<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>k-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES (General Topology and around it)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Tanaka, Yoshio</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1991), 758: 44-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82175</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
k-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES

東京学芸大学 田中祥雄 (Yoshio Tanaka)

We assume that all spaces are T_2. First of all, we shall recall some definitions.

Let X be a space, and let C be a cover of X. Then X is determined by C [3] (or X has the weak topology with respect to C in the usual sense), if $F \subseteq X$ is closed in X if and only if $F \cap C$ is closed in C for every $C \in C$. Here, we can replace "closed" by "open". Every space is determined by an open cover. X is dominated by C, if the union of any subcollection C' of C is closed in X, and the union is determined by C'.

Let X be a space, and P be a cover of X. Then P is a k-network, if whenever $K \subseteq \cup$ with K compact and \cup open in X, then $K \subseteq \cup P' \subseteq \cup$ for some finite $P' \subseteq P$. If we replace " compact " by " single point " then such a cover is called " net (or network) ". k-networks have played a role in K_0-spaces (i.e., regular spaces with a countable k-network) and K-spaces (i.e., regular spaces with a σ-locally finite k-network).

Let $A = \{A_\alpha; \alpha \in A\}$ be a collection of subsets of a space X. Then A is closure-preserving if $\cup \{A_\alpha; \alpha \in B\} = \cup \{\overline{A_\alpha}; \alpha \in B\}$ for any $B \subseteq A$. A is hereditarily closure-preserving if $\overline{\cup \{B_\alpha; \alpha \in B\}} = \cup \{\overline{B_\alpha}; \alpha \in B\}$ whenever $B \subseteq A$ and $B_\alpha \subseteq A_\alpha$ for each $\alpha \in B$. Every space is dominated by a hereditarily closure-preserving closed cover.
A \(\sigma \)-hereditarily closure-preserving collection is the union of countably many hereditarily closure-preserving collections. We shall use " \(\sigma \)-CP (resp. \(\sigma \)-HCP) " instead of " \(\sigma \)-closure-preserving (resp. \(\sigma \)-hereditarily closure-preserving) ".

\(\mathfrak{A} \) is point-finite (resp. point-countable) if every \(x \in X \) is in at most finitely (resp. countably) many element of \(\mathfrak{A} \).

The concept of CW-complexes due to J. H. Whitehead [5] is well-known. A space \(X \) is a CW-complex if it is a complex with cells \(\{ e_\lambda ; \lambda \} \) satisfying (a) and (b) below.

(a) Each cell \(e_\lambda \) is contained in a finite subcomplex of \(X \).

(b) \(X \) is determined by the closed cover \(\{ \overline{e}_\lambda ; \lambda \} \) of \(X \).

We note that every \(\overline{e}_\lambda \) is not a subcomplex.

As is well-known, every CW-complex \(X \) is dominated by the cover of all finite subcomplexes of \(X \), hence \(X \) is dominated by a cover of compact metric subsets of \(X \).

Let \(\{ e_\lambda ; \lambda \} \) be the cells of a CW-complex \(X \). We shall say that \(\{ e_\lambda ; \lambda \} \) is (\(\sigma \)-) locally finite; (\(\sigma \)-) HCP, etc., if so is respectively the collection \(\{ e_\lambda ; \lambda \} \) of subsets of \(X \). We note that the collection \(\{ e_\lambda ; \lambda \} \) is (\(\sigma \)-) locally finite; (\(\sigma \)-) CP; (\(\sigma \)-) HCP if and only if so is respectively \(\{ \overline{e}_\lambda ; \lambda \} \).
Results. Let \(X \) be a CW-complex with cells \(\{e_{\lambda}; \lambda \} \). Then the following hold. (a) is well-known, and (b) is due to [2].

(a) \(X \) is a paracompact, and \(\sigma \)-space (i.e., \(X \) has a \(\sigma \)-locally finite net).

(b) \(X \) is an \(M_1 \)-space (in the sense of [2]), hence \(X \) has a \(\sigma \)-CP k-network.

(c) \(X \) has a point-countable k-network.

However, every CW-complex is not a metric space (not even a Fréchet space, nor an \(\mathcal{K} \)-space). We have the following characterizations of \(X \). Recall that a space is Fréchet, if whenever \(x \in \overline{A} \), there exists a sequence in \(A \) converging to the point \(x \). (A) is well-known, and (B) is due to [4].

(A) \(X \) is a metric space if and only if \(\{e_{\lambda}; \lambda \} \) is locally finite.

(B) \(X \) is a Fréchet space if and only if \(\{e_{\lambda}; \lambda \} \) is HCP.

(C) \(X \) is an \(\mathcal{K} \)-space if and only if \(\{e_{\lambda}; \lambda \} \) is \(\sigma \)-locally finite.

(D) \(X \) has a \(\sigma \)-HCP k-network if and only if \(\{e_{\lambda}; \lambda \} \) is \(\sigma \)-HCP.

(E) \(X \) is a symmetric space (in the sense of [1]) if and only if \(\{e_{\lambda}; \lambda \} \) is point-finite.

(F) \(X \) has a point-countable closed k-network if and only if \(\{e_{\lambda}; \lambda \} \) is point-countable.
Remark. Let X be a CW-complex with cells $\{e_\lambda; \lambda \}$.

(1) The property " $\{\overline{e}_\lambda; \lambda \}$ is HCP " need not imply that X has a point-countable closed k-network, and not imply that $\{\overline{e}_\lambda; \lambda \}$ is point-countable.

(2) The property " $\{e_\lambda; \lambda \}$ is CP " need not imply that X has a CP or σ-HCP k-network, and not imply that $\{e_\lambda; \lambda \}$ is σ-HCP.

(3) The property " X is a symmetric space with a σ-CP k-network " need not imply that X has a σ-HCP k-network, and not imply that $\{e_\lambda; \lambda \}$ is σ-CP.

Question. Let X be a CW-complex with cells $\{e_\lambda; \lambda \}$.
Characterize " $\{e_\lambda; \lambda \}$ is CP (or σ-CP) " by means of a nice topological property of X.

Finally, concerning spaces dominated by compact metric subsets, similarly to CW-complexes the following analogue holds.

Let X be a space dominated by a cover $\{X_\mu; \mu \}$ with each E_λ compact metric. Here, $E_\emptyset = X_\emptyset, E_\lambda = X_\lambda \cup \{X_\mu; \mu < \lambda \}$. Then it is possible to replace $\{e_\lambda; \lambda \}$ (or $\{\overline{e}_\lambda; \lambda \}$) by $\{E_\lambda; \lambda \}$ (or $\{\overline{E}_\lambda; \lambda \}$) in (A) \sim (F).
References

