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Abstract
We present schemes for disseminating information in the n-dimensional hypercube with some

faulty nodes/edges. If each processor can send a message to. $t$ neighbors at each round, and if

the number of faulty nodes/edges is $k(k<n)$ , then this scheme will broadcast information

from any source to all destinations within any consecutive $n+\lceil(k+1)/t\rceil$ rounds. We also

discuss the case where the number of faulty nodes is not less than $n$ .

1. Introduction

A number of topologies have been proposed for interconnecting processors in large scaled

parallel and distributed systems. The hypercube is one of the most popular and effective

network architectures due to its topological richness $[2][8]$ . In fact, hypercube systems have

been commercially manufactured and sold [1]. Crucial problems on such parallel and dis-

tributed systems are communication cost among processors and communication reliability.

That is, the increase of the size of hypercube multicomputers has made the routing and

broadcasting problems as well as their fault tolerance important issues $[6][10]$ .
Data broadcasting is a very fundamental operation in parallel and distributed systems,

and has been intensively studied $[2][3][4][7][9]$ . Broadcasting can be accomplished by the

date disseminating process in which each processor repeatedly receives, modifies and for-

wards messages without physical broadcast. In this fashion multiple copies of the message
are disseminated in the systems through disjoint paths. By this multiplicity of message
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routing, fault tolerance of the systems can be achieved. In this paper we study informa-

tion disseminating schemes in the hypercubes with faulty processors/links and their fault
tolerance. We assume that all processors are synchronized with a global clock. The period

for forwarding a message from a processor to its neighbors is called a round. We evaluate

a number of rounds needed to broadcast a message from any starting processor to its all
destinations.

2. Hypercubes and Problem Statement

An n-dimensional hypercube (n-cube for short) is defined to be the graph with $N=2^{n}$

nodes labeled by the $2^{n}$ binary numbers from $0$ to $2^{n}-1,where$ there exists an edge between

any two nodes if and only if the binary representations of their labels differ by exactly one

bit. For convenience, we will number the bits in an address of a node of the n-cube from right

to left as $0$ to $n-1$ . The Hamming distance between nodes $u$ and $v$ is denoted by $d(u, v)$ .
For each node $s$ and $d(0\leq d\leq n-1),\oplus_{d}(s)$ denotes the adjacent node of $s$ such that $s$

and $\oplus_{d}(s)$ differ in the d-th bit (also called the dth-dimension). For example, if $s=1010$

then $\oplus_{0}(s)=1011,$ $\oplus_{1}(s)=1000,$ $\oplus_{2}(s)=1110$ and $\oplus_{3}(s)=0010$ . Let $[m]_{n}$ be $mmod n$ .
The direction set of two nodes $u=u_{n-1}u_{n-2}\cdots u_{0}$ and $w=w_{n-1}w_{n-2}\cdots w_{0}$ in the n-cube

is defined as $H(u,w)=\{i|u_{i}\neq w_{i}\}$ .
We assume that each node in the n-cube is a processor and that each edge is a communica-

tion line connecting two processors located on its extremities. The information dissemination

is a process in which each processor repeatedly receives, modffies and forwards messages. All

processors are synchronized with a global clock. The n-cube may contain faulty nodes/edges.

In this paper we only consider the case where a faulty processor cannot forward messages.
That is, we do not here consider the cases where a faulty processor alters information and

forwards the wrong messages.
The problem discussed in this paper can be stated as follows: Given an n-cube contain-

ing some faulty nodes/edges, we design a broadcasting scheme, and evaluate its necessary

number of rounds to complete the broadcasting. The following conditions must be satisfied:

(1) No matter which processor starts broadcasting, the information should reach all $N$

processors in a certain number of rounds if the number of faulty nodes/edges is within

a certain limit.

(2) No matter at what round a processor starts broadcasting, the information should reach

all $N$ processors in a certain number of rounds if the number of faulty nodes/edges is
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within a certain limit.

3. One Direction Outgoing at Each Round

In this section we assume that each processor in the n-cube can forward a message to a

direction at each round. Our scheme for disseminating information is for each processor $i$ ,
$0\leq i\leq N-1$ , to execute the following procedure.

procedure 1-disseminate(n)
repeat

for round $:=0$ to $n-1$ do
{each iteration is called one round and $n=\log_{2}N$ }

for each processor $u$ send message
from $u$ to $\oplus_{round}(u)$ concurrently

forever

The above scheme is a modification of Han-Finkel scheme for disseminating information

on a perfectly connected network[4]. When procedure 1-disseminate(n) is executed in the

n-cube, each processor sends a message to one of its $n$ neighbors at each round. We consider

throughout the paper the information disseminating problem on the same assumption as

given in Han and Finkel’s paper [4]. That is, during each round a processor $u$ sends a

message that consists of new information stated by $uand/or$ information received by $u$

during the past rounds. We also assume that messages are long enough to hold all the

information that must be sent.

Example 1. Let us consider the 3-cube. The destination of each processor at each round

is shown in Table 1.

Table 1: Dissemination at each round by l-disseminate(3)

If processor 2 wishes to broadcast some $inform\overline{a}tion$ at round 1, it will send it to processor

0. At round 2,processors $\{0,2\}$ will send the information to {4, 6}. At round $0$ , processors

$\{0,2,4,6\}$ will send the information to {1, 3, 5, 7}, at which point all the 8 processors will

have the desired information.
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Theorem 1 If the n-cube contains no faulty nodes/edges, procedure 1-disseminate(n) will

broadcast information from any source node to all the destination nodes within any consec-

utive $n$ rounds.

Theorem 2 If the n-cube contains not more than $k$ faulty nodes/edges and $k\leq n-1$ ,

procedure 1-disseminate(n) will broadcast information from any faultless source node to all

destination nodes within any consecutive $n+k+1$ rounds.

4. Multiple Outgoing at Each Round

In this section we consider the case where each processor can send messages to multiple

directions at each round. Our scheme for disseminating information in such a hypercube

model is as follows:
procedure $t$-disseminate(n)
{each processor sends a message to $t$ distinct directions at each round,
where $t$ is an integer between 1 and $n$ }
repeat

for round:$=0$ to $n-1$ do
for each processor $u$ send message from $u$ to processors
$(\oplus_{[roundxt]_{n}}(u), \oplus_{[roundxt+1]_{n}}(u),$ $\cdots,$ $\oplus_{[roundxt+t-1]_{n}}(u))$

concurrently
forever

Theorem 3 If the n-cube contains not more than $k$ faulty nodes/edges and $k\leq n-1$ ,
procedure $t$ -disseminate(n) will broadcast information from any faultless source node to all
destination nodes within any consecutive $n+\lceil(k+1)/t\rceil$ rounds.

5. Dissemination in Hypercubes with Many Faulty Nodes

In this section we consider hypercubes with many faulty nodes. For any faultless node
$v,$ $ifallnodesinthen$-cube can receivea message fromv withina finite number of rounds,
then we say that the n-cube is connected. Even if more than $n$ faulty nodes are contained
in the n-cube, it may be possible to broadcast information from any faultless node to all
destinations. The 4-cube with 8 faulty nodes as shown in Figure 1 is such an example.
For this example 4-disseminate(4) will broadcast information from any faultless node to all
destinations in 7 rounds.

The following problem arose from the above observation: How many rounds are needed
to complete broadcasting in the n-cube with faulty nodes, if the n-cube is connected. In
other words, we want to know the smallest $k$ or nearly smallest $k$ such that for every pair of
nodes $u$ and $v$ in the n-cube, node $v$ cannot receive a message from node $u$ within consecutive
$k$ rounds if and only if $v$ cannot receive the message from $u$ forever. This is an interesting
combinatorial problem, but seems to be difficult to solve it.

Let a $=(v_{0}, v_{1}, \cdots, v_{k})$ be a sequence of nodes in the n-cube. Then $\alpha$ is a path
in the n-cube if and only if for each $i(0\leq i\leq k-1),$ $d(v_{i}, v_{i+1})=1$ . If $\alpha$ is a
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path in the n-cube and satisfies the condition that for each $i(0\leq i\leq k-2)$ and
$s(2\leq s\leq n-i),$ $d(v_{i}, v_{i+s})\geq 2$ , then we say that $\alpha$ is permissible. We define $P(n)=$
$\max$ { $|\alpha||\alpha$ is permissible in the n-cube}, where $|\alpha|$ denotes the path length of $\alpha$ . Obviously
$P(O)=0,$ $P(1)=1,$ $P(2)=2$ and $P(3)=4$.

The following two theorems are immediate.

Theorem 4 Suppose that information is disseminated by procedure $t$ -disseminate(n) in the
n-cube with some faulty nodes and all faultless edges. Then for any pair of nodes $u$ and $v$ ,
$v$ cannot receive a message from $u$ within $\lceil n/t\rceil P(n)$ rounds afler the starting round if and
only if $v$ cannot receive the message forever.

Theorem 5 Suppose that information is disseminated by procedure $n$ -disseminate(n) in the
n-cube. Then there exist a configuration of faulty nodes, and a pair of nodes $u$ and $v$ such
that $v$ receives a message from $u$ in $P(n)$ rounds, but $v$ cannot receive the message from $u$

in a number of rounds less than $P(n)$ .

It seems to be difficult to derive a simple formula for computing $P(n)$ . By an exhaustive
search and using a computer we have obtained the values of $P(n)$ up to $n=6$ . These values
and longest paths that are permissible are shown in Table 2. Unfortunately it takes too
much time to compute the values of $P(n)$ for $n\geq 7$ , and so far we could not compute them.

We show a lower bound and an upper bound on $P(n)$ .

Lemma 1 For any $n$ and $d(1\leq d\leq n),$ $P(n)\geq(\lfloor P(d)/2\rfloor+1)P(n-d)+P(d)$

Proof. Let $(A_{0}, \cdots, A_{P(n-d)})$ be a longest permissible path in the $(n-d)$-cube, and let
$(B_{0}, \cdots, B_{P(d)})$ be a longest permissible path in the d-cube, where each $A_{i}(0\leq i\leq P(n-d))$

and each $B_{j}(0\leq j\leq P(d))$ are expressed in binary. Consider the following path in the
n-cube:

$A_{0}B_{2},AB_{2}A^{0}B^{0},$
$A_{1}^{1}B^{0}$

, $\cdots$ ,
$A_{P(n-d)}^{P(n-d)}B_{1}^{0}A_{P\langle n-d)}B_{2}AB$

$A_{0}B_{3}$

$A_{0}B_{4},$

$A_{1}B_{4}:$ ’

:. ::.
’ $A_{P(n-d)}B_{4}$

:
$A_{0}B_{P(d)-2}$ , , $A_{P(n-d)}B_{P(n)-2}$

$A_{0}B_{P(d)-1}$

$A_{0}B_{P(d)},$ $A_{1}B_{P(d)}$ , , $A_{P(n-d)}B_{P(d)}$ .
This path is permissible, and its length is $(\lfloor P(d)/2\rfloor+1)P(n-d)+P(d)$ . Hence, the inequality
in the lemma holds. $\square$

Theorem 6 For any $n\geq 3$ ,

$P(n)$ $\geq 14^{\lfloor n/6\rfloor}P([n]_{6})+2(14^{\lfloor n/6\rfloor}-1)$

$\geq 2^{0.634n}$ .
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Proof. From Lemma 1 and Table 2,

$P(n)$ $\geq(\lfloor P(6)/2\rfloor+1)P(n-6)+P(6)$

$\geq 14P(n-6)+P(6)=14P(n-6)+26$
$\geq 14(14P(n-12)+26)+26$

$\geq 14^{\lfloor n/6\rfloor}P([n]_{6})+2(14^{\lfloor n/6\rfloor}-1)$

$\geq 2^{0.634n}$ for $n\geq 3$ .
$\square$

At present we do not know which value for $d$ is optimal to obtain a good lower bound
on $P(n)$ by using Lemma 1. Although the lower bound given in Theorem 6 is the best one
known, we doubt that $d=6$ is optimal to use in the method of Lemma 1.

We now derive an upper bound on $P(n)$ .
Definition 1 Let $S$ be a set of permissible paths. $S$ is said to be independent if and only if
for all pairs of nodes, $v$ and $w$ that belong to different paths in $S,$ $d(v, w)\geq 2$ .

Note that if all paths in an independent set of permissible paths in a hypercube are of
zero length then $S$ is just an independent set of the hypercube in the standerd graph sense[5].

Lemma 2 No independent set ofpermissible paths in the 4-cube contains more than 8 nodes.

Proof. The assertion of the lemma has been proved by exaustive search by a computer
program. $\square$

Lemma 3 Let $S$ be an independent set of permissible paths in the n-cube, $n\geq 2$ . For any
k-subcube $H_{k}$ of the n-cube, $S$ restricted to $H_{k}$ (denoted by $S|H_{k}$) is also an independent set
of permissible paths in $H_{k}$ .
Proof. Consider a pair of nodes occuring on paths in $S|H_{k}$ . Note that if $d(v,w)\geq 2$

in the n-cube then $d(v, w)\geq 2$ in $H_{k}$ . Therefore, if $v$ and $w$ belong to the same path in
$S|H_{k}$ or belong to different paths in $S$ then $d(v, w)\geq 2$ in $S|H_{k}$ provided that $v$ and $w$ are
not adjacent nodes on the same path in $S|H_{k}$ . It remains to consider the case where $v$ and
$w$ belong to different paths, say $P_{v}$ and $P_{w}$ in $S|H_{k}$ which are parts of a single path, say
$P$ in $S$ . If $v$ and $w$ were adjacent nodes on $P$ then either they could not be in the same
subcube $H_{k}$ or they would be on the same path in $S|H_{k}$ . Both cases yield a contradiction.
We conclude that $v$ and $w$ are not adjacent nodes on $P$ . Hence, $d(v, w)\geq 2$ in the n-cube,
and consequently in $H_{k}$ . $\square$

Theorem 7 No independent set of permissible paths in the n-cube, $n\geq 4$ , contains more
than $2^{n-1}$ nodes.

Proof. The proof is by induction on $n\geq 4$ . For $n=4$ it follows from Lemma 2. Inductively
assume that the assertion of the theorem holds for $k$ satisfyiing $n>k\geq 4$ . Let $S$ be an
independent set of permissible paths in the n-cube. Arbitrarily split the n-cube into $(n-1)-$
subcubes $H_{n-1}$ and $H_{n-1}’$ . If $S$ contains more than $2^{n-1}$ nodes then $S$ restricted to $H_{n-1}$ or
$S$ restricted to $H_{n-1}’$ contains more than $2^{n-2}$ nodes. By Lemma 3 we obtain a contradiction
with the inductive hypothesis. $\square$

As a corollary of the above theorem the next theorem is immediate.
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Theorem 8 $P(n)\leq 2^{n-1}$ for $n\geq 4$ .

Before closing this section we give another example that shows the usefulness of $P(n)$ .
Suppose that procedure $t$-disseminate(n) is executed. If a processor in the n-cube wishes to
know which processors are possible to communicate with, the processor may send a message
“Please send your location address”. Within $2\lceil n/t\rceil P(n)$ rounds after sending the message
the processor knows the following fact: It is not possible to communicate with processors at
locations from which the processor has not received their replies. If node $v$ wishes to know
whether the n-cube is connected, it may send the same message, “Please send your location
address”. Let $S$ be the set of nodes which sent back their replies to $v$ within $2\lceil n/t\rceil P(n)$

rounds. If $S\cup\{v\}\cup$ { $u|u$ is a neighbor of a node in $S\cup\{v\}$ } is equal to the set of all nodes
in the n-cube, then the n-cube is connected, and otherwise it is disconnected. In this fashion
any faultless node in the n-cube can decide within $2\lceil n/t\rceil P(n)$ rounds whether the n-cube
is connected.

6. Conclusions

We have studied information dissemination for each processor capable of sending multiple
data at each round in the hypercube with faulty nodes/edges. We have shown the number
of rounds needed to broadcast information from each processor to all destinations on such a
model.

A number of open questions remain in the case where the number of faulty nodes is
not less than the number of dimensions in the hypercube. The evaluation of $P(n)$ plays
an important role in those problems. There is a big gap between our lower bound and
upper bound on $P(n)$ . A more accurate estimation of $P(n)$ will be interesting for further
investigating.
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–denotes the longest path

$-\theta-$ denotes a faulty node

Figure 1. 4-cube with 8 faulty nodes
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$n=3$ $P(3)=4$ $n=6$ $P(6)=26$
path (000) path (000000)

(001) (000001)
(011) (000011)
(111) (000111)
(110) (001111)

(001101)
$n=4$ $P(4)=7$ (001100)
path (0000) (011100)

(0001) (010100)
(0011) (010101)
(0111) (110101)
(0110) (100101)
(1110) (100100)
(1100) (100110)
(1101) (101110)

(111110)
$n=5$ $P(5)=13$ (111111)
path (00000) (111011)

(00001) (101011)
(00011) (101001)
(00111) (101000)
(01111) (111000)
(01110) (110000)
(01100) (110010)
(11100) (010010)
(11101) (011010)
(11001) (001010)
(11011)
(11010)
(10010)
(10110)

Table 2: Values of $P(n)$

9


