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PROPAGATION OF ANALYTIC SINGULARITIES

UP TO NON SMOOTH BOUNDARIES

Pierre SCHAPIRA

.1.- Propagation for sheaves

We shall follow the notations of [K-S 1]; In particular if

X 1is a realimanifold, we denote by Db(x) the derived catego-
ry of the category of complexes of sheaves with bounded coho-
mology, and if F ¢ Db(X) we denote by SS(F) its micro-
support. Recall that SS(F) 1s a closed conic involutive
subset of T*X . We shall also make use of the bifunctor yhom,
from Db(x)0 x Db(x) to Db(T*X), a slight generalization of

the functor of Sato's microlocalization..

Let h be a real Cz—function defined on an 6pen subset U of
™x ' Hh its hamiltonian vectir field. If (x;E() 4is.a system

of homogeneous symplectic coordinates, with mx= ;ZEj dxj, then :
, J

_ 3h 3 _ 3h d
(1.1) By, = ’]3 (ae;j %, | oxy aaj)

If p e U we denote by b; the positive half integral curve

of H 1issued at p . We define similarly b; and bp =

'b; U b; . We also set for * = 0,+,- :
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(1.2) vV, = {peU,;hip) >0 (% =4) or

h(p) <0 (% = =) or h(p) =0 (» = 0)}.
The following result is easily deduced from | [K-S 1, Th. 5.2.1].

Theorem 1.1. Let F and G belong to Db(X) with
ss(G) N U ev_, SS(F)ﬂUcV+.Let 3 e 2 and let

u be a section bf Hj(nhom(G,F)). on U . Then

p € supp(u) implies b; < supp(u).

(Remark that supp(u) 1s contained in Vo) .

2.- Wave front sets at the boundary‘%[S 1]

let M be a real analytic manifold of -dimension.n , X a

complexification of M , 1 an open subset.of M.. We intro-

duce :
(2.1) CQIX = phom(Z, ,&,) © QM/x[n]
where QM/X is the relative orientation. sheaf.

Let w denote the projection T*X —> X , and let

= RT), (&) © w, v [n] denote the sheaf of Sato's hyperfunc-

By oM
tions on M . There is a natural isomorphism: :

B ) .

n
(2.2) o : FQ(BM) —_— QX

*

Hence a hyperfunction u on I defines a section:a(u) of

HO(CQlX) all over T*X . We set':

(2.3) SSQ(u) = gupp(a(u)) .

2
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Since BO(C is supported by the conormal boundle T;x '

nlx)
Ssn(u) is a closed conic subset of T;x . It coIncides with
the classical analytical wave front set above, 1., but it may

be strictly larger that its closure 'in T;X (cf. [5 1]).

Now let P be a differential operator éefined on X , and
assume for simplicity that-the principal ,symbol o(P) never
vanishes identically. Let di denote:the sheaf of holomorphic
solutions of the equation Pf = 0 . Replacing 6 ?y 6§ in

the preceding discussion, we define :

(2.4) CEIX = pham(Z, ) © oy [

P
Let BM

equation Pu = 0 . There is a natural isomorphism :

denote the. sheaf of hyperfunction solutions of the

(2.5) a rn(nﬁ) L v

® )
* alx’ °

If u 1s a hyperfunction on 1 solution of the equation

Pu = 0 , we set :

(2.6) ‘ Ssg(u) = supp(a(u)) .
Remark that
(2.7) Ssg(u) < §5(x,) N char (p)

(where char(P) = o(P)'l(O)), but in general Ssg(u) is no

more contained in ?;X .

I don't know if Ssg(u) n T;x = SSn(u) , but this is true when

M\ Q2 4is convex (locally, up to analytic diffeomorphisms).

Of course the preceding discussion extends to solutions of

general systems of differential equations (cf. [S:1]) .

3
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Now assume 3f] = N is a real analytic hypersurface and let Y
be a complexification of N in X . Assume P of order m,
Y is pon characteristic for P , and a normal vector fleld to

N in M 1is given, so that the induced system (Dx/DxP)Y is

isomorphic to D? 7 (as -usual, DX ‘denotes the ring of diffe-
rential operators).

Let p and W denote the natural -maps associated to Y —> X
(2.8) ™y < Y x ¥ —> o¥x

X 1}

Let u e T(N ;Bﬁ) be a hyperfunction on 2 solution of
Pu=0 , and let b(u) € T'(N ;B:) ‘be its traces. Recall  (cf.

[s1]), [s2]) :

Theorem 2.1. In the preceding situation, one has :

1..P
Ssn(u) .

In other words, the analytic wave front set of b(u) is exactly
the projection of Ssg(u) . Remark that if char(P) N SS(ZQ) is
contained in T;X ' Ssg(u) may be replaced by .SSn(u) in

Theorem 2.1.

Remark moreover that b(u) does not make sense when 23 -is

not smooth, but Ssn(u) always does.

3.~ Transversal propagation for .non smooth- boundaries

Let M be a real analytic manifold, X a complexification

of M,  an open subset of M .

4
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If x ¢ M, the cone N_(0) is defined in [K-5 1] . Recall

that Nx(ﬂ) is an open convex ‘cone of T M., and 8 eNx(m '
8 ¥ 0 -implies. that there exists a convex open cone Yy (in a
system of local.coordinates around x) such that 0 ¢ y and

O+yc.

We shall have to consider the real underlying structure of ™x.

Recall that if Wy is the complex canonical 1-form on *x '

this real symplectic structure in defined by - 2Re Wy

If h is a real Cz-function on 1T%x , we denote by Hm

h its

real Hamiltonian vector field.

If (z.; ) 1s a system .of homogeneous: holomorphic symplectic

coordinates on T*X . such that o, =1L Cj dz:s ~and z=x+1y,

X 3

r =E( + in , then

(3.1) gER-p i o Gh 8 b 3 Bh 3,

an 3nj 3nj 3Yj

Now let P be a differential operator-on X , u a hyperfunc-
tion on 9 , solution of the equation Pu =0 . Let p ¢ T;X '

X, = m(p) .

Theorem 3.1. Assume :

~a) Im O(P), v =0
Y

R
Let b; be the positive half integral curve of Hrmg(p).

: +
issued at p . Then p € SSQ.(u) implies pr SSQ‘(u).

Remanf Hol [er)
2 n® - vé_(‘BRet{(r\'_)‘ ). ’bRo_t:(C(‘)l
e g A Y

IS
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Proof
We may assume X is open in ¢™ and. M =X N R". Then there

exists a convex open cone Y such that @ + vy 2 (in a nei-

R

ghborhood of xo) and “(HImo(P)

(p)) € Y . This last condition

implies :

<dy Im o(P) (x,4n),E> 2 c|E]

for some ¢ > 0 , and all £ ¢ YO (yo is the polar set to v).
Hence :
(3.2) Im o(P)(x , £+ 4n) < 0

for (x, £ + in) in a neighborhood of p , E e Yoa ;, Where

oa o
Y ==Y .

Since 2 + y = 2 , we have (cf. [K-S 1]) :

¥ oa:
SS(ZQ) c TMX + ¥ .

Thus :

(3.3) In 0(P) < 0 on SS(T)

in a neighborhood of p .

Now let u e I'(Q ; BM) be a solution of the equation Pu=0 .
Then u defines a section a(u) € I‘(‘I‘*X : Hn(uhom(un,ei)) and

peS%7m) implies p € Ssg(u) , that is, 'p € supp(a(u)).

Since SS(6§) = char(P) < {Im o(P) = 0} , we may apply Theorem

1.1 and we obtailn :

+ P
bp c Ssn(u) .

-1

But b;‘\{p} is contained in 7w 1(Q) and

P _ - . +
SSn(u) = SSQ(u) = SSM(u) above 0 . Thus, bp c SSQ(u) R

b

which is the desired result.
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4.,- Diffraction

We keep the notationsof §3, but we assume :

(4.1) N={xeM; x, >0}

1

(4.2) o(p) =t - g(z , t')

‘where z = (21.2') ' L = (Clyt') .

Moreover we assume ¢

(4.3) a) 33— g<o at p or b)) =—/mg=0.
*

Theorem 4.1. Under these hypotheses, 1f p ¢ Ssn(u) then b;

or b; is contained in SSg(u) , in a neighborhood of p.

The idea of the proof is the following.

If"t;1 # 0 at p, the result is a particular case of Theorem
3.1 . Otherwise define for #* = 0,1,- :

0. = {z € X ; x

» 1>01Y'=01Y1€R(¥=0)

or vy, >0 (» =+) or Y, 0 (¢ = =)}

Thus Im o(P) 1is negative (resp. positive) on SS(ZQ+)
(resp. SS(ZQ_)) in a neighborhood of p. Then one can apply
Theorem 1.1 to uhomczn‘ ,Gi) . * =+ or - , and one obtains

that if ul has campact support, then u ¢ Hnil(uhom(zﬂ ,O§»
b o

P
and it is not difficult to conclude using the holomorphic para
meter z, (cf. [52]) .

Remark that Theorem 4.1 has been first obtained by Kataoka [Ka]

(under hypothesis (4.3) a)) then refined by G. Lebeau [Le].
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An application : Let (x1,...,xn) be, the coordinates on

n

IR", and let 401 andm‘Q2 1be two open half spaces, Set

=0, U 92 and let u be a hyperfunction on 1 . One can

1
easlly prove :

(4.4) sg(w) = 85 (u) U'Ssnz(u) .
Now assume 0, = IRX ai (1 = 1}2).-and u satisfies the
wave equation Pu = 0 , where P = Df —jgi Dif .

Applying Theorem 4.1 we'get that p s‘SSQ(u) ==> b; or
b; is contained in S (u), where b; and b; are the

half bicharacteristic 'curves of...Im o(P).

Problem : to extend this result to the case where

IR™Q = RxA, and A is any convex closed subset of r*7!
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