An Estimate on the Rate of Convergence of Viscosity Solutions for the Singular Perturbation Problems (Evolution Equations and Applications to Nonlinear Problems)

Author(s)
Ishii, Katsuyuki; Yamada, Naoki

Citation
数理解析研究所講究録 (1991), 755: 1-9

Issue Date
1991-06

URL
http://hdl.handle.net/2433/82137

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
An Estimate on the Rate of Convergence of Viscosity Solutions for the Singular Perturbation Problems

神戸大・自然科学 石井克幸 (Katsuyuki Ishii)
神戸大・理 山田直記 (Naoki Yamada)

§1. Introduction

In this note we shall present a result on the rate of convergence of solutions for the singular perturbations of gradient obstacle problems. For any $\epsilon > 0$, we consider the following nonlinear second-order elliptic partial differential equation (PDE);

\[
(1.1)_{\epsilon} \quad \begin{cases}
\max\{-\epsilon^{2}\Delta u_{\epsilon} + u_{\epsilon} - f, |Du_{\epsilon}| - g\} = 0 & \text{in } \Omega, \\
u_{\epsilon} = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain and f, g are nonnegative functions defined on $\overline{\Omega}$. This equation arises in some kind of stochastic control problem (cf. N. V. Krylov [9]). Our main purpose here is to get the optimal rate of convergence of solutions u_{ϵ} of $(1.1)_{\epsilon}$ to the solution of u_{0} of the first order PDE;

\[
(1.1)_{0} \quad \begin{cases}
\max\{u_{0} - f, |Du_{0}| - g\} = 0 & \text{in } \Omega, \\
u_{0} = 0 & \text{on } \partial \Omega.
\end{cases}
\]

As to the equation $(1.1)_{\epsilon}$, many authors discussed the existence and uniqueness of solutions. (See L. C. Evans [1], H. Ishii - S. Koike [4] and the second author [13].)

On the other hand, the estimate on the singular perturbation problems depend on complicated PDE or probabilistic techniques (e.g., S. R. S. Varadhan [12], and M. I. Freidlin - A. D. Wentzel [3]). However, here we shall obtain the estimate of point-wise convergence by a method easier than those. The method is an application of the comparison principle for viscosity solutions. (See H. Ishii - S. Koike [5].) Using the same method, S. Koike [8] has obtained the rate of convergence of solutions in singular perturbation problems. His result includes the singular perturbations of the obstacle problems, which are imposed to the unknown function itself.
Finally we give the definition of viscosity solution of general fully nonlinear second order elliptic PDEs. Consider

(1.2) \[F(x, u(x), Du(x), D^2u(x)) = 0 \quad \text{in} \quad \Omega, \]

where F is a continuous function on $\Omega \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{S}^N$ (\mathbb{S}^N denotes the set of all $N \times N$ real symmetric matrices) satisfying the following ellipticity condition;

\[F(x, r, p, A + B) \leq F(x, r, p, A) \quad \text{for all} \quad x \in \Omega, \quad r \in \mathbb{R}, \quad p \in \mathbb{R}^N, \quad A, B \in \mathbb{S}^N \quad \text{and} \quad B \geq O. \]

For the function u defined on $\overline{\Omega}$, let u^* (resp. u_*) be the upper (resp. lower) semi-continuous envelope of u on $\overline{\Omega}$;

\[u^*(x) = \lim_{r \rightarrow 0} \sup \{ u(y) \mid |y - x| < r, \ y \in \overline{\Omega} \}, \]
\[u_*(x) = \lim_{r \rightarrow 0} \inf \{ u(y) \mid |y - x| < r, \ y \in \overline{\Omega} \}. \]

Definition. Let u be a function defined on $\overline{\Omega}$.

(1) u is a viscosity subsolution of (1.2) provided $u^*(x) < +\infty$ in Ω and for any $\varphi \in C^2(\Omega)$, if $u^* - \varphi$ attains a local maximum at $x_0 \in \Omega$, then

\[F(x_0, u^*(x_0), D\varphi(x_0), D^2\varphi(x_0)) \leq 0. \]

(2) u is a viscosity supersolution of (1.2) provided $u_*(x) > -\infty$ in Ω and for any $\varphi \in C^2(\Omega)$, if $u_* - \varphi$ attains a local minimum at $x_0 \in \Omega$, then

\[F(x_0, u_*(x_0), D\varphi(x_0), D^2\varphi(x_0)) \geq 0. \]

(3) u is a viscosity solution of (1.2) provided u is a viscosity subsolution and a supersolution of (1.2)

Remark. (i) In the case of first order PDEs, we can replace $C^2(\Omega)$ in (1) or (2) with $C^1(\Omega)$.

(ii) For the details, see H. Ishii - P. L. Lions [6].
§2. Preliminaries

In this section we shall state our assumptions and shall show the existence and uniqueness of viscosity solutions of $(1.1)_{\epsilon}$ and $(1.1)_{0}$ satisfying the Dirichlet boundary condition. We make the following assumptions.

(A.1) \(\Omega \subset \mathbb{R}^{N} \) is a bounded domain with smooth boundary \(\partial \Omega \).

(A.2) \(f \in W^{1,\infty}(\Omega) \) and \(f \geq 0 \) on \(\Omega \).

(A.3) \(g \in W^{1,\infty}(\Omega) \) and \(g \geq \theta \) on \(\Omega \) for some \(\theta > 0 \).

We denotes by \(K_{f} \) and \(K_{g} \) the Lipschitz constants of \(f \) and \(g \), respectively.

Concerning the existence and uniqueness of viscosity solutions of \((1.1)_{\epsilon} \) and \((1.1)_{0} \) satisfying the Dirichlet boundary condition, we have the following Theorem.

Theorem 1. (1) For each \(\epsilon > 0 \), there exists a unique viscosity solution \(u_{\epsilon} \in W^{1,\infty}(\Omega) \) of \((1.1)_{\epsilon} \) satisfying the Dirichlet boundary condition.

(2) There exists a unique viscosity solution \(u_{0} \in W^{1,\infty}(\Omega) \) of \((1.1)_{0} \) satisfying the Dirichlet boundary condition.

Proof: The uniqueness of viscosity solutions follows from the comparison principle due to H. Ishii - P. L. Lions [6].

Next we show the existence of solutions. We note that by (A.2) and (A.3),

\[
(2.1) \quad w_{1}(x) = 0 \quad \text{on} \quad \overline{\Omega}
\]

is a viscosity subsolution of \((1.1)_{\epsilon} \) and \((1.1)_{0} \). On the other hand, P. L. Lions [11] proved that

\[
(2.2) \quad w_{2}(x) = \inf_{y \in \partial \Omega} L(x, y) \quad \text{on} \quad \overline{\Omega},
\]

is a viscosity supersolution of \((1.1)_{\epsilon} \) and \((1.1)_{0} \), where

\[
L(x, y) = \inf_{\xi \in \mathcal{A}} \int_{0}^{t} g(\xi(s)) \, ds,
\]

\[
A = \left\{ \xi \in C[0, t] \mid \xi(0) = x, \xi(t) = y \in \partial \Omega,
\quad \xi(s) \in \overline{\Omega} \quad (0 \leq s \leq t), \quad \left| \frac{d\xi}{ds} \right| \leq 1 \quad \text{a.e.} \quad s \in [0, t] \right\}.
\]
Thus by Perron's method there exist viscosity solutions \(u_\varepsilon, u_0 \in C(\overline{\Omega}) \) of \((1.1)_\varepsilon, (1.1)_0 \) respectively satisfying the Dirichlet boundary condition and

\[
0 \leq u_\varepsilon, u_0 \leq w_2 \quad \text{on } \overline{\Omega}.
\]

Moreover the form of equations \((1.1)_\varepsilon \) and \((1.1)_0 \) implies that \(u_\varepsilon \) and \(u_0 \) are viscosity subsolutions of \(|Du| - g = 0 \) in \(\Omega \). Hence it follows from M. G. Crandall - P. L. Lions [2] that \(u_\varepsilon \) and \(u_0 \) are Lipschitz continuous on \(\overline{\Omega} \). Therefore we complete the proof. \(\blacksquare \)

Remark. (i) In order to show the comparison principle, it is sufficient to assume \(f, g \in C(\overline{\Omega}) \).

(ii) Since \(g \) is a bounded constraint for the gradient of \(u_\varepsilon \), the sequence \(\{u_\varepsilon\}_{\varepsilon>0} \) are equi-Lipschitz continuous on \(\overline{\Omega} \). In what follows \(K \) denotes the Lipschitz constant of \(u_\varepsilon \) and \(u_0 \).

§3. Main result

This section is devoted to our main result.

Theorem 2. We assume \((A.1)-(A.3)\). Let \(u_\varepsilon, u_0 \) be viscosity solutions of \((1.1)_\varepsilon, (1.1)_0 \) respectively satisfying the Dirichlet boundary condition. Then there exist \(\varepsilon_0 > 0 \) and \(\mu > 0 \) such that

\[
\|u_\varepsilon - u_0\| \leq \mu \varepsilon \quad \text{for all } \varepsilon \in (0, \varepsilon_0),
\]

where \(\| \cdot \| \) denotes the supremum norm in \(C(\overline{\Omega}) \).

Before proving Theorem 2, we shall give an example. It shows that the above estimate is optimal.

Example. Let \(\Omega = (-1, 1), f(x) = 1 - |x|, \) and \(g \equiv 1 \) on \(\overline{\Omega} \). Then we have viscosity solutions \(u_\varepsilon, u_0 \) of \((1.1)_\varepsilon, (1.1)_0 \) as follows;

\[
uvarepsilon(x) = \varepsilon \frac{\sinh((|x| - 1)/\varepsilon)}{\cosh(1/\varepsilon)} + 1 - |x|,
\]

\[
vo(x) = 1 - |x|.
\]
We note that \(\tanh x < 1 \) and \(\tanh x \to 1 \) \((x \to +\infty) \). Thus we get the following estimate:

\[
\|u_\epsilon - u_0\| = |u_\epsilon(0) - u_0(0)| = \varepsilon \tanh(1/\varepsilon) \leq \varepsilon \quad \text{for } 0 < \varepsilon < 1.
\]

Proof of Theorem 2: It is sufficient to prove the upper estimate \(u_\epsilon - u_0 \leq \mu \varepsilon \) on \(\overline{\Omega} \) because the lower estimate \(-\mu \varepsilon \leq u_\epsilon - u_0 \) on \(\overline{\Omega} \) can be proved similarly. We take \(\varepsilon_0 > 0 \) such that

\[
\varepsilon_0 = \frac{\theta}{3KgK}
\]

and for each \(\varepsilon \in (0, \varepsilon_0) \), we define

\[
\Phi_\varepsilon(x, y) = \rho u_\varepsilon(x) - u_0(y) - \frac{|x - y|^2}{\varepsilon} - \mu \varepsilon \quad \text{on } \overline{\Omega \times \Omega},
\]

where \(\rho = 1 - 3KgK\varepsilon/2\theta \) and \(\mu > 0 \) is a constant to be determined later. Let \((x_\epsilon, y_\epsilon) \in \overline{\Omega \times \Omega} \) be a maximum point of the function \(\Phi_\varepsilon(x, y) \). Then \(\Phi_\varepsilon(x_\epsilon, x_\epsilon) \leq \Phi_\varepsilon(x_\epsilon, y_\epsilon) \) and we get

\[
\frac{|x_\epsilon - y_\epsilon|^2}{\varepsilon} \leq u_0(x_\epsilon) - u_0(y_\epsilon).
\]

Since \(u_0 \) is Lipschitz continuous, we have

\[
(3.2) \quad |x_\epsilon - y_\epsilon| \leq K\varepsilon.
\]

We consider the following three cases.

Case 1. \(x_\epsilon, y_\epsilon \in \Omega \).

The function

\[
x \to u_\varepsilon(x) - \frac{1}{\rho} \left\{ u_0(y_\epsilon) + \frac{|x - y_\epsilon|^2}{\varepsilon} + \mu \varepsilon \right\}
\]

takes the maximum at \(x_\epsilon \). Similarly, the function

\[
y \to u_0(y) - \left\{ \rho u_\varepsilon(x_\epsilon) - \frac{|x_\epsilon - y|^2}{\varepsilon} - \mu \varepsilon \right\}
\]
takes the minimum at \(y_\epsilon \). Hence regarding \(u_\epsilon \) as a viscosity subsolution of \((1.1)_\epsilon\) and \(u_0 \) as a viscosity supersolution of \((1.1)_0\), we obtain two inequalities;

\[
\begin{align*}
(3.3) \quad \max \left\{ -\frac{2N}{\rho} \varepsilon + u_\epsilon(x_\epsilon) - f(x_\epsilon), \frac{2|x_\epsilon - y_\epsilon|}{\rho \varepsilon} - g(x_\epsilon) \right\} & \leq 0, \\
(3.4) \quad \max \left\{ u_0(y_\epsilon) - f(y_\epsilon), \frac{2|x_\epsilon - y_\epsilon|}{\varepsilon} - g(y_\epsilon) \right\} & \geq 0.
\end{align*}
\]

We claim that \(2|x_\epsilon - y_\epsilon|/\varepsilon - g(y_\epsilon) < 0 \) in \((3.4)\). To prove the inequality by contradiction, suppose that \(2|x_\epsilon - y_\epsilon|/\varepsilon - g(y_\epsilon) \geq 0 \) in \((3.4)\). Since \(2|x_\epsilon - y_\epsilon|/\rho \varepsilon - g(x_\epsilon) \leq 0 \) by \((3.3)\), we get

\[
g(y_\epsilon) \leq \frac{2|x_\epsilon - y_\epsilon|}{\varepsilon} \leq \rho g(x_\epsilon).
\]

Thus \((A.3)\) and \((3.2)\) imply that

\[
(1 - \rho)\theta \leq (1 - \rho)g(y_\epsilon) \leq \rho g(x_\epsilon) - g(y_\epsilon) \leq K_g|x_\epsilon - y_\epsilon| \leq K_gK\varepsilon.
\]

Hence we have \(3/2 \leq 1 \), which is a contradiction. Therefore we obtain the claim.

Thus we get from \((3.4)\)

\[
(3.5) \quad u_0(y_\epsilon) - f(y_\epsilon) \geq 0.
\]

Note that \((3.3)\) implies

\[
(3.6) \quad -\frac{2N}{\rho} \varepsilon + u_\epsilon(x_\epsilon) - f(x_\epsilon) \leq 0.
\]

Subtracting \((3.5)\) from \((3.6)\) and using \((3.1)\), \((3.2)\) and \((A.2)\), we have

\[
u_\epsilon(x_\epsilon) - u_0(y_\epsilon) \leq \frac{2N}{\rho} \varepsilon + f(x_\epsilon) - f(y_\epsilon)
\leq C\varepsilon + K_f|x_\epsilon - y_\epsilon|
\leq C\varepsilon.
\]

Here and hereafter \(C \) denotes various constants depending only on known constants. Hence we obtain

\[
\rho u_\epsilon(x) - u_0(x) - \mu \varepsilon = \Phi_\epsilon(x, x) \leq \Phi_\epsilon(x_\epsilon, y_\epsilon)
\leq u_\epsilon(x_\epsilon) - u_0(y_\epsilon) - \mu \varepsilon
\leq (C - \mu)\varepsilon.
\]
Now we choose $\mu > 0$ large enough to get $\rho u_{e}(x) - u_{0}(x) \leq \mu \epsilon$. Therefore

$$u_{e}(x) - u_{0}(x) \leq \left(\mu + \frac{3K_{g}K}{2\theta} u_{e}(x) \right) \epsilon$$

$$\leq (\mu + C) \epsilon.$$

Replacing μ with $\mu + C$, we have the upper estimate.

Case 2. $x_{e} \in \partial \Omega$.

Since the Dirichlet boundary condition of $(1.1)_{e}$ and (2.3) imply

$$\Phi_{e}(x_{e}, y_{e}) = -u_{0}(y_{e}) - \frac{|x_{e} - y_{e}|^{2}}{\epsilon} - \mu \epsilon \leq 0$$

for any $\mu > 0$, we can argue the remainder similar to Case 1.

Case 3. $y_{e} \in \partial \Omega$.

By the Dirichlet boundary condition of $(1.1)_{e}$ and $(1.1)_{0}$ and the equi-Lipschitz continuity of $\{u_{e}\}_{e>0}$, we obtain

$$\Phi_{e}(x_{e}, y_{e}) = \rho u_{e}(x_{e}) - \frac{|x_{e} - y_{e}|^{2}}{\epsilon} - \mu \epsilon$$

$$\leq u_{e}(x_{e}) - u_{e}(y_{e}) - \mu \epsilon$$

$$\leq (K^{2} - \mu) \epsilon.$$

Thus we get $\Phi_{e}(x_{e}, y_{e}) \leq 0$ for $\mu \geq K^{2}$. The remainder is also proved similarly to Case 1.

From Case 1 to Case 3, if we choose $\mu > 0$ sufficiently large, then we have the upper estimate;

$$u_{e}(x) - u_{0}(x) \leq \mu \epsilon \quad \text{for all } x \in \overline{\Omega}.$$

Replacing u_{e} and u_{0} with each other in the above argument, we obtain the lower estimate;

$$-\mu \epsilon \leq u_{e}(x) - u_{0}(x) \quad \text{for all } x \in \overline{\Omega}.$$

Hence we complete the proof. \[\Box\]
Final Remark. Under some reasonable assumptions, we can extend Theorem 2 to the following equations.

(1) **Hamilton-Jacobi-Bellman equation with gradient constraint;**

\[
\begin{aligned}
\max\{L_{e}^{1}u_{e} - f^{1}, \cdots, L_{e}^{m}u_{e} - f^{m}, |Du_{e}| - g\} &= 0 \quad \text{in } \Omega, \\
u_{e} &= 0 \quad \text{on } \partial\Omega,
\end{aligned}
\]

where \(L_{e}^{p} (p = 1, \cdots, m)\) are linear second order elliptic operators defined in \(\Omega \subset \mathbb{R}^{N}\);

\[
L_{e}^{p}u = -\epsilon^{2}a_{ij}^{p}u_{x_{i}x_{j}} + \epsilon b_{i}^{p}u_{x_{i}} + c^{p}u,
\]

and \(f^{p}, g\) are nonnegative functions on \(\bar{\Omega}\). The corresponding first order PDE is as follows;

\[
\begin{aligned}
\max\{c^{1}u_{0} - f^{1}, \cdots, c^{m}u_{0} - f^{m}, |Du_{0}| - g\} &= 0 \quad \text{in } \Omega, \\
u_{0} &= 0 \quad \text{on } \partial\Omega.
\end{aligned}
\]

(2) **Second order elliptic PDE with gradient constraint whose principal part is a fully nonlinear operator;**

\[
\begin{aligned}
\max\{F(x, u_{e}, \epsilon Du_{e}, \epsilon^{2}D^{2}u_{e}), |Du_{e}| - g\} &= 0 \quad \text{in } \Omega, \\
u_{e} &= 0 \quad \text{on } \partial\Omega,
\end{aligned}
\]

and the first order PDE;

\[
\begin{aligned}
\max\{F(x, u_{0}, 0, O), |Du_{0}| - g\} &= 0 \quad \text{in } \Omega, \\
u_{0} &= 0 \quad \text{on } \partial\Omega,
\end{aligned}
\]

where \(F(x, r, p, A)\) is continuous on \(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N}\) and nonincreasing with respect to the variable \(A \in \mathbb{S}^{N}\).

See the authors [7] for the details.

References.

