<table>
<thead>
<tr>
<th>Title</th>
<th>K-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES (General Topology and around it)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tanaka, Yoshio</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1991, 758: 44-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82175</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
k-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES

東京学芸大学 田中祥雄 (Yoshio Tanaka)

We assume that all spaces are T_2. First of all, we shall recall some definitions.

Let X be a space, and let C be a cover of X. Then X is determined by C [3] (or X has the weak topology with respect to C in the usual sense), if $F \subset X$ is closed in X if and only if $F \cap C$ is closed in C for every $C \in C$. Here, we can replace "closed" by "open". Every space is determined by an open cover. X is dominated by C, if the union of any subcollection C' of C is closed in X, and the union is determined by C'.

Let X be a space, and \mathcal{P} be a cover of X. Then \mathcal{P} is a k-network, if whenever $K \subset U$ with K compact and U open in X, then $K \subset U \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. If we replace "compact" by "single point" then such a cover is called "net (or network)". k-networks have played a role in K_σ-spaces (i.e., regular spaces with a countable k-network) and K_σ-spaces (i.e., regular spaces with a σ-locally finite k-network).

Let $\mathcal{A} = \{A_\alpha; \alpha \in A\}$ be a collection of subsets of a space X. Then \mathcal{A} is closure-preserving if $\overline{\bigcup \{A_\alpha; \alpha \in B\}} = \bigcup \overline{\{A_\alpha; \alpha \in B\}}$ for any $B \subset A$. \mathcal{A} is hereditarily closure-preserving if $\overline{\bigcup \{B_\alpha; \alpha \in B\}} = \bigcup \overline{\{B_\alpha; \alpha \in B\}}$ whenever $B \subset A$ and $B_\alpha \subset A_\alpha$ for each $\alpha \in B$. Every space is dominated by a hereditarily closure-preserving closed cover.
A σ-hereditarily closure-preserving collection is the union of countably many hereditarily closure-preserving collections. We shall use " σ-CP (resp. σ-HCP) " instead of " σ-closure-preserving (resp. σ-hereditarily closure-preserving) ".

\mathcal{A} is point-finite (resp. point-countable) if every $x \in X$ is in at most finitely (resp. countably) many element of \mathcal{A}.

The concept of CW-complexes due to J. H. Whitehead [5] is well-known. A space X is a CW-complex if it is a complex with cells $\{e_\lambda; \lambda\}$ satisfying (a) and (b) below.

(a) Each cell e_λ is contained in a finite subcomplex of X.

(b) X is determined by the closed cover $\{\overline{e}_\lambda; \lambda\}$ of X.

We note that every \overline{e}_λ is not a subcomplex.

As is well-known, every CW-complex X is dominated by the cover of all finite subcomplexes of X, hence X is dominated by a cover of compact metric subsets of X.

Let $\{e_\lambda; \lambda\}$ be the cells of a CW-complex X. We shall say that $\{e_\lambda; \lambda\}$ is (σ)-locally finite; (σ)-HCP, etc., if so is respectively the collection $\{e_\lambda; \lambda\}$ of subsets of X. We note that the collection $\{e_\lambda; \lambda\}$ is (σ)-locally finite; (σ)-CP; (σ)-HCP if and only if so is respectively $\{\overline{e}_\lambda; \lambda\}$.

-2-
Results. Let X be a CW-complex with cells $\{e_\lambda; \lambda\}$. Then the following hold. (a) is well-known, and (b) is due to [2].

(a) X is a paracompact, and σ-space (i.e., X has a σ-locally finite net).

(b) X is an M_1-space (in the sense of [2]), hence X has a σ-CP k-network.

(c) X has a point-countable k-network.

However, every CW-complex is not a metric space (not even a Fréchet space, nor an \mathcal{H}-space). We have the following characterizations of X. Recall that a space is Fréchet, if whenever $x \in \overline{A}$, there exists a sequence in A converging to the point x. (A) is well-known, and (B) is due to [4].

(A) X is a metric space if and only if $\{e_\lambda; \lambda\}$ is locally finite.

(B) X is a Fréchet space if and only if $\{e_\lambda; \lambda\}$ is HCP.

(C) X is an \mathcal{H}-space if and only if $\{e_\lambda; \lambda\}$ is σ-locally finite.

(D) X has a σ-HCP k-network if and only if $\{e_\lambda; \lambda\}$ is σ-HCP.

(E) X is a symmetric space (in the sense of [1]) if and only if $\{\overline{e}_\lambda; \lambda\}$ is point-finite.

(F) X has a point-countable closed k-network if and only if $\{\overline{e}_\lambda; \lambda\}$ is point-countable.
Remark. Let X be a CW-complex with cells $\{e_\lambda; \lambda\}$.

(1) The property " $\{\overline{e}_\lambda; \lambda\}$ is HCP " need not imply that X has a point-countable closed k-network, and not imply that $\{\overline{e}_\lambda; \lambda\}$ is point-countable.

(2) The property " $\{e_\lambda; \lambda\}$ is CP " need not imply that X has a CP or σ-HCP k-network, and not imply that $\{e_\lambda; \lambda\}$ is σ-HCP.

(3) The property " X is a symmetric space with a σ-CP k-network " need not imply that X has a σ-HCP k-network, and not imply that $\{e_\lambda; \lambda\}$ is σ-CP.

Question. Let X be a CW-complex with cells $\{e_\lambda; \lambda\}$. Characterize " $\{e_\lambda; \lambda\}$ is CP (or σ-CP) " by means of a nice topological property of X.

Finally, concerning spaces dominated by compact metric subsets, similarly to CW-complexes the following analogue holds.

Let X be a space dominated by a cover $\{X_\mu; \mu\}$ with each E_μ compact metric. Here, $E_\emptyset = X_\emptyset$, $E_\lambda = X_\lambda = \cup \{X_\mu; \mu < \lambda\}$. Then it is possible to replace $\{e_\lambda; \lambda\}$ (or $\{\overline{e}_\lambda; \lambda\}$) by $\{E_\lambda; \lambda\}$ (or $\{\overline{E}_\lambda; \lambda\}$) in (A) \sim (F).
References

