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This note aims at giving a generalization of classical Morse inequalities for Betti
numbers of compact manifolds. In this paper, we deal with cohomologies groups with co-
efficients in R-constructible pure sheaves instead and encounter the tight relation between
Morse theory and Microlocal Analysis of Sheaves. See Hellfer-Sjostrand[H-Sj1,2] for
another approach to the theory via microlocal analysis and also Goresky-MacPherson[G-
McP] who introduced the "stratified Morse theory". The authors were attracted to this
problem through understanding the beuatiful papers[K1,2] due to M. Kashiwara. In fact
all ideas can be traced to the papers above. But the authors consider it worthy to write
it down explicitly to attract many people to the microlocal point of view, which is now

found not only in the classical microlocal analysis of partial differential equations.

1. Statement of the Main Theorem

Let X be a real analytic manifold, k£ a commutative field of characteristic 0, and let
D} _.(X) denote the derived category of the category of sheaves of k vector spaces on
X with R-constructible cohomologies. (cf. [K3] )

Let FF € ob(Dﬁ_c(X )). Then we denote by SS(F) its microsupport, which is a
R, — comnic closed subset in 7% X . Refer to [KS] for all about SS(F'). Since we assume

that F' is R-constructible , SS( F) is a Lagrangean subvariety in 7% X. We set
(D A =8S(F).

Moreoverlet ¢ : X — R be areal valued C? function on X, and put

2 As = {(z,dd(z)) €T"X; s € X }.
We suppose :

(3) {z € supp(F); ¢(z) < t}is compact foranyt € R,
(4) A¢OA =A¢nA’f€g ={p1""':pN}7
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(5 A4 and A, intersect transversally at each point Di

(6)
F is pure at each p; with multiplicity m; and shift d; along A in the sense of Ch. 7 of [KS]. |}

Recall that (6) is equivalent to
7 RT(4(2)24(z0)(F)z = k™[ 8']

where z; = w(p;),® : T*X — X is a natural projection and

1

. 1
(8) & =di— Fdim X — =7(Xo(pi), Aa(pi), Ap(pi)).

See chapter 7 of [KS] for the definition of Maslov index 7(-, -, -).
Let Mod/ (k) denote the abelian category of finite dimensional vector spaces, and

DY Modf (k)) its derived category with bounded cohomologies. For G € ob( DY(Mod?f (k))) }

we set
(9) b(G) = dim H{(@), (&) = {b(®) }iez,
(10) B = (=)' ) (=) b(&),
Jj<i
(11) b5 (G) = D (=) b;(B).
J

As is shown in {K1] and [KS], we have
RT(X,F) € ob( DY Modf(k))).
Thus we set
(12) bh(X,F) = b(RT(X,F)) = dim H(X,F) < +o0

and define b} (X, F') and b% (X, F) as in (10) and (11).
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Moreover we set

(13) m= ) mi, n = (=) (=) ny
&'=] i<t
and
(14) Moo = Y (=),
J

Then we have
Theorem 1. (a generalized Morse inequality.)

Foranyl € Z , we have

(15) [(X,F) < nf.

2. Proof of the main theorem

In order to prove the theorem, we note

Lemma. Let G,G',G" € ob(D*(Mod”(k))). Then we have
i (G5 = *(Q)IJ],
i "(G'oG) = (@) @b (GM.

Moreover if we have a distinguished triangle
— G — G — " —,

then
i B5(@) = b5 (G") + b (G"),
w. b{(G) < b{(G') + bi(G") foranyle Z.
(proof) i) and ii) are easy, and iii) is classical. Thus we prove only iv). We may
assume that G, G’ and G" are concentrated in degree > 0. Then we have a long exact

sequence
0 — HYG) — HYG) — H(G")
— HY(G) —_ ...
— HYG) — HYG®) —BYG") — o0,

3



179

where
(16) BY(G" = Im(H(GQ) — HYG")
Then setting

(G = dim B(G") (j =1)
and

bi(G" =bi(GM (F< D),

we get:
(17) Bi(G) = B{(G) + (=)' (=)Bi(GY.

i<l

Since b(G") < dim HY(G"), the proof follows. (g.e.d.)

[proof of Theorem 1] We set

Q = {z; ¢(z) < t} and Z; = {z; $(z) < t}.

We write

¢({:I:1, ...,:EN}) = {tl,...,t[,}

with —oco =t < t1 < ... <1t <tr+1 = +oo. WealsoputQ; = Q and Z; = Z;,.

As is shown in 5 of [K1], we have the isomorphism
HYQj11; F) ~ HHYQ, F) (¢ <t < tjaa).
By taking the inductive limit of the right hand side, we derive
HY Q13 F) ~ HYZ;, F).
Then we can see that

dim H¥(X,F) = Y {dim H*(Z;,F) — dim H*(Q;, P},
1<j<L
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which implies that

HX,F) = ) {62, F) — bj(Q;,F)}.
1<<L

Here we set
1(Z;, F) = bj(RT(Z;,F))
and

b (Q;, F) = bj(RT (L, F)).
On the other hand, we have a distinguished triangle
— RT(Z;\ Q;,RTx\q(F)) — RI(Z;,F) — RT(Q;,F) —,
from which we get by the lemma above
1(Z;, F) — bj(Q;,F) < bj(RT(Z;\ Q;,RTx\q,(F))).
Hence we have

(18) H(X,F) < Y B(RT(Z;\Q),RTx\q,(F))).
1<j<L

Since

RT = RT
x\@, (F) |Zj\gj ez (F) | 0

we find by the definition of microsupport that

supp(RI'x\q, (F) ‘z,\n,) C m(AsNSS(F)).

This leads us to the quasi-isomorphism
(19)  RI(Z;\Q;,RTxg,(F) |Z\Q) = @D RIme(Pa.
F\YF

{5 ¢(z)=t; }
Hence we have the equalities

(20) > B(RT(Z;\Q,RTx\q,(F)) = Y mi = m.
1<;<L &=l

This implies
bi(X,F) <nf

if we see the inequlities (18).
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3. Example

Let X be C™ with coordinates z = (z1,...,2,) and set

S={z€X; ), 74 =0}
1<j<n
We take F' € ob( D% _.(X)) satisfying that
A = SS(F) = T4 X U TjyX U T5X.

Moreover we put

Ao = Tg X, M = Ty X, Az = TxX

and assume that for any j

F is pure along A; with multiplicity m; and shift d;.
We set

#(2) = |z—af? witha =(1,2Vv-1,0,...,0).
Then we have

AsNAo = {po1 = (20,1;dé(20,1)), Po2 = (7025 dd(Z0,2)) },
AsN A1 = {p1 = (0;dp(0N)},
AgNA2 = {p2 =(a;0)}.

Here

To1 = (”71,%\/3,0,...,0) and g, = (3,3\/3,0,...,0>.
Moreover about the Maslov index, we can show that
(Mo (P0,1), Mo (P0,1), 2¢(p0,1)) =2,
T(Mo(p0,2), Mo (P0,2), Xe(P02)) =2n—2,
7(Mo(p,1), 2, (p1), 2¢(P1)) =0,

70 (p2), Mg (P2), M(P2)) = 2.
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