<table>
<thead>
<tr>
<th>Title</th>
<th>Linear evolution equations in a reflexive Banach space (Evolution Equations and Applications to Nonlinear Problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TANAKA, NAOKI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1991, 755: 156-170</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82126</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Linear evolution equations in a reflexive Banach space

WASEDA UNIVERSITY

NAOKI TANAKA

§1. INTRODUCTION

In this paper we discuss the construction of an evolution system associated with the well posed problem in the sense of Hadamard for the time-dependent differential equation in a Banach space X

$$(DE)_s \left\{ \begin{array}{l} (d/dt)u(t) = A(t)u(t) \text{ for } t \in [s,T] \\ u(s) = x, \end{array} \right.$$

where $s \in [0,T)$, $u(\cdot)$ stands for an X-valued unknown function on the interval $[s,T]$ and $\{A(t) : t \in [0,T]\}$ is a given family of linear operators in X.

Assume for the moment that there exist a dense subspace Y of X and an injective bounded linear operator C_1 on X such that $Y \subset D(A(t))$ for $t \in [0,T]$ and the following conditions hold:

1) For $s \in [0,T]$ and $x \in C_1(Y)$, there exists a unique solution $u(t;s,x)$ such that $u(t;s,x) \in Y$ for $t \in [s,T]$.

2) For $x \in C_1(Y)$, $u(t;s,x)$ is continuous for $0 \leq s \leq t \leq T$.

3) If $\{u(t;s,x_n)\}$ is a sequence of solutions with $x_n \to 0$ in the C_1^{-1}-graph norm as $n \to \infty$ then $u(t;s,x_n)$ converges to zero uniformly with respect to t and s.

Here we note that in the special case where $A(t) = A$, $s = 0$, $Y = D(A)$ and $C_1 = R(c : A)^n$ ($n \in \mathbb{N} \cup \{0\}$ and $c \in \rho(A)$), the concept of the above well posed problem is equal to that of the well posed problem in the sense of Hadamard in the autonomous case (see [5,8]), which several authors [1,4,9,10,11,12] recently have studied via the theory of integrated semigroups or C-semigroups.
Now we turn to the above well posed problem. We define a linear subspace $D(s)$ of X and a linear operator $U(t, s)$ on $D(s)$ by

$$\begin{aligned}
D(s) &= \{ x \in X : \text{the} \ (DE) \text{ has a unique solution } u(t; s, x) \} \\
U(t, s)x &= u(t; s, x) \text{ for } x \in D(s).
\end{aligned}$$

Then, from the uniqueness of the solutions it follows that $U(t, s) : D(s) \to D(t)$ and $U(t, r)U(r, s) = U(t, s)$ on $D(s)$ for $0 \leq s \leq r \leq t \leq T$. Formally, the two parameter family $\{U(t, s) : 0 \leq s \leq t \leq T\}$ may have the properties

\begin{align*}
(1.1) \quad & (\partial/\partial t)U(t, s) = A(t)U(t, s) \\
(1.2) \quad & (\partial/\partial s)U(t, s) = -U(t, s)A(s)
\end{align*}

(this property is useful to show the existence of the solutions),

We define $\{V_1(t, s) : 0 \leq s \leq t \leq T\}$ by

$$V_1(t, s)y = U(t, s)C_1y \ (= u(t; s, C_1y)) \text{ for } y \in Y.$$

Since Y is dense in X one can see by the condition 3) that $V_1(t, s)$ is extended to a bounded linear operator on X, which we denote by the same symbol. Then, the two parameter family $\{V_1(t, s) : 0 \leq s \leq t \leq T\}$ has the properties

(i) for $x \in X$, $(t, s) \to V_1(t, s)x$ is continuous for $0 \leq s \leq t \leq T$,

(ii) $V_1(t, s)(Y) \subset Y$ for $0 \leq s \leq t \leq T$,

(iii) $(\partial/\partial t)V_1(t, s)y = A(t)V_1(t, s)y$ for $y \in Y$, and $V_1(s, s) = C_1$.

We also consider the following important property to show the uniqueness of the solutions:

(iv) $(\partial/\partial s)V_2(t, s)y = -V_2(t, s)A(s)y$ for $y \in Y$, and $V_2(s, s) = C_2$.

Multiplying (1.2) by the injective bounded linear operator C_2 from the left-hand side, and then defining $V_2(t, s)$ by $C_2U(t, s)$ we obtain the property (iv).
Moreover, the following relation between $V_1(t, s)$ and $V_2(t, s)$ holds:

\[(v) \quad C_2 V_1(t, s) = V_2(t, s) C_1 \quad \text{for} \quad 0 \leq s \leq t \leq T.\]

In §2 we will construct a pair of evolution systems \(\{V_1(t, s)\}, \{V_2(t, s)\}\) having the properties (i) - (v) in order to investigate the well posed problem in the sense of Hadamard for the time-dependent differential equation \(DE\).

As an application we also consider the second order differential equation in a reflexive Banach space X

\[
(DE)_2^s \quad \left\{ \begin{align*}
 u''(t) &= A u(t) + B(t) u(t) & \text{for} & \quad t \in [s, T] \\
 u(s) &= x, \quad u'(s) = y,
\end{align*} \right.
\]

where A is the infinitesimal generator of a cosine family and \(\{B(t) : t \in [0, T]\}\) is a given family of linear operators in X.

§2. CONSTRUCTION OF EVOLUTION SYSTEMS

Let X and Y be Banach spaces with norm $\| \cdot \|$ and $\| \cdot \|_Y$ respectively. We write $B(Y, X)$ for the set of all bounded linear operators on Y to X and denote $B(X, X)$ by $B(X)$. For each $i = 1, 2$, let C_i be an injective operator in $B(X)$.

Throughout this paper we will assume that

\[(H_1) \quad Y \text{ is reflexive},\]

\[(H_2) \quad Y \text{ is densely and continuously imbedded in } X, \text{ that is, } Y \text{ is a dense subspace of } X \text{ and there is a constant } L \text{ such that } \|y\| \leq L\|y\|_Y \text{ for } y \in Y,\]

\[(H_3) \quad C_1(Y) \subset Y \text{ and } C_1(Y) \text{ is } \| \cdot \|_Y \text{-dense in } Y.\]

We will make the following assumptions on a family $\{A(t) : t \in [0, T]\}$ of closed linear operators in X:

\[(A_1) \text{ There are constants } M_1 \geq 0 \text{ and } \omega_1 \geq 0 \text{ such that }\]

\[
(\omega_1, \infty) \subset \rho(A(t)) \text{ for } t \in [0, T] \text{ and } \\
\| \lambda^m \left(\prod_{i=1}^m R(\lambda : A(t_i)) \right) C_1 \| \leq M_1 \text{ for } \lambda > \omega_1
\]
and every finite sequence \(\{t_i\}_{i=1}^{m} \) such that \(0 \leq t_1 \leq \cdots \leq t_m \leq T \) and \(m \) with \(0 \leq m/\lambda \leq T \).

\((A_2)\) There are constants \(M_2 \geq 0 \) and \(\omega_2 \geq \omega_1 \) such that
\[
\left(\prod_{i=1}^{m} R(\lambda : A(t_i)) \right) C_1(Y) \subset Y \quad \text{and} \quad \left\| \lambda^m \left(\prod_{i=1}^{m} R(\lambda : A(t_i)) \right) C_1 \right\|_Y \leq M_2 \quad \text{for} \quad \lambda > \omega_2
\]
and every finite sequence \(\{t_i\}_{i=1}^{m} \) such that \(0 \leq t_1 \leq \cdots \leq t_m \leq T \) and \(m \) with \(0 \leq m/\lambda \leq T \).

\((A_3)\) There are constants \(M_3 \geq 0 \) and \(\omega_3 \geq \omega_1 \) such that
\[
\left\| C_2 \left(\lambda^m \left(\prod_{i=1}^{m} R(\lambda : A(t_i)) \right) \right) \right\| \leq M_3 \quad \text{for} \quad \lambda > \omega_3
\]
and every finite sequence \(\{t_i\}_{i=1}^{m} \) such that \(0 \leq t_1 \leq \cdots \leq t_m \leq T \) and \(m \) with \(0 \leq m/\lambda \leq T \).

\((A_4)\) For \(t \in [0,T] \), \(D(A(t)) \supset Y \) and \(D(C_1^{-1}A(t)C_1) \supset Y \), and the function \(t \to A(t) \) is continuous in the \(B(Y,X) \) norm \(\| \cdot \|_{Y \to X} \) and \(M_4 = \sup \{ \| C_1^{-1}A(t)C_1 \|_{Y \to X} : t \in [0,T] \} < \infty \).

The main result of this paper is given by

Theorem 2.1. If the family \(\{A(t) : t \in [0,T]\} \) of closed linear operators in \(X \) satisfies \((A_1)-(A_4)\) then there exists a unique pair \(\{(V_1(t,s)), (V_2(t,s))\} \) of strongly continuous families of bounded linear operators defined on the triangle \(\Delta = \{(t,s) : 0 \leq s \leq t \leq T\} \) with the following properties:

(a) For \(i = 1,2 \), \(V_i(s,s) = C_i \) on \([0,T]\) and \(C_2 V_1(t,s) = V_2(t,s)C_1 \) on \(\Delta \).
(b) \(V_1(t,s)(Y) \subset Y \) for \(0 \leq s \leq t \leq T \).
(c) For \(y \in Y \) and \(y^* \in Y^* \), \((t,s) \to (y^*, V_1(t,s)y) \) is continuous on \(\Delta \).
(d) \[\langle x^*, V_1(t,s)y - V_1(r,s)y \rangle = \int_r^t \langle x^*, A(\tau)V_1(\tau,s)y \rangle \, d\tau \]
for $y \in Y, x^* \in X^*$ and $0 \leq s \leq r \leq t \leq T$. In particular, $(\partial/\partial t)V_1(t, s)y$ exists for almost every $t \in [s, T]$ and equals $A(t)V_1(t, s)y$.

(e) $V_2(t, r)y - V_2(t, s)y = -\int_s^r V_2(t, \tau)A(\tau)y d\tau$

for $y \in Y$ and $0 \leq s \leq r \leq t \leq T$.

Remarks. 1) In the case where $A(t) \subset C_1^{-1}A(t)C_1$ for $t \in [0, T]$, the condition (A_3) is automatically satisfied with $C_2 = C_1$ if the condition (A_1) is satisfied.

2) In the case where $C_1 = C_2 = I$ (the identity operator on X), Theorem 2.1 is [6, Theorem 5.1].

Before proving Theorem 2.1 we prepare three lemmas. Let $s \in [0, T)$ and let $\lambda > 0$ be such that $\lambda \omega_3 < 1$. Set

$$P_{\lambda, k}(s) = \prod_{i=1}^k J_\lambda(s + i\lambda) \text{ for } 0 \leq k \leq [(T - s)/\lambda],$$

where $[\]$ denotes the Gaussian bracket and $J_\lambda(t) = (1 - \lambda A(t))^{-1} = \lambda^{-1}R(\lambda^{-1}; A(t))$ for $t \in [0, T]$.

Now we define $A_{k, l}$ and $B_{k, l}$ by

$$A_{k, l}x = P_{\lambda, k}(s)C_1x - P_{\mu, l}(s)C_1x \text{ for } x \in X,$$

$$B_{k, l}y = \mu(A(s + k\lambda) - A(s + l\mu))P_{\mu, l}(s)C_1y \text{ for } y \in Y.$$

Here we note by the conditions (A_2) and (A_4) that $B_{k, l}$ is well defined because $P_{\mu, l}(s)C_1(Y) \subset Y \subset D(A(t))$ for $t \in [0, T]$.

Using the resolvent identity we obtain by a standard argument

Lemma 2.2. Let $s \in [0, T)$ and $\lambda, \mu > 0$ be such that $\lambda \omega_3, \mu \omega_3 < 1$. Then, for $y \in Y$ we have

$$A_{k, l}y = J_\mu(s + k\lambda)(\alpha A_{k-1, l-1}y + \beta A_{k, l-1}y + B_{k, l}y)$$

(2.1)
for $0 \leq k \leq [(T - s)/\lambda]$ and $0 \leq l \leq [(T - s)/\mu]$, where $\alpha = \frac{k}{\lambda}$ and $\beta = \frac{\lambda - \mu}{\lambda}$.

Let $s \in [0, T)$ and $\lambda, \mu > 0$ be such that $\lambda \omega_3, \mu \omega_3 < 1$. Let k and j be nonnegative integers. We denote by $H(m, k)$ the set of all operators Q obtained by multiplying k operators $J_{\mu}(t_i)$ ($i = 1, \cdots, k$) in the family $\{J_{\mu}(s + i\lambda) : i = 1, \cdots, m\}$ such that $Q = \prod_{i=1}^{k} J_{\mu}(t_i)$ for $0 \leq s + \lambda \leq t_1 \leq \cdots \leq t_k \leq s + m\lambda \leq T$; $H(m, 0) = H(0, k) = \{ \text{the identity operator} \}$. By $H(m, k, j)$ we denote the set of all sums of j operators Q_i ($i = 1, \cdots, j$) in $H(m, k)$, where in j operators Q_1, \cdots, Q_j, same operators are allowed to appear repeatedly.

Using the relation (2.1) and then taking account of the definition $H(\cdot, \cdot, \cdot)$ we obtain by a routine calculation the following crucial estimate:

Lemma 2.3. Let $s \in [0, T)$ and let $\lambda, \mu > 0$ such that $\lambda \omega_3, \mu \omega_3 < 1$. Then, for $y \in Y$ we have

$$
A_{m,n}y \in \sum_{i=0}^{(m-1)\wedge n} \alpha^i \beta^{n-i} H\left(m, n, \binom{n}{i}\right) A_{m-i,0}y + \sum_{i=m}^{n} \alpha^m \beta^{i-m} H\left(m, i, \binom{i-1}{m-1}\right) A_{0,n-i}y + \sum_{j=0}^{n-1} \sum_{i=0}^{(m-1)\wedge j} \alpha^i \beta^{j-i} H\left(m, j+1, \binom{j}{i}\right) B_{m-i,n-j}y
$$

for $0 \leq m \leq [(T - s)/\lambda]$ and $0 \leq n \leq [(T - s)/\mu]$, where $\alpha = \frac{k}{\lambda}$, $\beta = \frac{\lambda - \mu}{\lambda}$, $l \wedge k = \min(l, k)$ and $\binom{j}{i}$ is the binomial coefficient.

Lemma 2.4. (I) Let $s \in [0, T)$ and let $\lambda > \mu > 0$ be such that $\lambda \omega_3 < 1$. Then, there exists a positive constant K, depending only on $M_i (i = 1, 2, 3, 4)$, such that

$$
\|C_p^2 P_{\lambda,m}(s) C_{11}y - C_p^2 P_{\mu,n}(s) C_{11}y\| \leq K\|y\| \left\{ 2((n\mu - m\lambda)^2 + T(\lambda - \mu))^{1/2} + T(\rho(\delta) + \rho(\delta)) + \frac{T^2}{\delta^2} \rho(T)(\lambda - \mu) \right\}
$$

for $1 \leq m \leq [(T - s)/\lambda]$, $1 \leq n \leq [(T - s)/\mu]$, $y \in Y$ and $\delta > 0$, where $\rho(r) = \sup\{\|A(t) - A(s)\|_{Y \rightarrow X} : t, s \in [0, T], |t - s| \leq r\}$ for $r \geq 0$.

6
Let $0 \leq f \leq s \leq T_{\partial J1}d$ and let $\lambda > 0$ be such that $\lambda \omega_3 < 1$. Then there exists a positive constant K, depending only on $M_i(i=2,3)$, such that

$$(2.3) \quad \|C_2P_{\lambda,m}(s)C_1y - C_2P_{\lambda,m}(r)C_1y\| \leq KT\|y\|_Y\rho(s - r)$$

for $1 \leq m \leq \lfloor (T - s) / \lambda \rfloor$ and $y \in Y$.

Proof: By virtue of Lemma 2.3 we can show (2.2) in the same way as in the proof of [2, Theorem 2.1]. To prove (2.3), let $0 \leq r \leq s \leq T$ and let $\lambda > 0$ be such that $\lambda \omega_3 < 1$. For $1 \leq k \leq \lfloor (T - s) / \lambda \rfloor$ we define A_k and B_k by

$$\begin{align*}
A_k x &= P_{\lambda,k}(s)C_1x - P_{\lambda,k}(r)C_1x \quad \text{for } x \in X, \\
B_k y &= \lambda(A(s + k\lambda) - A(r + k\lambda))P_{\lambda,k}(s)C_1y \quad \text{for } y \in Y.
\end{align*}$$

Then, by a simple computation we have

$$A_k y = (J_\lambda(s + k\lambda) - J_\lambda(r + k\lambda))P_{\lambda,k-1}(s)C_1y + J_\lambda(r + k\lambda)(P_{\lambda,k-1}(s)C_1y - P_{\lambda,k-1}(r)C_1y)$$

$$= J_\lambda(r + k\lambda)(A_{k-1}y + B_k y)$$

for $y \in Y$. By solving this we find

$$A_m y = \sum_{i=1}^{m} \left(\prod_{k=1}^{m} J_\lambda(r + k\lambda) \right) B_i y$$

for $y \in Y$ and $1 \leq m \leq \lfloor (T - s) / \lambda \rfloor$. Therefore, we obtain the desired estimate (2.3) by the conditions (A_2) and (A_3). Q.E.D.

Proof of Theorem 2.1: Let $s, r \in [0, T)$ and let $\lambda > \mu > 0$ be such that $\lambda \omega_3 < 1$. Let m and n be integers such that $0 \leq s + m\lambda, r + n\mu \leq T$ and let $y \in Y$. If $s \leq r$ then $0 \leq s + n\mu \leq T$, so that $P_{\mu,n}(s)$ is well defined. Similarly, $P_{\lambda,m}(r)$ is well defined if $s \geq r$. Therefore, $C_2P_{\lambda,m}(s)C_1y - C_2P_{\mu,n}(r)C_1y$ can be written as

$$\begin{align*}
C_2P_{\lambda,m}(s)C_1y - C_2P_{\mu,n}(s)C_1y + (C_2P_{\mu,n}(s)C_1y - C_2P_{\mu,n}(r)C_1y) & \text{ if } s \leq r \\
C_2P_{\lambda,m}(s)C_1y - C_2P_{\lambda,m}(r)C_1y + (C_2P_{\lambda,m}(r)C_1y - C_2P_{\mu,n}(r)C_1y) & \text{ if } s \geq r.
\end{align*}$$
Applying Lemma 2.4 to this we see that there exists a positive constant K, depending only on $M_{i}(i = 1, 2, 3, 4)$, such that

$$\begin{align*}
\|C_{2}P_{\lambda_{n},m}(s)C_{1}y - C_{2}P_{\mu_{n},n}(r)C_{1}y\| \\
\leq K\|y\|Y \left\{ 2((n\mu - m\lambda)^{2} + T(\lambda - \mu))^{1/2} + T(\rho(|n\mu - m\lambda|) \\
+ \rho(\delta) + \rho(|r - s|) + \frac{T^{2}}{\delta^{2}}\rho(T)(\lambda - \mu) \right\}
\end{align*}$$

for $\delta > 0$ and $y \in Y$. Since $C_{1}(Y)$ is dense in X and $\|C_{2}P_{\lambda_{n},m}(s_{n})\| \leq M_{3}$ for $n \geq 1$ it follows that

(2.4) $V_{2}(t,s)x = \lim_{n\to\infty}C_{2}\left(\prod_{i=1}^{n}J_{\lambda_{n}}(s_{n} + i\lambda_{n}) \right)x$

exists for $x \in X$ if $\{s_{n}\}$ is a sequence of nonnegative numbers with $\lim_{n\to\infty}s_{n} = s$ and $\{\lambda_{n}\}$ is a sequence such that $0 \leq s_{n} + n\lambda_{n} \leq T$ and $s_{n} + n\lambda_{n} \to t - s > 0$ as $n \to \infty$. Here we have used the fact that $\rho(\delta) \to 0$ as $\delta \to 0+$. We note that the limit is independent of $\{s_{n}\}$ and $\{\lambda_{n}\}$.

Let $\{s_{n}\}$ be a sequence of nonnegative numbers such that $\lim_{n\to\infty}s_{n} = s$ and let $\{\lambda_{n}\}$ be a sequence such that $0 \leq s_{n} + n\lambda_{n} \leq T$ and $s_{n} + n\lambda_{n} \to t - s > 0$ as $n \to \infty$. We then define $V_{1}^{(n)}(t,s)$ on X by

$$V_{1}^{(n)}(t,s) = \begin{cases} C_{1} & \text{for } t = s, \\
(\prod_{i=1}^{n}J_{\lambda_{n}}(s_{n} + i\lambda_{n}))C_{1} & \text{for } s < t.
\end{cases}$$

Then, by the condition (A_{2}) we have

$$V_{1}^{(n)}(t,s)(Y) \subset Y \text{ and } \|V_{1}^{(n)}(t,s)\|Y \leq M_{2} \text{ for } 0 \leq s \leq t \leq T \text{ and } n \geq 1.$$

We now show that for $y \in Y$ and $y^{*} \in Y^{*}$, $\langle y^{*}, V_{1}^{(n)}(t,s)y \rangle$ is convergent. Let $\{n_{k}\}$ be any subsequence of $\{n\}$. Since Y is reflexive there exists a subsequence $\{n_{k}'\}$ of $\{n_{k}\}$ and $y(t,s) \in Y$, depending upon $\{n_{k}'\}$, such that

$$\langle y^{*}, V_{1}^{(n_{k}')}t,s)y \rangle \to \langle y^{*}, y(t,s) \rangle$$

for $y^{*} \in Y^{*}$ as $n \to \infty$. In particular, for $x^{*} \in X^{*}$ we have

$$\langle C_{2}^{*}x^{*}, V_{1}^{(n_{k}')}t,s)y \rangle \to \langle C_{2}^{*}x^{*}, y(t,s) \rangle = \langle x^{*}, C_{2}y(t,s) \rangle$$
as $n \to \infty$, since $C_{2}^{*}x|_{Y} \in Y^{*}$. On the other hand, by (2.4) we obtain for $x^{*} \in X^{*}$,

$$
(C_{2}^{*}x^{*}, V_{1}^{(n_{k}')}^{(t,s)}y) = (x^{*}, C_{2}V_{1}^{(n_{k}')}^{(t,s)}y) \to (x^{*}, V_{2}(t,s)C_{1}y)
$$

as $n \to \infty$. Hence $C_{2}y(t,s) = V_{2}(t,s)C_{1}y$, so that $y(t,s)$ is independent of $\{n_{k}'\}$. Therefore it is proved that

$$
\lim_{n \to \infty} (y^{*}, V_{1}^{(n)}(t,s)y) = (y^{*}, C_{2}^{-1}V_{2}(t,s)C_{1}y)
$$

for $y \in Y$. By this together with the fact that $x^{*}|_{Y} \in Y^{*}$ we have for $x^{*} \in X^{*}$,

$$
(x^{*}, C_{2}^{-1}V_{2}(t,s)C_{1}y) = \lim_{n \to \infty} (x^{*}, V_{1}^{(n)}(t,s)y) \quad \text{for} \quad y \in Y.
$$

Hence

$$
\|C_{2}^{-1}V_{2}(t,s)C_{1}y\| \leq M_{1}\|y\|
$$

for $y \in Y$ and $0 \leq s \leq t \leq T$. Since Y is dense in X we see by the closed graph theorem that $C_{2}^{-1}V_{2}(t,s)C_{1} \in B(X)$ and $\|C_{2}^{-1}V_{2}(t,s)C_{1}\| \leq M_{1}$ for $0 \leq s \leq t \leq T$.

We now define $V_{1}(t,s)$ on X by

$$
V_{1}(t,s) = C_{2}^{-1}V_{2}(t,s)C_{1} \quad \text{for} \quad 0 \leq s \leq t \leq T.
$$

Then, it follows from the fact which has been proved above that $\|V_{1}(t,s)\| \leq M_{1}, V_{1}(t,s)(Y) \subset Y, \|V_{1}(t,s)\|_{Y} \leq M_{2}$ and $C_{2}V_{1}(t,s) = V_{2}(t,s)C_{1}$ for $0 \leq s \leq t \leq T$. Moreover, we have

$$
\lim_{n \to \infty} \left< y^{*}, (\prod_{i=1}^{n} J_{\lambda_{n}}(s_{n}+i\lambda_{n}))C_{1}y \right> = \left< y^{*}, V_{1}(t,s)y \right>
$$

for $y \in Y$ and $y^{*} \in Y^{*}$ if $\{s_{n}\}$ is a sequence of nonnegative numbers such that $\lim_{n \to \infty} s_{n} = s$ and $\{\lambda_{n}\}$ is a sequence such that $0 \leq s_{n} + n\lambda_{n} \leq T$ and $s_{n} + n\lambda_{n} \to t - s > 0$ as $n \to \infty$.

To prove that for $x \in X$, $(t,s) \rightarrow V_1(t,s)x$ is continuous on Δ, since Y is dense in X and $\|V_1(t,s)\| \leq M_1$ on Δ it suffices to show that

\[(2.5) \quad \|V_1(t,s)y - V_1(\tau,s)y\| \leq K(t-\tau)\|y\|_Y \]

for $y \in Y$ and $0 \leq s \leq \tau \leq t \leq T$,

\[(2.6) \quad \|V_1(t,s+h)y - V_1(t,s)y\| \leq Kh\|y\|_Y \]

for $y \in Y$ and $0 \leq s \leq s+h \leq t \leq T$.

To prove (2.5), let $y \in Y$ and $0 \leq s \leq \tau \leq t \leq T$ and let $\lambda > 0$ be such that $\lambda \omega_3 < 1$. If n and m be integers such that $m < n \leq \lfloor (T-s)/\lambda \rfloor$ then

\[(2.7) \quad \langle x^*, P_{\lambda,n}(s)C_1y-P_{\lambda,m}(s)C_1y \rangle \]

\[= \left\langle x^*, \sum_{k=m}^{n-1} (P_{\lambda,k+1}(s)C_1y - P_{\lambda,k}(s)C_1y) \right\rangle \]

\[= \left\langle x^*, \lambda \sum_{k=m}^{n-1} A(s+(k+1)\lambda)P_{\lambda,k+1}(s)C_1y \right\rangle \quad \text{for} \quad x^* \in X^*, \]

from which it follows that

\[|\langle x^*, P_{\lambda,n}(s)C_1y - P_{\lambda,m}(s)C_1y \rangle| \]

\[\leq \|x^*\| \lambda(n-m) \cdot \sup \{\|A(t)\|_{Y \rightarrow X} : t \in [0,T]\} \cdot M_2 \|y\|_Y \]

for $x^* \in X^*$. Setting $n = \lfloor (t-s)/\lambda \rfloor$ and $m = \lfloor (\tau-s)/\lambda \rfloor$, and then letting $\lambda \rightarrow \infty$ we obtain the desired estimate (2.5).

To prove (2.6) let $y \in Y$ and $0 \leq s < s+h < t \leq T$, and choose a sequence $\{k(n)\}$ of integers such that $k(n)h/n \leq t - (s+h)$ and $k(n)h/n \rightarrow t - (s+h)$ as $n \rightarrow \infty$. Then, since

\[(2.8) \quad \left(\prod_{i=1}^{k(n)} J_{h/n}(s+h+ih/n) \right)y - \left(\prod_{i=1}^{n+k(n)} J_{h/n}(s+ih/n) \right)y \]

\[= \sum_{j=1}^{n} \left\{ \left(\prod_{i=j+1}^{n+k(n)} J_{h/n}(s+ih/n) \right)y - \left(\prod_{i=j}^{n+k(n)} J_{h/n}(s+ih/n) \right)y \right\} \]

\[= -(h/n) \sum_{j=1}^{n} \left(\prod_{i=j}^{n+k(n)} J_{h/n}(s+ih/n) \right)A(s+jh/n)y, \]
it follows from the conditions \((A_1)\) and \((A_4)\) that

\[
|x^*, P_{h/n,k(n)}(s+h)C_1y - P_{h/n,n+k(n)}(s)C_1y| \leq hM_1M_4\|y\|Y\|x^*\|
\]

for \(x^* \in X^*\). Passing to the limit as \(n \to \infty\) we obtain (2.6).

The strongly continuity of \(V_2(t,s)\) immediately follows from the strongly continuity of \(V_1(t,s)\) and the relation that \(C_2V_1(t,s) = V_2(t,s)C_1\), since \(C_1(X)\) is dense in \(X\) and \(\|V_2(t,s)\| \leq M_3\) on \(\Delta\).

Since \(Y\) is reflexive, using the strongly continuity of \(V_1(t,s)\) together with the facts that \(V_1(t,s)(Y) \subset Y\) and \(\|V_1(t,s)\|_Y \leq M_2\) on \(\Delta\) we see by a standard argument that for \(y \in Y\) and \(y^* \in Y^*\), \((t,s) \to \langle y^*, V_1(t,s)y \rangle\) is continuous for \(0 \leq s \leq t \leq T\).

To prove that \(\{V_1(t,s) : 0 \leq s \leq t \leq T\}\) has the property (d), let \(y \in Y, x^* \in X^*\) and \(0 \leq s \leq r < t \leq T\). Setting \(n = [(t-s)/\lambda]\) and \(m = [(r-s)/\lambda]\) in (2.7) we have

\[
\langle x^*, P_{\lambda,[(r-s)/\lambda]}(s)C_1y - P_{\lambda,[(t-s)/\lambda]}(s)C_1y \rangle = \int^{s+[(t-s)/\lambda]}_{s+[(r-s)/\lambda]} (\tilde{A}(\tau)^*x^*, P_{\lambda,[(\tau-s)/\lambda]+1}(\tau)s)C_1y d\tau,
\]

where \(\tilde{A}(t)^*: X^* \to Y^*\) denotes the adjoint of the restriction \(\tilde{A}(t)\) of \(A(t)\) to \(Y\). The condition \((A_4)\) implies that \(t \to \tilde{A}(t)^*\) is continuous in the \(B(X^*, Y^*)\) norm; thus passing to the limit as \(\lambda \to \infty\) we see by Lebesgue's convergence theorem that

\[
\langle x^*, V_1(t,s)y - V_1(r,s)y \rangle = \int^{t}_{r} (\tilde{A}(\tau)^*x^*, V_1(\tau,s)y) d\tau.
\]

This shows that the property (d) is satisfied.

We next show that \(\{V_2(t,s) : 0 \leq s \leq t \leq T\}\) has the property (e). Let \(0 \leq s < s + h < t \leq T\) and choose a sequence \(\{k(n)\}\) of integers such that
$k(n)h/n \leq t - (s + h)$ and $k(n)h/n \rightarrow t - (s + h)$ as $n \rightarrow \infty$. By (2.8) we have

$$C_{2}P_{h/n,k(n)}(s + h)y - C_{2}P_{h/n,n+k(n)}(s)y$$

$$= - \sum_{j=1}^{n} \int_{s+(j-1)h/n}^{s+jh/n} C_{2}P_{h/n,n+k(n)-j+1}(s+(j-1)h/n)A(s+jh/n)y \, dr$$

$$= - \int_{s}^{s+h} C_{2}P_{h/n,n+k(n)-r(n)}(s+r(n)h/n)A(s+(r(n)+1)h/n)y \, dr$$

for $y \in Y$, where $r(n) = \lfloor (r - s)/(h/n) \rfloor$. Letting $n \rightarrow \infty$ in this equality we see that the property (e) is satisfied.

Suppose that $\{W_{1}(t, s)\}, \{W_{2}(t, s)\}$ is a pair of strongly continuous families of bounded linear operators defined on the triangle Δ with the properties (a) - (e). Then, by the properties (d) and (e) we see that for $y \in Y$, the function $r \rightarrow V_{2}(t, r)W_{1}(r, s)y$ is Lipschitz continuous and $(\partial/\partial r)V_{2}(t, r)W_{1}(r, s)y = 0$ for almost every $r \in [s, T]$. Integrating this from s to t we obtain

$$C_{2}W_{1}(t, s)y = V_{2}(t, s)C_{1}y$$

for $y \in Y$. By the property (a), $W_{2}(t, s)$ is equal to $V_{2}(t, s)$ on the dense subspace $C_{1}(Y)$ of X, so that $\{W_{1}(t, s)\}, \{W_{2}(t, s)\}$ is the only pair of strongly continuous families of bounded linear operators defined on the triangle Δ with the properties (a) - (e). Q.E.D.

Definition 2.1. A function $u(\cdot; s, x)$ on $[s, T]$ is a strong solution of (DE), if

(i) $u(\cdot; s, x) \in A^{1,1}(s, T; X)$,

(ii) $u(\cdot; s, x)$ satisfies (DE), almost everywhere.

Here we denote by $A^{k,p}(a, b; X)$ the space of all absolutely continuous functions $u : [a, b] \rightarrow X$ for which $d^{j}u/dt^{j}$ exist (and are defined almost everywhere) for $j = 1, 2, \ldots, k$ such that $d^{j}u/dt^{j}, j = 1, 2, \ldots, k-1$, are all absolutely continuous and $d^{k}u/dt^{k} \in L^{p}(a, b; X)$.

Existence and uniqueness of the strong solutions of the time-dependent differential equation (DE), is provided by
Theorem 2.5. If the family \(\{A(t) : t \in [0, T]\} \) of closed linear operators in \(X \) satisfies the conditions \((A_1) - (A_4)\) then, for every initial data \(x \in C_1(Y) \) the \((DE)_s\) has a unique strong solution satisfying \(u(t;s, x) \in Y \) for \(t \in [s, T] \) and
\[
sup\{\|u(t;s, x)\|_Y : t \in [s, T]\} < \infty.
\]

Proof: By Theorem 2.1 there exists a unique pair \((\{V_1(t, s)\}, \{V_2(t, s)\}) \) of strongly continuous families of bounded linear operators defined on the triangle
\[\Delta = \{(t, s) : 0 \leq s \leq t \leq T\} \] with the properties (a) - (e). Let \(x \in C_1(Y) \) and set \(u(t; s, x) = V_1(t, s)C_1^{-1}x \) for \(0 \leq s \leq t \leq T \). Then, it is easy to see that \(u(t; s, x) \) is a strong solution of \((DE)_s\) satisfying \(u(t; s, x) \in Y \) for \(t \in [s, T] \) and
\[
sup\{\|u(t;s, x)\|_Y : t \in [s, T]\} < \infty.
\]
To prove the uniqueness of the solutions, let \(v(t; s, x) \) be a strong solution of \((DE)_s\) satisfying \(v(t; s, x) \in Y \) for \(t \in [s, T] \) and
\[
sup\{\|v(t;s, x)\|_Y : t \in [s, T]\} < \infty.
\]
Then, we deduce from the property (e) that
\[
(r \rightarrow V_2(t, r)(u(r;s,x) - v(r;s,x))) \text{ is absolutely continuous on } [s, T] \text{ and }
\]
\[
(\partial/\partial r)V_2(t, r)(u(r;s,x) - v(r;s,x)) = 0
\]
for almost every \(r \in [s,T] \). Integrating this equality from \(s \) to \(t \) we have
\[
C_2(u(t;s, x) - v(t; s, x)) = 0,
\]
which shows that \(u(t; s, x) = v(t; s, x) \) for \(t \in [s, T] \), since \(C_2 \) is injective. Q.E.D.

We next consider the second order differential equation in a reflexive Banach space \(X \)
\[(DE)_s^2 \begin{cases} u''(t) = Au(t) + B(t)u(t) & \text{for } t \in [s, T] \\ u(s) = x, \ u'(s) = y, \end{cases}
\]
where \(A \) is the infinitesimal generator of a cosine family and \(\{B(t) : t \in [0, T]\} \) is a family of linear operators in \(X \) satisfying the following conditions:
(B1) $D(A) \subset D(B(t))$ for $t \in [0, T]$.

(B2) There are constants $M \geq 0$ and $\omega \geq 0$ such that $\{\lambda^2 : \lambda > \omega\} \subset \rho(A)$, for $t \in [0, T]$ $B(t)R(\lambda^2 : A)$ is strongly infinitely differentiable in $\lambda > \omega$ and satisfies

$$
\|(1/n!)(\lambda - \omega)^{n+1}(d/d\lambda)^{n}B(t)R(\lambda^2 : A)x\| \leq M\|x\|
$$

for $x \in X, \lambda > \omega$ and $n = 0, 1, \cdots$.

(B3) $\lim_{\ell \to \epsilon} \sup\{\|B(t)x - B(s)x\| : x \in D(A), \|x\| + \|Ax\| \leq 1\} = 0$.

(B4) There exists $\lambda_0 > \omega$ such that $(\lambda_0^2 - A)B(t)R(\lambda_0^2 : A) = B(t) + P(t)$, where $\{P(t) : t \in [0, T]\}$ is a strongly continuous family of bounded linear operators on X.

Definition 2.2. A function $u(\cdot; s, x, y)$ on $[s, T]$ is a strong solution of $(DE)_{\epsilon}^{2}$ if
(i) $u(\cdot; s, x, y) \in A^{2,1}(s, T; X)$,
(ii) $u(\cdot; s, x, y)$ satisfies $(DE)_{\epsilon}^{2}$ almost everywhere.

Without proof we state the existence and uniqueness theorem of the strong solutions of the second order differential equation $(DE)_{\epsilon}^{2}$ which is obtained by applying Theorem 2.5 with $A(t) = \begin{pmatrix} 0 & 1 \\ A + B(t) & 0 \end{pmatrix}$ and $C_1 = C_2 = \begin{pmatrix} 0 \\ A - \lambda_0^2 \end{pmatrix}$.

Theorem 2.6. Assume that A is the infinitesimal generator of a cosine family and $\{B(t) : t \in [0, T]\}$ is a family of linear operators in X satisfying the conditions (B_1) - (B_4). Then, for every initial data $x \in D(A)$ and $y \in D(A)$ the $(DE)_{\epsilon}^{2}$ has a unique strong solution $u(t; s, x, y)$ such that $u(t; s, x, y) \in D(A)$ for $t \in [s, T]$ and $\sup\{\|Au(t; s, x, y)\| : t \in [s, T]\} < \infty$.

References

