The asymptotic behaviour of singular solutions to the solutions of linear partial differential equations in the complex domain

Sunao ŌUCHI (Sophia Univ. Tokyo) (大内心)

§ 1. Let $L(z,\partial_z)$ be a linear partial differential operator with the order $m\geq 1$, whose coefficients are holomorphic functions in a neighbourhood $\Omega=\{z\in\mathbb{C}^{n+1};\ |z|\leq R\}$ of z=0 in \mathbb{C}^{n+1} , where $z=(z_0,z_1,\ldots,z_n)=(z_0,z')$ and $|z|=\max_{0\leq i\leq n}|z_i|$. Let K be a nonsingular hypersurface through z=0. For the simplicity we choose the coordinate so that K= $\{z_0=0\}$. In the following we consider the equation $L(z,\partial_z)u(z)=f(z)$,

where u(z) may have singularities on K, and f(z) is holomorphic in Ω . We introduce some function spaces and the definitions. $\Omega(a,b)$ is the set defined by $\Omega(a,b)=\{z;\ a\langle \arg\ z_0\langle b;\ |z|\leq R\}\ and\ \Omega'=\Omega\cap\{z_0=0\}$. Firstly we define the function spaces:

 $\mathfrak{S}(\Omega)$ ={f(z); f(z) is holomorphic in Ω }, $\mathfrak{S}(\Omega')$ ={f(z'); f(z') is holomorphic in Ω' } and $\mathfrak{S}(\Omega(a,b))$ ={f(z); f(z) is holomorphic in $\Omega(a,b)$ }. If b-a>2 π , $\mathfrak{S}(\Omega(a,b))$ contains multi-valued functions. We define other function spaces.

Definition 1.1. $\mathfrak{F}_{(\gamma)}(\Omega(a,b)) = \{f(z) \in \mathfrak{F}(\Omega(a,b)); \text{ for any a',b' with a a a' (b' (b and ϵ)0, there is a $C_{\epsilon,a',b'}$, such that$

(1.2) $|f(z)| \le C_{\varepsilon,a',b}, \exp(\varepsilon |z_0|^{-\gamma}) \quad \text{in } \Omega(a',b').$

Definition 1.2. $f(z) \in \widetilde{\mathfrak{G}}(\Omega(a,b))$ is said to have the γ -asymptotic expansion in $\Omega(a,b)$, if for any N

(1.3) $|f(z) - \sum_{k=0}^{N-1} a_k(z')(z_0)^k | \leq AB^N \Gamma(N/\gamma+1) |z_0|^N$ holds in $\Omega(a',b')$ for any a',b' with a < a' < b' < b, where $a_k(z') \in \mathfrak{S}(\Omega')$

and A and B are some constants. The totality of functions with the γ -asymptotic expansions is denoted by $\mathrm{Asy}_{\{\gamma\}}(\Omega(a,b))$.

Secondly we define characteristic indices ([1],[2]): We write $L(z,\partial_{_{_{2}}}) \ \ \text{in the following form.}$

(1.3)
$$L(z,\partial_z) = \sum_{k=0}^{m} L_k(z,\partial_z),$$

$$L_k(z,\partial_z) = \sum_{\ell=s}^{k} A_{k,\ell}(z,\partial')(\partial_0)^{k-\ell}.$$

 $L_k(z,\partial_z)$ is the homogenous part of the degree k. We expand $A_{k,\ell}(z,\partial')$ at $z_0=0$, $A_{k,\ell}(z,\partial')=(z_0)^j a_{k,\ell}(z,\partial')$, $j=j(k,\ell)$, where if $A_{k,\ell}(z,\partial')\not\equiv 0$, $a_{k,\ell}(0,z',\partial')\not\equiv 0$. Thus we have

(1.4)
$$L_{\mathbf{k}}(z,\partial_{z}) = \sum_{\ell=s_{\mathbf{k}}}^{\mathbf{k}} (z_{0})^{j} a_{\mathbf{k},\ell}(z,\partial') (\partial_{0})^{k-\ell},$$
Define

(1.5)
$$d_{k}=\min\{\ell+j(k,\ell)'; A_{k,\ell}(z,\partial')|_{z_{0}=0}\not\equiv 0\}.$$

Put $A=\{(k,d_k)\in\mathbb{R}^2;0\leq k\leq m,\ d_k^{++\infty}\}$. Let \hat{A} be the convex hull of A, Σ be the lower convex part of the boundary of \hat{A} and Δ be the set of vertices of Σ . Δ consists of finite points: $\Delta=\{(k_i,d_k);i=1,2,...p'\}$, $m=k_0>k_1>...>k_p,\geq 0$. We put

(1.6)
$$\sigma_{i} = \max\{1, (d_{k_{i-1}} - d_{k_{i}})/(k_{i-1} - k_{i})\}.$$

Then there is a p∈N such that $\sigma_1 > \sigma_2 > \dots > \sigma_p = 1$. We call $\{\sigma_i\}$ (1≤i≤p) characteristic indices.

§ 2. By using the definition in § 1 we can state Theorem:

Theorem. Assume

(a)
$$\sigma_1 > 1$$
, (b) $d_{k_{p-1}} = 0$ and (c) $d_{k_i} = s_{k_i} (0 \le i \le p-2)$.

Let $u(z) \in \mathfrak{S}(\Omega(a,b))$ (b-a) π) be a solution of $L(z,\partial_z)u(z) = f(z) \in \mathfrak{S}(\Omega)$. If $u(z) \in \mathfrak{S}_{(\gamma)}(\Omega(a,b))$ ($\gamma = \sigma_{p-1} - 1$), then $u(z) \in Asy_{\{\gamma\}}(\Omega(a,b))$, that is, u(z) has the γ -asymptotic expansions in $\Omega(a,b)$.

This is a generalization of the theorem in [3].

References

- [1] S.OUCHI: Characteristic indices and subcharacteristic indices for linear partial differential operators. Proc. Japan Acad. 57 (1981), 481-484.
- [2] S.OUCHI: Index, localization and classification of characteristic surfaces for linear partial differential operators, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), 189-192.

[3] S.OUCHI: Vanishing of singularities of solutions and an integral representation of singular solutions of linear partial differential equations, Calcul d'operateurs et fronts d'ondes (ed. by J.Vaillant), Hermann, Paris (1988) 168-177.