1) If E and E' are not disjoint then their intersection $E \cap E'$ is also a segment of σ.
(2) If E and E' are disjoint then either E precedes E' or E' precedes E in $R(\sigma)$.

Proof. Obvious. \square

Definition 13. Let $\pi := \{E_0, \ldots, E_{s-1}\}$ be a natural segmentation of k with $E_i = [a_i, a_{i+1} - 1]$ ($i = 0, \ldots, s-1$) and $0 = a_0 < a_1 < \ldots < a_s = k$. Let σ be a permutation compatible with π and let E_0, \ldots, E_{s-1} be the blocks of π as they appear in σ (from left to right). We denote the permutation $(i_0 \ldots i_{s-1})$ of s by σ^π and call it the intersegment permutation induced by σ and π.

2.2.1 Evaluation of $R(k,2)$.

Definition 14. For $0 < j < k$ denote $\pi_j = (0 \ldots j-1|j \ldots k-1)$ the natural segmentation $\{0, \ldots, j-1\} \{j, \ldots, k-1\}$.

Lemma 15.
(1) $|R^*(k,2;\pi_j)| = 2 \cdot j!(k-j)!$ for all $0 < j \leq k-1$.
(2) $|R^*(k,2;\pi_j) \cap R^*(k,2;\pi_j) \cap \ldots \cap R^*(k,2;\pi_{j_{i-1+j}})|$

$$= 2 \cdot j!(j_2-j_1)! \ldots (k-j_{i-1})!$$ for all $0 < j_1 < j_2 \ldots < j_{i-1} \leq k-1$.

Proof. (1) A permutation σ compatible with π_j is determined by 1) the intersegment permutation $\sigma^\pi_j \in S_2$, 2) a permutation of $\{0, \ldots, j-1\}$ and 3) a permutation of $\{j, \ldots, k-1\}$.

(2) Let $\sigma \in R^*(k,2;\pi_j) \cap R^*(k,2;\pi_j) \cap \ldots \cap R^*(k,2;\pi_{j_{i-1}})$. By Lemma 12 the permutation σ is compatible with the natural segmentation $\pi = \{0,1, \ldots, j_1-1\}, \ldots, \{j_{i-1}, \ldots, k-1\}$.

Put $i := \sigma^\pi(0)$. We have that $i \in \{0,t-1\}$ because, were $0 < i < t-1$ then $\{j_1, \ldots, k-1\}$ would not be a segment of π. First consider the case $i = 0$. Using $\sigma \in R(k,2,\pi_{j_1})$ for $s = 1, \ldots, t-1$, an easy induction shows that $\sigma^\pi = 01 \cdots (t-1)$. Similarly, if $i = t-1$ we get $\sigma^\pi = (t-1)(t-2) \cdots 0$. The formula follows in the same way as in (1). \square

Example 16.

$$R^*(5,2;\pi_2) \cap R^*(5,2;\pi_3) = \{(01234),(01243),(10234),(10243),(34201),(34210),(43201),(43210)\}. $$
Lemma 17. $r^*(k,2) = 2 \sum_{i=2}^{k} (-1)^{i} \sum_{n_1+n_2+\ldots+n_s=k} n_1!n_2!\cdots n_s!$,
(where the second sum is over positive integers n_1, \ldots, n_s).

Proof. We apply Lemma 15 and the "principle of inclusion and exclusion (the sieve formula)" to the union of $R^*(k,2;j)$'s.

$$|R^*(k,2)| = \sum_{i=1}^{k-1} (-1)^{i+1} \sum_{0<j_1<\ldots<j_{k-1}} |R^*(k,2;\pi_{j_1}) \cap \cdots \cap R^*(k,2;\pi_{j_{k-1}})|$$

$$= \sum_{i=1}^{k-1} (-1)^{i+1} 2 \sum_{0<j_1<\ldots<j_{k-1}} j_1!\cdots(k-j_{i})!.$$

By putting $s := t+1$, $n_1 := j_1$, $n_2 := j_2 - j_1$, and $n_s := k - j_1$ we have the desired formula. \hfill \square

Lemma 18. Let π and π' be distinct natural segmentations with s and s' segments where $3 \leq s \geq s'$. If a permutation σ is compatible with both π and π' then:

1. The induced intersegment permutation σ^* (on s) is not in $Q(s)$.
2. The permutation σ is not in $R^*(k,s,\pi)$, i.e. it is contained in $R(k,s')$ for some $s'' < s$.

Proof. 1) Since $s \geq s'$ and $\pi \neq \pi'$, there is an segment E' of π' not contained in any segment of π. Let $\pi = \{E_0, \ldots, E_{s-1}\}$ where the segments are listed in their natural order. Let $L := \{i \in s : E' \cap E_i \neq \phi\}$ and $l = \min L$, $j = \max L$. Then $i < j$ and $E' \subseteq E_l \cup \ldots \cup E_j$.

a) First consider the case $i = 0$ and $j = s - 1$. Since π' is a proper partition, at least one of the sets $E_0 \setminus E'$ and $E_{s-1} \setminus E'$ is non-empty, say $E_0 \setminus E' \neq \phi$. However, then E_0 is an initial or terminal segment of σ and so $\{1, \ldots, s-1\}$ a segment of σ^* and $\sigma^* \not\in Q(s)$ due to $s \geq 3$.

b) Thus let $i \neq 0$ or $j \neq s - 1$. The permutation σ is compatible with the nontrivial natural segmentation $E_0, \ldots, E_{i-1}, E_{i} \cup \ldots \cup E_j, E_{j+1}, \ldots, E_{s-1}$. Thus the set $\{i, \ldots, j\}$ is a nontrivial segment of the permutation σ^*, and hence σ^* is not in $Q(s)$ (proving 1). Moreover, in both cases a) and b) the assertion (2) is easily verified. \hfill \square

Corollary 19. Let π and π' be distinct natural segmentations of k with s segments where $s \geq 3$.

1. Let $\sigma \in R(k,s)$ be compatible with π. Then $\sigma \in R^*(k,s)$ if and only if $\sigma^* \in Q(s)$.
2. $R^*(k,s,\pi) \cap R^*(k,s,\pi') = \phi$.

Proof. 1) Let $\pi = \{E_0, \ldots, E_{s-1}\}$ where E_0, \ldots, E_{s-1} are in natural order. (\Rightarrow) Suppose $\sigma^* \not\in Q(s)$. Then there is a nontrivial segment $\{i_1, \ldots, j\}$ of σ^* and σ is compatible with the nontrivial segmentation $E_{i_0}, \ldots, E_{i-1}, E_{i} \cup \ldots \cup E_j, E_{j+1}, \ldots, E_{s-1}$ having less than s segments proving $\sigma \not\in R^*(k,s,\pi)$.

(\Leftarrow). Let $\sigma \not\in R^*(k,s,\pi)$. By definition then $s \geq 3$ and $\sigma \in R(k,s')$ for some $s' < s$. Denote π' the corresponding natural segmentation. According to Lemma 18 we have $\sigma^* \not\in Q(s)$.

2) If $\sigma \in R^*(k,s,\pi)$ then by what we have proved $\sigma^* \in Q(s)$, and hence by Lemma 18 (1) (with $s' = s$) we have $\sigma \not\in R(k,s,\pi') \supset R^*(k,s,\pi')$. \hfill \square

Definition 20. Put $g(k,s) := \sum_{n_1+n_2+\ldots+n_s=k} n_1!n_2!\cdots n_s!$, (where we sum over positive integers n_1, \ldots, n_s). Note that $g(k,1) := k!$ and $g(k,k) = 1$ and $r^*(k,2) = 2 \sum_{i=2}^{k} (-1)^{i} g(k,i)$.}

5
2.2. Evaluation of \(r^*(k, s) \) for \(s \geq 3 \).

Recall that by Definition 13 every permutation \(\sigma \) compatible with \(\pi \) induces the intersegment-permutation \(\sigma^\pi \) of the segments of \(\pi \).

Lemma 21. Let \(s > 2 \). Then

(1) If \(\pi \) is a segmentation of \(k \) with segments \(E_i \) of size \(n_i \) \((i = 0, \ldots, s - 1) \) then
\[
r^*(k, s; \pi) = q(s) n_1! \cdots n_s!.
\]

(2) \(r^*(k, s) = q(s) g(k, s) \).

Proof. (1) A permutation \(\sigma \) compatible with \(\pi \) is determined by \(\sigma^\pi \) and the permutations of \(E_i \) \((i=0, \ldots, s-1)\). Now \(\sigma \in R^*(k, s; \pi) \) if and only if \(\sigma^\pi \in Q(s) \). Therefore the number of permutations in \(R^*(k, s; \pi) \) is given by \(q(s) n_1! \cdots n_s! \).

(2) By Corollary 19 the sets \(R^*(k, s; \pi) \) and \(R^*(k, s; \pi') \) are disjoint for distinct segmentations \(\pi \) and \(\pi' \). Therefore
\[
r^*(k, s) = \sum_{n_1 + \cdots + n_s = k} q(s) n_1! \cdots n_s! = q(s) g(k, s).
\]

\(\square \)

The following will serve for a recursive formula for \(q(k) \).

Theorem 22.

\[
k! = \sum_{s=2}^{k} ((-1)^s 2 + q(s)) g(k, s).
\]

Proof. By Lemmas 17 and 21

\[
k! = r(k) + q(k) = r(k, 2) + \sum_{s=3}^{k-1} r^*(k, s) + q(k)
= \sum_{s=2}^{k} ((-1)^s 2 \cdot g(k, s)) + \sum_{s=3}^{k-1} q(s) g(k, s) + q(k).
\]

Since \(q(2) = 0 \) and \(g(k, k) = 1 \), the above equation becomes

\[
k! = \sum_{s=2}^{k} ((-1)^s 2 \cdot g(k, s)) + \sum_{s=2}^{k} q(s) g(k, s) = \sum_{s=2}^{k} ((-1)^s 2 + q(s)) g(k, s).
\]

\(\square \)

Corollary 23.

\[
q(k) = k! - (-1)^k 2 - \sum_{s=2}^{k-1} ((-1)^s 2 + q(s)) g(k, s).
\]

Example 24. We recalculate \(q(3) \). Since \(3 = 2 + 1 \), we have \(g(3, 2) = 2(1!2!) = 4 \) and using \(q(2) = 0 \) from Example 7

\[
q(3) = 3! + 2 - (2 + q(2)) g(3, 2) = 8 - 2 \cdot 4 = 0.
\]

Now we recalculate \(q(4) \). We have

\[
q(4) = 4! - (2 + q(2)) g(4, 2) + (-2 + q(3)) g(4, 3) = 4! - 2g(4, 2) + 2g(4, 3).
\]

From \(4 = 3 + 1 = 2 + 2 \) we get \(g(4, 2) = 2 \cdot 3! + 2! = 16 \). Similarly from \(4 = 2 + 1 + 1 \) we obtain \(g(4, 3) = 3 \cdot 2! = 6 \) and so

\[
q(4) = 24 - 2 - 32 + 12 = 2,
\]
the same value we found in Example 7.

Using \(g(5, 2) = 72, g(5, 3) = 30 \) and \(g(5, 4) = 8 \) we obtain

\[
q(5) = 5! + 2 - (2 \cdot 72 - 2 \cdot 30 + 4 \cdot 8) = 6.
\]

(cf Table 4 at the end of the paper).

In the following tables we list one half of the set \(Q(k) \) (of all the permutations orthogonal to \(e_4 \)) for \(k = 5, 6, 7 \). To obtain \(Q(k) \) just add the reverse permutations.

3. The asymptotic behavior of \(q(k)/k! \)

In what follows we consider the ratio \(q(k)/k! \) (the proportion of permutations orthogonal to \(e_4 \) among all permutations). We show that this ratio tends to \(e^{-2} \) when \(k \) tends to infinity (where \(e = 2.7182... \) is the base of natural logarithms). The key is our equality from Theorem 22

\[
k! = \sum_{s=2}^{k} (2(-1)^s + q(s)) g(k, s).
\]

Lemma 25.

\[
\sum_{s=2}^{k} c(s) s! g(k, s)/k! = 1.
\]

Later we will need the following properties of \(q(k) \).

Lemma 26.

1. \(q(k) \geq (k - 4)q(k - 1) \) for all \(k \geq 5 \),
2. \(q(k) \geq (2k - 8)q(k - 1) - q(k - 2) \) for all \(k \geq 5 \),
3. \(q(k) \geq (k - 3)q(k - 1) + 2k + 4 \) for all \(k \geq 7 \).

Proof.

1. Let \(\tau \in Q(k - 1) \) and let \(\tau(i) = k - 2 \). For \(j \in \{1, \ldots, k - 2\} \setminus \{i, i + 1\} \) define \(\tau^{(j)} \in S_k \) by \(\tau^{(j)}(l) := \tau(l) \) for \(l < j \), \(\tau^{(j)}(j) := k - 1 \) and \(\tau^{(j)}(l) := \tau(l - 1) \) for \(l > j \). For example, if \(k = 5 \) and \(\tau = 1302 \) we have \(\tau^{(3)} = 13042 \). Using \(\tau \in Q(k - 1) \) it is not difficult to see that \(\tau^{(j)} \in Q(k) \) and (1) follows.

2. Let \(\tau \in Q(k - 1) \) and \(\tau(i) = 0 \). For \(j \in \{1, \ldots, k - 2\} \setminus \{i, i + 1\} \) put \(\tau^{(j)}(l) := \tau(l) + 1 \) for \(l < j \), \(\tau^{(j)}(j) := 0 \) and \(\tau^{(j)}(l) := \tau(l - 1) + 1 \) for \(l > j \). Again \(\tau^{(j)} \in Q(k) \) and so we get \(k - 4 \) elements of \(Q(k) \). However, it is possible that \(\tau^{(j)} = \sigma^{(j)} \) for some \(\tau, \sigma \in Q(k - 1) \) and \(j, j' \in \{1, \ldots, k - 2\} \). It may be shown that this happens exactly if there is \(\lambda \in Q(k - 2) \) such that \(\tau = \lambda_{(1)} \) and \(\sigma = \lambda^{(m)} \) for some \(l \) and \(m \). For example, if \(\lambda = 1302 \) we have \(\tau = \lambda^{(3)} = 13042 \) and \(\sigma = \lambda^{(4)} = 20413 \) and \(\tau^{(1)} = \sigma^{(4)} = 204153 \). Now it is easy to see that (2) holds.

3. By (1) we have \(q(k - 1) \geq (k - 5)q(k - 2) \) and so

\[
(k - 5)q(k - 1) \geq (k - 5)^2 q(k - 2).
\]

By direct computation the real function \(\varphi(x) := (2x + 4)/((x - 5)^2 - 1) \) is decreasing for \(x \geq 7 \) and so its maximum on \([7, \infty)\) is \(\varphi(7) = 6 \). Now by Example 24 we have \(q(k - 2) \geq q(5) = 6 \geq \varphi(k) = (2k + 4)/((k - 5)^2 - 1) \). Finally by (2) and (1)

\[
q(k) \geq (2k - 8)q(k - 1) - q(k - 2) = (k - 3)q(k - 1) + (k - 5)q(k - 1) - q(k - 2) \geq (k - 3)q(k - 1) + 2k + 4. \quad \square
\]

Put \(c(s) := (2(-1)^s + q(s))/s! \). Obviously \(c(s) \sim q(s)/s! \) for large \(s \).

Note 27. From Example 24 we have: \(c(2) = 1, c(3) = -1/3, c(4) = 1/6, c(5) = 1/30. \)
Lemma 28.

(1) $c(k) \geq (k-3)c(k-1)/k$ for $k \geq 7$.
(2) $c(k) \leq 1$ for $k \geq 2$.

Proof. (1) First we use Lemma 26(3):

$$c(k) = \frac{(2(-1)^k + q(k))/k!}{(k-3)(2(-1)^k + q(k-1))/k!} + \frac{(2(-1)^k + 2k + 4 - 2(-1)^{k-1}(k-3))/k!}{(k-3)c(k-1)/k} \geq \frac{(k-3)c(k-1)/k}{k!}$$

(2) Since the identity permutation e_k and its reverse $((k-1)(k-2)\cdots 1)$ are in $R(k)$ (and hence not in $Q(k)$), we have $q(k) \leq k! - 2$, and therefore

$$c(k) = \frac{(2(-1)^k + q(k))/k!}{(k-3)c(k-1)/k} = \frac{2+q(k)}/k! \leq 1$$

□

Corollary 29.

(1) $c(s) \geq (k-r)(k-r-1)(k-r-2)c(k-r)/(s(s-1)(s-2))$ for $s \geq k-r \geq 6$. 2) From (1).

□

Now we derive bounds for $g(k, s)$.

Lemma 30.

$$g(k,s) < 4^{s-1}(k-s+1)! \text{ for } 1 < s \leq k.$$

Proof. We use induction on $s > 1$. First we show the equation for $s = 2$. From definition 20

$$g(k, 2) = (k-1)! + (k-2)! + \cdots + 1!(k-1)! < 2(k-1)! + (k-3)(k-2)! < 4(k-1)!.$$

Assume $g(k', s') < 4^{s'-1}(k' - s' + 1)!$ holds for all s' and k' such that for $1 < s' \leq k' < k$ and $s' < s$. Now, by definition 20 and applying twice the induction hypothesis

$$g(k,s) = \sum_{n=1}^{k-s+1} n!g(k-n, s-1) < 4^{s-2}\sum_{n=1}^{k-s+1} n!(k-n-s+2)! = 4^{s-1}g(k-s+2, 2) < 4^s(k-s+1)!.$$

□

Corollary 31. For all $k \geq r \geq 5$,

$$1 + 8/k > \sum_{s=r}^{k} c(s)s!g(k,s)/k!.$$

Proof. The values $c(s)$ are all positive except $c(3) = -1/3$. From Lemma 30 we have $g(k, 3) < 4^3(k-2)!$ and since $k-1 \geq 4$ so

$$c(3)3!g(k,3)/k! = -2g(k,3)/k! > (2)4^2/(k(k-1)) > -8/k.$$

The statement is now immediate from Lemma 25. □

Denote $N_+ = \{1, 2, \ldots \}$ of positive integers and put $A(k, s):= \{(n_1, \ldots, n_s) \in \mathbb{N}^*_+: n_1 + \ldots + n_s = k\}$. It is well known that $|A(k, s)| = \binom{k-1}{s-1}$.

Lemma 32. \(s!g(k,s)/k! \geq s!2^{s-k}/(k-s)! \) for all \(1 \leq s \leq k \).

Proof. From \(n! \geq 2^{n-1} \) we obtain \(n_{1}! \cdots n_{s}! \geq 2^{s-k} \). Therefore

\[
\frac{s!g(k,s)}{k!} \geq s!H_{k-s}2^{s-k}/k! = s!2^{s-k}/(k-s)!.
\]

\[\square \]

Lemma 33. If \(1 \leq s \leq k-5 \) then \(s!g(k,s)/k! < 1512/(k(k-1)) + 24(-1/(k-s) + 1/(k-s-1)) \).

Proof. Let \(n_{1}, n_{2}, \ldots, n_{s} \) be positive integers summing up to \(k \). We divide the summation of the products \(n_{1}! \cdots n_{s}! \) into partial sums, according to the value \(N := \max\{n_{1}, \ldots, n_{s}\} \).

1) Case 1. \(N = k-s+1 \). There is \(i \) such that \(n_{i} = k-s+1 \) and \(n_{j} = 1 \) for each \(j \neq i \). There are \(s \) choices for such \(i \) and so the sum of the products of the form (2) is \(s!(k-s+1)! \).

2) Case 2. \(N = k-s \). In a similar way we have

\[s(s-1)(k-s)!2! < 2s^{2}(k-s)! \.
\]

3) Case 3. \(N = k-s-1 \). There are only two types of combinations of \(n_{i}'s \):

1. \(n_{i} = k-s-1 \) and \(n_{j} = 3 \) for some \(i \) and \(j \), and
2. \(n_{i} = k-s-1 \) and \(n_{j} = n_{j'} = 2 \) for some \(i, j \) and \(j' \).

The sum of the products for these cases are \(6s(k-s-1)! \) and \(4s(s-1)(s-2)(k-s-1)!/2 \), respectively. Summing these two we have

\[2s(s^{2}-1)(k-s-1)! < 2s^{3}(k-s-1)! \.
\]

4) Case 4. \(N \leq k-s-2 \). Every product (2) is bounded by \((k-s-2)! \cdot 4! \). Indeed, suppose \(k-s-2 \geq n_{1} \geq \ldots n_{s} \geq 0 \) and \(n_{1} + \ldots + n_{s} = k \). Note that \((x+1)! (y-1)! \geq x!y! \) whenever \(x+1 \geq y > 1 \). Applying this several times we obtain the required \(n_{1}! \cdots n_{s}! \leq (k-s-2)!4! \ldots 1! \). Since the number of all possible combinations of \(n_{i}'s \) is \(H_{k-s} \), the partial sum of the products (2) for \(N \leq k-s-2 \) is bounded by

\[(k-s-2)!4!(k-1)!/(k-s)!(s-1)! \).

Thus \(g(k, s) \) is bounded by

\[s(k-s+1)! + 2s^{2}(k-s)! + 2s^{3}(k-s-1)! + (k-s-2)!4!(k-1)!/(k-s)!(s-1)! \]. (3)

Now we proceed to evaluate the bound (3) multiplied by \(s!/k! \) (as an upper bound for \(s!g(k,s)/k! \)).

(1) The first term of (3) can be rewritten as

\[
\frac{s!g(k-s+1)}{k!} = (s/(k-2))\prod_{i=0}^{s-5}(s-i)/(k-3-i))(4!/k(k-1)) < 24/(k(k-1)),
\]

since \(s < k-2 \) and \(s-i < k-3-i \) for all \(i \).

(2) The second term.

\[2s^{2}s!(k-s)!/k! = (s/(k-2))(s/(k-3))\prod_{i=0}^{s-5}(s-i)/(k-4-i) \cdot 24!/(k(k-1)) < 48/k(k-1). \]
(3) The third term. In a similar way we have:

\[2s^3!/(k-s+1)!/k! = (s/(k-2))(s/(k-3))(s/(k-4))\left(\prod_{i=0}^{s-7}(s-i)/(k-5-i)\right)26!/(k(k-1)) < 1440/k(k-1). \]

(4) The final term is easier.

\[s!(k-s-2)!4!(k-1)!/(k!(k-s)!(s-1)!)/k! = s4!/(k(k-s)(k-s-1)) < 24/(k-s)(k-s-1) = 24(-1/(k-s)+1/(k-s-1)). \]

Summing up the results of (1) - (4) we have the desired result. \(\square \)

Corollary 34. If \(5 \leq r \leq k-2 \) then \(\sum_{i=2}^{k-r} s!g(k, s)/k! < 1488/k + 24/(r-1) \).

Proof. \(\sum_{i=2}^{k-r} s!g(k, s)/k! < \sum_{i=2}^{k-r} 1512/k(k-1) + 24 \sum_{s=2}^{k-r} (-1/(k-s)+1/(k-s-1)) \leq \frac{(k-1)1512}{k(k-1)} + 24/(r-1) - 24/(k-2) = 1488/k + 24/(r-1). \)

Lemma 35. If \(k > s \) then \(g(k, s) < \sum_{t=1}^{k-s-1} (\begin{array}{l}k-s-1\end{array})!/(k-s-t+2)! \).

Proof. Consider positive integers \(n_1, \ldots, n_s \) such that \(n_1 + \ldots + n_s = k \). Let \(n_{i_j} \geq 2 \) for \(j = 1, \ldots, t \) and \(n_i = 1 \) for all \(i \in \{1, \ldots, s\} \setminus \{i_1, \ldots, i_t\} \). Note that

\[n_{i_1} + \ldots + n_{i_t} = k - s + t. \]

In particular, \(2t \leq n_{i_1} + \ldots + n_{i_t} = k - s + t \) and so \(1 \leq t \leq k-s \). For \(x \geq y \geq 2 \) we have \(x!y! \leq (x+y-2)! \), because \(x!y! \leq (x+1)!(y-1)! \leq (x+2)!(y-2)! \leq \ldots \leq (x+y-2)!2! \).

Applying this successively

\[n_{i_t}! \ldots n_{i_1}! \leq 2^{t-1}(n_{i_t} + \ldots + n_{i_1} - 2(t-1))! = 2^{t-1}(k-s-t+2)!. \]

There are \((\begin{array}{l}t\end{array}) \) choices of \(I := \{i_1, \ldots, i_t\} \). Moreover, \(n_{i_1} - 1, \ldots, n_{i_t} - 1 \) are positive numbers summing up to \(k-s+t-t = k-s \) and so for a fixed \(I \) there are \((\begin{array}{l}s-t-1\end{array}) \) choices of \(n_{i_1}, \ldots, n_{i_t} \). Together this yields the upper bound. \(\square \)

Corollary 36. If \(k \geq s \geq k/2 \) then

\[s!g(k, s)/k! < 2^{k-s-1}/(k-s)! + D/k, \]

where \(D = 22e^2 \).

Proof. If \(s = k \) then this inequality is obvious. Suppose that \(s < k \). Then by Lemma 35

\[s!g(k, s)/k! < \sum_{t=1}^{k-s} W(t), \]

where \(W(t) := 2^{t-1}s!/(\begin{array}{l}t\end{array})(\begin{array}{l}k-s-t+1\end{array})!/k! \). We have

\[W(k-s) = 2^{k-s-1}s!(s/(k-s))(k-s-1)/(k-s-1)!/k! \leq \frac{s!s!}{(2s-k)!k!(k-s)!} \leq 2^{k-s}. \]

Now from \(2s - k < s < k \) and \(2s - k + i < s + i \) for \(i = 1, \ldots, k-s \) we have

\[\frac{s!s!}{(2s-k)!k!(k-s)!} = \frac{(2s-k+1)\ldots s}{(s+1)\ldots k} < 1 \]

and so \(W(k-s) < 2^{k-s-1}/(k-s)! \).

Next, if \(t \leq k-s-1 \) then
$W(t) = 2^{t-1} \frac{s!}{k!} \frac{(k-s-1)!}{(t-1)!} \frac{(k-s-t+2)!}{(k-s-t)!}$

From $s \leq k-1$ we have $s-i \leq k-1-i$ ($i=0, \ldots, t-1$) and from $s \leq k-t-1$ also $s-i \leq k-t-1-i$ ($i=0, \ldots, s-t-3$). Thus

$$s!(s-t)!/(s!)! = s(s-1) \cdots (s-t+1)s(s-1) \cdots (t+1) \leq (k-1)(k-2) \cdots (k-t)(k-t-1)(k-t-2) \cdots (s+2)(t+2)(t+1)$$

and so

$$W(t) \leq \frac{2^{t-1}}{k(t-1)!} \frac{(k-s-t+1)(k-s-t+2)}{(k-s+1)(k-s)}(t+2)(t+1) \leq 2^{\ell-1}(t+2)(t+1)/(t-1)!.$$

Thus we have

$$s!g(k,s)/k! < 2^{k-s}/(k-s)! + (1/k) \sum_{t=1}^{k-s-1} (t+2)(t+1)2^{t-1}/(t-1)!.$$

Since the infinite series of positive terms

$$\sum_{t=1}^{\infty} (t+2)(t+1)2^{t-1}/(t-1)!$$

converges to $D = 22e^2$ (differentiate twice the Maclaurin series for $(1/2)x^3e^x$ and evaluate at $x=2$), we have

$$s!k!g(k,s) < 2^{k-s}/(k-s)! + D/k.$$ \(\square\)

Theorem 37. $\lim_{k \rightarrow \infty} q(k)/k! = e^{-2}$.

Proof. We prove the equivalent $\lim_{n \rightarrow \infty} c(k) = e^{-2}$. First we show that

$$\limsup_{n \rightarrow \infty} c(k) \leq e^{-2}.$$

By Corollary 31 (replace r by $k-r$)

$$1 + 8/k > \sum_{s=k-r}^{k} c(s)s!g(k,s)/k!$$

for $k-5 \geq r$. By Corollary 29(1)

$$c(s) > \frac{k-r}{s} \cdot \frac{k-r-1}{s-1} \cdot \frac{k-r-2}{s-2} \cdot c(k-r) \geq \frac{k-r}{k} \cdot \frac{k-r-1}{k-1} \cdot \frac{k-r-2}{k-2} \cdot c(k-r).$$

On the other hand, by Lemma 32 and summing by $t := k-s$

$$\sum_{s=k-r}^{k} \frac{s!}{k!} g(k,s) \geq \sum_{s=k-r}^{k} \frac{2^{k-s}}{k!(k-s)!} = \frac{1}{k} \sum_{t=0}^{r} \frac{(k-t)2^{t}}{t!} = \frac{r}{k} \sum_{t=0}^{r} \frac{2^{t}}{t!} - \frac{2}{k} \sum_{t=1}^{r} \frac{2^{t-1}}{(t-1)!}.$$

Let $\epsilon > 0$. When r (and k) is sufficiently large this value is greater than $e^2 - \epsilon - (2/k)e^2$.

Thus we have

$$1 + 8/k > \frac{k-r}{k} \cdot \frac{k-r-1}{k-1} \cdot \frac{k-r-2}{k-2} \cdot c(k-r)(e^2 - \epsilon - (2/k)e^2).$$
If we let k go to infinity while keeping r constant, we have

$$1 \geq \lim_{n \to \infty} c(k)(e^2 - \varepsilon).$$

Since ε was arbitrary, we get $\lim_{n \to \infty} c(k) \leq e^{-2}$.

Now we show the inequality $\lim_{n \to \infty} c(k) \geq e^{-2}$. Let $k/2 + 1 \geq r \geq 5$. By Lemma 25

$$1 = \sum_{s=2}^{k} c(s) s! g(k, s)/k! = \sum_{s=2}^{k-r} c(s) s! g(k, s)/k! + \sum_{s=k-r+1}^{k} c(s) s! g(k, s)/k!.$$

By Corollary 34 the first sum is less than $1488/k + 24/(r-1)$, while by Corollaries 36 and 29(2) the second one can be bounded as follows

$$\sum_{s=k-r+1}^{k} c(s) s! g(k, s)/k! < \sum_{s=k-r+1}^{k} (2^{k-s}/(k-s)! + D/k) c(s)$$

$$< \sum_{s=k-r+1}^{k} (2^{k-s}/(k-s)! + D/k) k(k-1)(k-2)c(k)/(s(s-1)(s-2))$$

$$< \frac{k}{k-r} \cdot \frac{k-1}{k-r-1} \frac{k-2}{k-r-2} c(k) \sum_{t=0}^{r-1} (\frac{2^{t}}{t!} + \frac{D}{k}) < \frac{k}{k-r} \cdot \frac{k-1}{k-r-1} \frac{k-2}{k-r-2} c(k) (e^2 + Dr/k).$$

If we let k go to infinity for a fixed r we have

$$1 \leq 24/(r-1) + e^2 \lim_{n \to \infty} c(k).$$

Since r can be taken arbitrarily large, we have

$$e^{-2} \leq \lim_{n \to \infty} c(k).$$

This completes the proof of our theorem. □

Remark. Using formal power series Mark Haiman from M.I.T. independently obtained results [Hai90] which include some of our results.

Put $h(1) := 1$ and $h(s) := -2(-1)^s - q(s)$ for $s \geq 2$ and consider the power series

$$\mu(x) := \sum_{s=1}^{\infty} h(s) x^s, \quad \nu(x) := \sum_{n=1}^{\infty} n! x^n.$$

Then by our Theorem 22

$$\sum_{s=1}^{k} h(s) g(k, s) = \begin{cases} 0 & \text{for } k \geq 2, \\ 1 & \text{for } k = 1. \end{cases}$$

leading to $\mu(\nu(x)) = x$. This inversion can be directly calculated, for example, using Mathematica. We got the following table from Mark Haiman [Hai90]. The numbers $q(1)$–$q(7)$ coincide with the data we obtained by direct enumeration.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(k)$</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>-4</td>
<td>-48</td>
<td>-336</td>
<td>-2,928</td>
<td>-28,144</td>
<td>298,528</td>
<td></td>
</tr>
<tr>
<td>$q(k)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>46</td>
<td>338</td>
<td>2,926</td>
<td>28,146</td>
<td>298,526</td>
</tr>
<tr>
<td>$q(k)/k!$</td>
<td>0.0</td>
<td>0.08333</td>
<td>0.05</td>
<td>0.06389</td>
<td>0.06706</td>
<td>0.07256</td>
<td>0.07756</td>
<td>0.08226</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The convergence of the ratio $q(k)/k!$ to $e^{-2} = 0.1353\ldots$ can be seen from

<table>
<thead>
<tr>
<th>k</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q(k)/k!$</td>
<td>0.1086</td>
<td>0.1175</td>
<td>0.1219</td>
<td>0.1246</td>
<td>0.1264</td>
<td>0.1277</td>
<td>0.1286</td>
<td>0.1294</td>
<td>0.1300</td>
</tr>
</tbody>
</table>
218

Table 1. \(q(5) = 6 \): orthogonal permutations to \((01234)\)

\[
(130524) (135024) (135042) (135204) (140253)
\]

Table 2. \(q(6) = 46 \): orthogonal permutations to \((012345)\)

\[
(130524) (135024) (135042) (135204) (140253)
\]

Table 3. \(q(7) = 338 \): orthogonal permutations to \((0123456)\)

\[
(130524) (135024) (135042) (135204) (140253)
\]