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Quotients of hypersurface sections of toric‘singularities.

FILEPRAF + 45 T /E (Hiroyasu TSUCHIHASHI)

Introduction. In the previous paper [4], we  studied
hypersurface sections (X,y) of toric singularities (Y,y).
In this paper, we continue the study of (X,y) and also study.
the quotients of (X,y) Dby groups G of toric actions, which
afe finite subgroups of the algebraic. torus. Let Y' = Y/G,
let X'- = X/G and let y' be the images of "y undervthe
~quotient maps Y -» Y'. Then (Y',y") are - also toric
singularities, while (X',y') may not be~hypersurface sections
of (Y',y'). Hence more singularities appear as (X',y") than
those as (X,y). For instance, the multiplicities of simple
elliptie singularities whiech are hypersurface sections of toric
singularities are smaller than 10 ( see [4] ), while there are
no restrictions on those of their quotients by toric "actions.
We ‘show that also for those quotients (X',¥y") explicit
resolutions are obtained by the Newton boundaries of the
defihing equations f of X, if f are non-degenerate.
Moreover, if! (Y,y) are Gorenstein, then we <can calculate the
plurigenera of (X',y').

In 81, we recall some facts about toriec singularities and

their hypersurface sections and give a necessary condition for
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(X,y) to be isolated.

In §é, we give a necessary and sufficient condition for
finite-groups G of torie actions mapping X on themselves to
have no fixed points on hypersurface séctions (X,y) of toric
singularities, and that for the quotients (X',y") of (X,y)
by G to be Gorenstein singularities.

In 83, we construet resolutions of (X',y'), using torus
embeddings and as an application, we give a sufficient
condition for (X',y') to be isolated singularities{

In 84, under the assumption that (X,y) are Gorenstein, we
give a formula of calculating plurigenera of (X',y") via
shapes of Newton boundaries and a necessary and sufficient
condition for (X',y')~ to be purely elliptie of (0,dim X'-1)
Vtype singularities - ( éee f2}, for the definition of purely
elliptic of (0,1) tybe singularities ).

In §5, we give two examples.

§1 Toric singularities and their hypefsurface sections.

We use the notations and the terminologies in [3]. Let N
Z"*! be a free Z-module of rank n + 1 2 3 and let M be
its dual module with canonical pairing <, > :MxN--> Z.
Let o be an (n+l)-dimensional strongly convex rational -cone
in NR := N @Z R, i.e:, o 1is generated by finite elements in

N containing linearly independent (n+l) elements and ocn (-o)
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= {0}. Let Y = SpecClo™nM] and 1let z¥ : Y » C be the
character of v, which is the natural extension of v@lmx
SpecC{M] « ((Dx)n+1 » ¢X for each v in c* 0 M. Recall that

{ x € SpecClt'aM] 1 2zV¥(x) = 0 for all v €

1]

orb(t)
(T*\T‘) nM} for. eaeh face T of o, where 7T* = { v € MR I

<v,u> = 0 for all u € 7 }. We easily obtain:

Lemma 1.1. Let T be a face of fa] and let v be an

element in o* n M. Then the following three conditions are
equivalent.

1) z%(x) # 0 for a point x in orb(t).

2) z¥(x) # 00 for all points x in orb(T).

3) v is in T*.

The set orb(c) = { x € Y | zY(x) = 0 for all v
(o™ n M)\ {0} } consists of only one point, which we denote

by ye. Let X = {f = 0} be the hypersurface section of Y

defined by an element f = Zveo*nM.cvzv in ¢lo™ n M].

Throughout this paper, we assume that X contains y, i.e., Co

= 0, Let Supp(f) = { v € c* nmii Cy # 0 3}. . For each face

T of o, we can take a basis {VI,VQ? .. ’Vn+13 of M so

that {vl,vz, e ,vg} is 4a basis of T* N M, where g =

v
dimt* = n + 1 - dim 1. Let 2z, =2z ' for i = 1 through ¢

and let @(x) = (ZI(X),ZQ(X), . oo ,zg(x)) for X in orb(t).

Then the map & : orb(t) - (€)% is an isomorphism and
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Vgl t ty) = talta2 tag if v = ayv + agv
(Z ‘§ )(tl, 2, o s 0 y 2 - 1 2 « o 0 Q, ) 1 1 D) 2

-~

+ eee *+ agv2 € T* N M. Hence by Lemma 1.1, we obtain:

Lemma 1.2. X o orb(tg) if and only if Supp(f) n t* = #.
X n orb(t) = ¢ if and only if Supp(f) n t* consists of only

one point.

1f Supp(f) nt* = ¢ for a 1-dimensional face T of o,
then by the above lemma, X contains the codimension 1
subvariety orp(t of Y. On the other hand, X n Ty # 8, if
and only if #Supp(f) > 1, where Ty 1= SpecC[M] =
Y \ U; are 1-dimensional faces of o °FP{T). Hence if X is

irreducible and #Supp(f) > 1, then Supp(f) n u* £ ¢ for all

v

n-dimensional faces u* of c*. In the next section, beside

N we take a free Z-module N' with Nk = NR' Hence we need

the following definition.

Definition 1.3. A rational polyhedral cone T' in NR is
said to be non-singular with respect to N, if ¢ is generated

by a part of a basis of N.

Proposition 1.4. Assume that (X,y) is isolated. Then
any (n-1)-dimensional face T of o is non-singular with

respect to N and if an n-dimensional face T of ¢ 1is not

non-singular with respect to N, then Supp(f) n t* # ¢.
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§2 Quotients of (X,y) by finite groups.of toric actions.

Let M' be a submodule of M with finite index and let
N' = { u € NQ I <Kv,w> € Z for all u e M' }. Let Y' =
Specw[o* nM']J. Then Y' is the quotient of Y under the
group G := N'/N and the set { x € Y' | 2Y(x) = 0 for all v

*

€ (o nM') \ {0} } consists of only one point y', which 1is

the image of y under the quotient map Y - Y'. Here the

group G aets on Y in  the following way: gfz¥ =
e 2M/=TIKV, >,V £ each element g = [u] in G. Hence g*zV =
v

A for all g 1in G, if and only if v is in M'. Assume
that there exists an element 'VO in M with Supp(f) c vqy +
>M'; Then for each element g = [ul] in G, g*f =
823/:T<v0,u>f. Hence X is invariant gnder the action of G.
Let X' = X/G. Then X' 1is the codimension 1 subvariety of
Y' with the ideal (f-Clo™nM]1) n Clo®*nM'], which is generated

by { zVf | v € o¥*nMm, Vo t vV EM .

Lemma 2.1. Let T be a face of o. If NnRt # N' n Rt
( resp. NnRt = N nRt ), then all points ( resp. no

points ) of orb(t) are fixed points of @G.

Proposition 2.2. G has no fixed points on X\ {y} (
resp. U\ {y} for an open neighbbrhood U of y in X ), if
and only if the following two conditions are satisfied. ‘

1) For -each (n-1)-dimensional face T of o, Nn Rt =
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N' n Rt.
2) TFor each n-dimensional face T of g, if N n Rt #
N' n Rt, then Supp(f) n t* -consists of only one point ( resp.

is not empty ).

Let N*" = { ue€ N | <v0,u> € Z 1l and let G" = { g € G |

g*f = f }. Then G" = N"/N -and the quotient X/G" of X by
a" is a hypersurface section of that Y/G" of Y, which is
also a toric singularity. Moreover, X' is the quotient of

X/G", by the group G/G" = N'/N" of toric actions. Hence we

may only consider the case that G" = {id}.

Proposition 2.3. Assume that NnRt # N' nRt for a

l1-dimensional face T of o. If f is not in Clo*pM"],
then X o orb(t), where M" = { v ¢ M| <v,u> € Z for all u €

N + (N'nR7) }.

Let T be a 1-dimensional face of o. If X o> orb(TJ,
then X is not irreducible or X = GFB(T is a toric
variety. On the other hand, if f is in m[o* n M"], then
X! is the quotientlof the hypersurface section {f = 0} of
SpecG[o* n M"] by the group N'/N+(N'nRt). Hence by the above
proposition, we may only consider the <case that NnRt =
N' n Rt for all l—dimepsional faces T of . Namely, the

codimension of_the branch locus of the quotient map q : Y =
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Y! is greater than 1, by Lemma 2.1. In this case, if a face
U of o with dim y > 1 1is non-singular with respect to N',
then u is non-singular also with respect to N and N n Ru =

N'n Ru, i.e., q does not ramify along orb(u).

Proposition 2.4. Assume that { g e G | gt = f } = {id},
that (X',y") is isolated and that N n Rt = N' n Rt for each

i1-dimensional face T of o. Then G .is a cyclic group.

Proposition 2.5. Assume that N o Rt = N'n Rz for each

‘1-dimensional face 1 of o, that dim Sing(X') £ n - 2 and

that (Y,y) is. Gorenstein, i.e., there exists the element
v(g) in M such that <v(c),uT> = 1 for each 1-dimensional
face T of o, where u,r is the .generator of Nnr+t ( see

[4, Proposition 1.2] ). . Then (X',¥y") is r-Gorenstein (,
i.e., there wexists a nowhere vanishing holomorphic - r-ple
n-form on U' \ Sing(U"') for an open neighborhood U' »of y°

in X' ), if and only if Supp(f') c rv(g) + M'.

§3 Resolutions of (X',y').

Throughout the rest of this paper, we assume that for all
l1-dimensional faces T of o, Supp(f) n t* # 4, i.e., X' does
not contain orb(r), by Lemma 1.2. Recall that the Newton

polyhedron T, (f) of f = [ cyz’ € Clc* n M] is the convex
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hull of UveSupp(f) (v + o*) and that the Newton boundary
rof) of f is the union of the compact faces of r+(f).‘ Let

d(u) = min { <v,u> | v € ",(f) } and let A(u) = { v e T, (f) |

i

<v,u> = d(u) } for each point u in o. For a face A
Aug) (upg € o) of [(f), let aA¥=({ue o I AW > 4 }.
Recall that the dual Newton decomposition F*(f) of f is
A% 1 oa are faces of r.) i, which is an r.p.p.
decomposition of N' as well as of N with IF*(f)j = o.' We

say that f is non-degenerate, if

afA/BZI = es e = afA/azn+1 0
has no solutions in T := SpecC[M] c Y for each face A of
- v -
(), where fA = {veAnSupp<f) CyZ and (21,29, «vv »2Z047)
V.
is a global coordinate of T, for instance, z; = z ' for a
basis {vl,vz, .o ’Vn+1} of M.

Proposition 3.1. If f is non-degenerate, then X' is
irreducible at y'.

Note that if (X',y") is isolated and f is
non-degenerate, then (X',y") is normal, by the above
proposition.

Proposition 3.2. There exists a subdivision LT of TI*(f)

consisting of non-singular cones with respect to N' such that

if a cone T in r*(f) is non-singular with respect to N,
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then T 1is also in L.

Take a subdivision r of r*(t) satisfying the condition
of the above proposition. Let ¥' = Tyremb(L) and iet X be
the proper transformation of X' under the map J' : ¥ > ¥
induced by the natural horphism (N',E) > (N',{faces of agl)
of r.p.p. decompositions. ’ Then R is the closure of

X' n Ty in ¥', by the first assumption in this section.

Proposition 3.3. Assume that f is non-degenerate. Then
there exists an open neighborhood U’ of y' in Y' such

that (')~ YU') n X' is non-singular.

Proposition 3.4. Assume that f is. non-degenerate, that
each {n-1)-dimensional face T of o is a non-singular cone

with respect to N' and that Supp(f) n u* # @ for each

*

l1-dimensional face il of c . Then the restriction of 7'
to (n')'l(U' \ {y'}) is an isomorphism for an open
neighborhood U’ of y' in X', Hence (X',y") is an

isolated singularity.

§4 Plurigenera.
Throughout this section, we assume that (Y,y) is

Gorenstein, i.e., there exists the point v(o) in M such
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that <v(o),uT> = 1 for all 1-dimensional faces T of o,
where U, are the generators of N N . Moreover, we assume
that G has no fixed points on U\ {y! for an open

neighborhood U of y in X ( see Proposition 2.2 ). We keep

the notations in the previous section. Let E'(t) = X'.oTb(T
for each cone T in £y := {1 €L | dimt=1, Int(7) ¢
t - t -],» ] - t 1

Int(o) }. Then E' := (;') “(y") ZT621 E'(1) and E'(1) #
¢ if and only if dim A(uT) 2 1, where u, is a generator of
T and ;' = (I'),gr. Let @ = Res(zV{9(wz/zpn ...
A(dzn+1/zn+1)/f), where (zl,z2, e ,zn+1) is a global
coordinate of Ty+ Recall that there exists an element . Vo

in M with Supp(f) c vy + M. If veo" and v + mv(o) €
mvy + M', then the holomorphie m-ple n-form z'™ s
G—inyariant. "Since 'the' quotient map U \ {y} -» U' \ {y'} is
unfamified, there exists the holomorphie m-ple n-form on
X' \ {y'} whose pull back is equal to zYu™, where U' =
n'(U). We denote it by q*zvmm.

Lemma 4.1. Let T be in £,. If v eo* and v + mv(o)
€ mvoy + M', then (n')*(q,z%0™)  has zeros along E'(7) of
order <v,uT> + m<v(c),ut> - m - md(uT), where u is the

T
generator of N' n T.

Here we note that  <v,u > =+ m<V(c),uT> > md(uT) for all

T in E; with E'(7) # ¢, 1if and only if v + mv(og) €
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mInt(rC (f)). Hence as a generalization of [5, Theorem 2.2], we
obtain the following theorem, - by the subsequent two

propositions.

Theorem 4.2. Assume that f is non-degenerate and that
(X',y') is isolated. Then
Sp(X'sy') = #{ veo  aM Il v+ mv(c) € (mvy + M') o mr_(f) }
- #{ v e of AMI v +mvi(o) € ((m-1l)vy + M) n (m-1)r_(f) 3,

where TI'_(f) = o \ Int(I',(f)).

Proposition 4.3. Let xt : (X,E) -~ (X,y) be a good
resolution of  (X,y). If x*(hxog-0™ € BY(X,0(mK+(m-1)E))
for a holomorphic function h on a neighbofhood U of y in’
Y, then there exists a holomorphiec funection h' on U such

that hix,y = hixnu and that mv(o) + Supp(h') c mInt(I (f)).

Proposition 4.4. Let U be a neighborhood of y in Y
which is invariant under the action of G and let h be a
holomorphiec function on u. Assume thaf there exists an

element v' in M such - that

e2n/—]<v'

. k3
€ 1xqu) Mixpu

’u>hanU for each g = [u] in G. Then there exists
a holomorphic funetion h' on U such - that anU = hIXnU’
that Supp(h') < Supp(h) and that g*h' = e 2IV/IKV , Wy gy

each g = [u] in G.
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Corollary 4.5. Assume that f is- non-degenerate and that
(X',y") is ‘isolated. Then (X',y') is purely elliptie, i.e.,
sm(X',y') =‘1 for all positive integers m, if and only if
Supp(f) ¢ v(o) + M and v(o) € T(f). Moreover, under the
above condition, (X',y') is pufely elliptie of (0,i)-type for
i = 1 through n - 1 ( resp. (0,0)-type ), if and only if
dim A =1 + 1 ( resp. 0 or 1 ), where A is the face of ree)

with v(oc) € Int(A).

§5 Examples.

1. Let n = 2, let {ul,uz,uB} be a basis of N and let

{vl,v2,v3} be the basis of M dual to {ul,uz,u3}. Let o

Rzoul + Rgo“z + Rg0u3, let M' = { veM|I <v,%(u1+u2+u3)> €
V.
Z} and let f = Z1292%2q * z? + zg + zg, where zy = 2 ! for i

= 1, 2, 3.  Then f is non-degenerate and Supp(f) ¢
(vy+vg+vg) + M'. Since v(g) = vy + vy + Vg is a vertex of
reey, (X',y") is purely elliptic of (0,0) type, i.e., (X',y")
is a cusp singularity. Let L be the set of the faces of the
cones  Ryoui * RyoUi+r * Ryotisps Ryouy * Ryt + Ryotysy and
Rgoti + Rg0t1+1 + Rgos for i =1, 2, 3, where Uy = uy, t4 =
tl, S = u; * ug + Uy and ti = s + 5“1’ Then T 1is a

subdivision of TI*(f) satisfying the condition of Proposition
3.2, Let E; = E'(Rgoti) and let Ey = E'(R;Os). Then we

easily see that Ey = ¢, that E; are rational curves with E%
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= -7 and that E;Ey = EgEg = EgE; = 1.

2. Assumek that n is an evén number; Let {el,ez,
ces s€pL 1) be a ‘basis of N = Z™1  and 1let {dy,d,,
cee ’dn+1} be the basis of M dual to - {el,ez, ces ,en+1}.
Let . o = Ryou; * Rypug * «++ + RypUpiqs where u; = e; + en;l
for 1 = 1 through n and u,,.y €y ~ €9 — ... — e+ ep.g.
Then each n-dimensional face of o] is non-singular with
respect to N and o* is generated by Vi §2, .++. and Vp+1:
where Vpypy = -~ 4y -~ dg - ... = dy o+ dy,y and vy = (n+l)d; ¢+
Vh+l for i = 1 through n. Let N" = N + ﬁ-%r(e1 teg v ol
en+1)z and let M’ ¥ { v‘e M | <v,u> ¢ Z for all u € N' }.
Then N n Rt = N' n Rt for all n-dimensional faces T of
O. Let f = zV1 + zv2 + ee.  F IZVN+1. Then f is
non-degenerate, Supp(f) c v, + M’ and  v(g) d,,q1 € TI(f).
Hence (X',y") is isolated, by Proposition 3.4. Since k(v1
- v(o)) € M for k =1 through n and (n+1)(v1 - v{(og)) "€
M', we have 8m(X’,y’) = 1 or 0, accordingly m 1is a multiple
of n + 1 or not, by Theorem 4.2.
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