The Ihara zeta functions of algebraic groups

Takashi ICHIKAWA

Department of Mathematics, Faculty of Science,
Kyushu University 33, Fukuoka 812, JAPAN

Introduction

Let G be a connected and reductive algebraic group defined over \mathbb{Q} of hermitian type, and X the bounded symmetric domain induced from the identity component $G(\mathbb{R})_+$ of $G(\mathbb{R})$. Let Γ_0 be a congruence subgroup of $G(\mathbb{Z}) \cap G(\mathbb{R})_+$, and M the Shimura model of X/Γ_0. Langlands’ program [10] to parametrize the set $M(\overline{F}_p) \ (p: \text{a prime on which } M \text{ has good reduction})$ was partially achieved by Kottwitz [9] for the Siegel modular case. In this note, when G has a similitude-symplectic embedding (for the classification of such groups, see Satake [16] and Deligne [4]), we shall construct, without detailed proofs, a canonical bijection of a certain subset of X/Γ_0 to an algebraically defined subset of $M(\overline{F}_p)$. This result can be regarded as a generalization of the result of Ihara [8] on zeta functions of Selberg type (Ihara zeta functions) for congruence subgroups of $PSL_2(\mathbb{Z}[1/p])$.

Following Ihara’s idea, we take a congruence subgroup Γ of $G(\mathbb{Z}[1/p]) \cap G(\mathbb{R})_+$ such that $\Gamma \cap G(\mathbb{Z}) = \Gamma_0$. We call $x \in X$ is a p-ordinary point if there exists a torsion-free stabilizer of x in Γ inducing a p-adic structure on a faithful representation space V of G which is compatible with the Hodge structure on V induced from x (this definition is independent of the choice of V). When G is a similitude-symplectic group, we show that the reduction map induces a canonical bijection of $\{p$-ordinary points of $X\}/\Gamma_0$ to the ordinary locus of $M(\overline{F}_p)$. This is nothing but a reformation of a result of Deligne [2] and the inverse map corresponds to canonical liftings of ordinary abelian varieties. When G has a
similitude-symplectic embedding, we show that the image of this bijection is algebraically defined which follows from that canonical liftings of abelian varieties preserve their deformations.

1 Zeta functions

1.1. Let G be a linear algebraic group defined over \mathbb{Q} which is connected and reductive. For any field K containing \mathbb{Q}, let $G(K)$ denote the group of K-rational points of G, and put $G_K = G \otimes_{\mathbb{Q}} K$. Let $G(\mathbb{R})_+$ denote the identity component of the Lie group $G(\mathbb{R})$, and put $G(\mathbb{Q})_+ = G(\mathbb{Q}) \cap G(\mathbb{R})_+$. We assume that there exists an \mathbb{R}-homomorphism $h : S = R_{\mathbb{C}/\mathbb{R}}(G_{m[\mathbb{C}}) \to G_{\mathbb{R}}$ such that

$$X = \{\text{R-homomorphisms } S \to G_{\mathbb{R}} \text{ conjugate to } h \text{ over } G(\mathbb{R})_+\}$$

is a bounded symmetric domain. Let V be a \mathbb{Q}-vector space of finite dimension, and $\phi : G \to GL(V)$ an injective representation defined over \mathbb{Q}. Let L be a \mathbb{Z}-lattice of V, p a prime number, and put $L[1/p] = L \otimes \mathbb{Z}[1/p]$ which is a $\mathbb{Z}[1/p]$-lattice of V. Let Γ be a congruence subgroup of

$$\phi^{-1}(\text{Aut}(L[1/p]))_+ = \{g \in G(\mathbb{Q})_+ | \phi(g) \in \text{Aut}(L[1/p])\}.$$

One can show that if there exists an integer $n \geq 3$ prime to p such that $\phi(\Gamma) \subset \{g \in \text{Aut}(L[1/p]) | g \equiv 1(n)\}$, then Γ is torsion-free. For each $x \in X$, put $\Gamma_x = \{\gamma \in \Gamma | \gamma(x) = x\}$. Let $h_x : S \to G_{\mathbb{R}}$ denote the homomorphism corresponding to x. Then $\phi_{\mathbb{R}} \circ h_x$ induces a Hodge decomposition

$$V \otimes_{\mathbb{Q}} \mathbb{C} = \oplus_{i,j} V_x^{i,j}$$

such that for any $(z, z') \in S(\mathbb{C}) = \mathbb{C}^x \times \mathbb{C}^x$ and $v \in V_x^{i,j}$, $(\phi_{\mathbb{R}} \circ h_x)((z, z'))(v) = z^i \cdot z'^j \cdot v$. Then for any $\gamma \in \Gamma_x$, $V_x^{i,j}$ is stable under the action of $\phi(\gamma)_\mathbb{C} = \phi(\gamma) \otimes_{\mathbb{Q}} \mathbb{C}$. Fix an isomorphism $\iota : \mathbb{C} \simarrow \overline{\mathbb{Q}}_{\mathbb{p}}$, and let Γ'_x be the set which consists of $\gamma \in \Gamma_x$ such that there exists a rational number $d(\gamma)$ satisfying $\text{ord}_p(\iota(e)) = d(\gamma) \cdot i$ for any eigenvalue e of $\phi(\gamma)_\mathbb{C}$ on each $V_x^{i,j}$.

2
1.2. Proposition. For any $x \in X$, Γ'_x is independent of ϕ, and for any $x \in X$ and $\gamma \in \Gamma'_x$, $d(\gamma)$ is independent of ϕ.

1.3. Proposition. Let Z be the centralizer of $h(S(R)) = h(C^x)$ in $G(R)$, and assume that $Z/h(R^x)$ is compact. Then for any $x \in X$ and $\gamma \in \Gamma'_x$, $d(\gamma) \neq 0$ if and only if γ is torsion-free.

1.4. Corollary. Assume that there exist a positive integer g and an injective \mathbb{Q}-homomorphism of G into the similitude-symplectic algebraic group of size $2g$ which induces a map of X into the Siegel upper half space of degree g. Then for any $x \in X$ and $\gamma \in \Gamma'_x$, $d(\gamma)$ is independent of ϕ.

1.5. Proposition. Let $X^{\text{ord}}(\Gamma)$ be the set consisting of $x \in X$ such that there exists $\gamma \in \Gamma'_x$ with $d(\gamma) \neq 0$. Then $X^{\text{ord}}(\Gamma)$ depends only on the \mathbb{Q}-structure of G, i.e., it is independent of the choice of Γ.

1.6. Remark. Propositions 1.2 and 1.5 follow the fact that any representation $G \to GL(W)$ is a direct summand of

$$G \to GL(\oplus_l (V^{\Phi m_l} \otimes (V^{*})^{\Phi n_l}))$$

for some m_l and n_l ([5], Proposition 3.1). Proposition 1.3 follows from the product formula for eigenvalues of $\phi(\gamma)$.

1.7. By Proposition 1.5, $X^{\text{ord}}(\Gamma)$ is independent of Γ. Then we put $X^{\text{ord}} = X^{\text{ord}}(\Gamma)$, and call it the set of ordinary points of X with respect to ι. For any $x \in X^{\text{ord}}$, let $\Gamma'_x(L)$ be the set consisting of $\gamma \in \Gamma'_x$ such that there exists a decomposition $L \otimes_{\mathbb{Z}} \mathbb{Z}_p$ as \mathbb{Z}_p-lattices:

$$L \otimes_{\mathbb{Z}} \mathbb{Z}_p = \oplus_{i,j} L^{i,j}$$

which satisfies $\phi(\gamma)_{Q_p}(L^{i,j}) = \iota(e) \cdot L^{i,j}$ for any eigenvalue e of $\phi(\gamma)_G$ on each $V_x^{i,j}$. Put

$$\deg(x) = \begin{cases} \min\{d(\gamma) | \gamma \in \Gamma'_x(L) \text{ with } d(\gamma) > 0\} & \text{if } \Gamma'_x(L) \neq \emptyset, \\ 0 & \text{if } \Gamma'_x(L) = \emptyset. \end{cases}$$
Let Γ_0 be the subgroup of Γ defined by

$$\Gamma_0 = \{ \gamma \in \Gamma | \phi(\gamma) \in \text{Aut}(L) \}.$$

Then $\deg(x)$ depends only on the Γ_0-equivalence class containing x. Hence $\deg : X \to \mathbb{R}$ induces the map of

$$\mathbf{P}(\Gamma) = \{ x \in X^{\text{ord}} | \deg(x) : \text{positive integer} \} / \Gamma_0$$

to \mathbb{N}, which we denote by the same symbol. Then we define the zeta function $Z(\Gamma, t)$ of Γ as the following formal power series with variable t:

$$\exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r} \right),$$

where N_r is the cardinality of $\{ P \in \mathbf{P}(\Gamma) | \deg(P) \leq r \}$.

1.8. Conjecture. Let x be any ordinary point of X. Then

(1.8.1) x is a special point of X in the sense of [3].

(1.8.2) $\deg(x)$ is a positive integer, and

$$\{ d(\gamma) | \gamma \in \Gamma_x'(L) \} = Z \cdot \deg(x).$$

(1.8.3) If Γ is torsion-free, then $\Gamma_x'(L)$ is a cyclic group generated by an element $\gamma \in \Gamma_x'(L)$ with $d(\gamma) = \deg(x)$.

Assuming this conjecture, $Z(\Gamma, t)$ can be regarded as a generalization of Ihara's zeta function for PSL_2.

1.9. By results of Satake [15] and Baily-Borel [1], the quotient complex manifold X/Γ_0 is algebraizable. By results of Shimura [17], Deligne [4] [5], and Milne [13], there exist canonically a number field $K(\Gamma)$ contained in \mathbb{C} and an integral scheme M_{Γ} of finite type defined over $K(\Gamma)$, called the canonical model of X/Γ_0, such that $M_{\Gamma}(\overline{K(\Gamma)}) = X/\Gamma_0$ and the behavior of special point of M_{Γ} under the action of $\text{Gal}(\overline{K(\Gamma)}/K(\Gamma))$ is described by the theory of complex multiplication.
If $G = GSp(V)$, then M_Γ is the moduli scheme of abelian varieties with polarization and level structure. If G has a similitude-symplectic embedding, then M_Γ is the moduli scheme of these objects with certain absolute Hodge cycles.

1.10. *Conjecture.* Let $k(\Gamma)$ be the residue field of $K(\Gamma)$ with respect to ι, and p^a the order of $k(\Gamma)$. Then there exists a separated scheme F of finite type defined over $k(\Gamma)$ whose zeta function $Z(F, t)$ satisfies

$$Z(\Gamma, t) = Z(F, t^a).$$

Moreover, if M has good reduction at ι, then F can be given as a locally closed subset of the special fiber of M with respect to ι.

Assuming this Conjecture, by a result of Dwork [6], one can see that $Z(\Gamma, t)$ is a rational function of t.

2 Symplectic case

2.1. Let g be a positive integer, V a \mathbb{Q}-vector space with basis $\{v_1, \ldots, v_{2g}\}$, and $\psi : V \times V \to \mathbb{Q}$ be the alternating \mathbb{Q}-bilinear form given by

$$\psi(v_i, v_j) = \delta_{i,j-g} \ (1 \leq i, j \leq 2g).$$

Let G denote the similitude-symplectic algebraic subgroup $GSp(V, \psi)$ of $GL(V)$ defined over \mathbb{Q} with respect to ψ, i.e., $g \in \text{Aut}(V)$ belongs to $G(\mathbb{Q})$ if and only if there exists an element $\nu(g) \in \mathbb{Q}^\times$ such that $\psi(gv, gw) = \nu(g) \cdot \psi(v, w)$ for all $v, w \in V$. Let $h : S \to G_\mathbb{R}$ be the \mathbb{R}-homomorphism given by

$$h(a + b\sqrt{-1})(v_i) = \begin{cases} aw + bw' & (1 \leq i \leq g), \\ -bw + aw' & (g + 1 \leq i \leq 2g), \end{cases}$$

where $(a, b) \in \mathbb{R}^2 - \{(0, 0)\}$ and $w = v_1 + \ldots + v_g$, $w' = v_{g+1} + \ldots + v_{2g}$. Then X is the Siegel upper half space H_g of degree g which is the bounded symmetric domain induced from $G(\mathbb{R})_+ = \{g \in G(\mathbb{R}) | \nu(g) > 0\}$. Let L be a \mathbb{Z}-lattice of V such that $\psi(L \times L) = \mathbb{Z}$, and let d_L be the index of L in $\{v \in V | \psi(v, w) \in \mathbb{Z}$ for any $w \in L\}$. 5
For each $x \in X$, let A_x be the g-dimensional abelian variety defined over C such that $H^1(A_x, \mathbb{Z}) = L$ and the Hodge decomposition of $H^1(A_x, C) = V_C$ is given by h_x, and θ_x the polarization of A_x whose Riemann form is given by ψ. Then by the correspondence

$$X \ni x \mapsto (A_x, \theta_x, i_x = \text{id.} : H^1(A_x, \mathbb{Z}) \sim L),$$

X becomes the moduli space of the isomorphism classes of triples

$$(A, \theta, i : H^1(A, \mathbb{Z}) \sim L),$$

where A is a g-dimensional abelian variety defined over C and θ is a polarization of A whose Riemann form is given by

$$H^1(A, \mathbb{Z}) \times H^1(A, \mathbb{Z}) \ni (u, v) \mapsto \psi(i(u), i(v)) \in \mathbb{Z}.$$
scheme A over R and an isomorphism $i : A \otimes_R k \rightarrow A_0$ such that $A(p)$ is the product of a multiplicative p-divisible group and an étale p-divisible group. The pair (A, i) is called the canonical lifting of A_0 to R. Moreover, it is known that for all ordinary abelian varieties A_0 and B_0 defined over k, the reduction map induces the isomorphism

$$(2.2.1) \quad \text{Hom}_R((A, i), (B, i)) \cong \text{Hom}_k(A_0, B_0),$$

where (A, i) and (B, i) are the canonical liftings of A_0 and B_0 to R respectively ([11]).

Let k be a finite field \mathbb{F}_q, and A_0 any ordinary abelian variety defined over k. Then by a result of Messing [12], a lifting (A, i) of A_0 to R is the canonical lifting if and only if there exists an endomorphism f of A such that $f \otimes_R k$ is the q-th power Frobenius endomorphism of A_0. Let (A, i) be the canonical lifting of A_0 to R. Since A_0 has complex multiplication ([18]), by (2.2.1), A has also complex multiplication.

2.3. Proposition. For any $x \in X$, the following two conditions are equivalent.

(A) x is an ordinary point of X.

(B) There exists an ordinary abelian variety A_0 defined over $\overline{\mathbb{F}}_p$ such that A_x is the canonical lifting of A_0 with respect to ι, i.e.,

$$A_x \otimes_{C, \iota} \overline{\mathbb{Q}}_p \cong A \otimes_{W(\overline{\mathbb{F}}_p)} \overline{\mathbb{Q}}_p,$$

where A is the canonical lifting of A_0 to $W(\overline{\mathbb{F}}_p)$.

2.4. Theorem. Assume that $(p, d_L) = 1$. Then Conjectures 1.8 and 1.10 hold for any congruence subgroup Γ of $GSp(L[1/p], \psi)_+$, where F is given as the ordinary locus U of M_0.

2.5. Remark. The key point of the proof of Proposition 2.3 and Theorem 2.4 is that any element $\gamma \in \Gamma_x'$ with $d(\gamma) > 0$ is the unique lifting of a Frobenius
endomorphism on a certain ordinary abelian variety defined over a finite field to its canonical lifting. To show the existence of such an abelian variety, we use a result of Honda [7].

3 Classical case

3.1. Let $\phi : G \to GL(V)$, X, and Γ be as in 1.1, and let $\psi : V \times V \to Q$ and L be as in 2.1. In what follows, assume the following:

(3.1.1) The image of ϕ is contained in $GSp(V, \psi)$ and ϕ induces a map $h : X \to H_g$.

(3.1.2) There exists a positive integer $n \geq 3$ prime to p such that

$$\phi(\Gamma) \subset \{g \in \text{Aut}(L[1/p]) | g \equiv 1(n)\}.$$

Then h is known to be a holomorphic embedding, and by Proposition 1.15 of [3], there exists a unique congruence subgroup Γ' of $GSp(L[1/p], \psi)_+$ such that $\Gamma = \Gamma' \cap G(Q)_+$ and the map

$$X/(\Gamma \cap \phi^{-1}(\text{Aut}(L))) \to H_g/(\Gamma' \cap \text{Aut}(L))$$

induced from h is injective. By (3.1.2),

$$\Gamma' \subset \{g \in \text{Aut}(L[1/p]) | g \equiv 1(n)\}.$$

Hence Γ' and Γ are torsion-free.

3.2. Let M' be the canonical model of $H_g/(\Gamma' \cap \text{Aut}(L))$ defined over $K' = K(\Gamma')$. Assume that $(p, d_L) = 1$. Then M' has good reduction with respect to ι. Let k' be the residue field of K' with respect to ι. Let U be the ordinary locus of the reduction of M' with respect to ι. Then U is defined over k'. Let $\alpha : U \to M'$ be the map corresponding to the canonical lifting of ordinary abelian varieties, i.e., if $x \in U$ and $X = \alpha(x)$, then $(A_X, \theta_X, \sigma_X)$ is the canonical lifting of $(A_x, \theta_x, \sigma_x)$ with respect to ι.

8
3.3. **Proposition.** Let L be any finite field extension of $\iota(K')$, and F_q its residue field. Then $\alpha : U \otimes_{K'} F_q \rightarrow M' \otimes_{K', \iota} L$ is a continuous map with respect to the Zariski topology, i.e., if $z \in U \otimes_{K'} F_q$ is a specialization of $y \in U \otimes_{K'} F_q$, then $\alpha(z)$ is a specialization of $\alpha(y)$ in $M' \otimes_{K', \iota} L$.

3.4. **Corollary.** Put $Z = \{ x \in U | \alpha(x) \in M \}$. Then Z is a closed subset of U defined over $k(\Gamma)$.

3.5. **Proposition.** Under Conditions (3.1.1) and (3.1.2), for any $x \in X^{\text{ord}}$,

$$\phi(\Gamma'_x(L)) = \{ \gamma \in (\Gamma_1)^{\text{h}(x)}_k(L) | k(\Gamma) \subset F_{p^{d(\gamma)}} \}.$$

3.6. **Theorem.** Assume that $(p, d_L) = 1$. Then under Conditions (3.1.1) and (3.1.2), Conjectures 1.8 and 1.10 hold for Γ, where Z is given in Corollary 3.4.

3.7. **Remark.** To show Proposition 3.3, by using Serre-Tate's q-theory ([11], [12]), we construct an abelian scheme with a polarization and a level structure over a discrete valuation ring whose general and special fibers correspond to $\alpha(y)$ and $\alpha(z)$ respectively. The proof of Proposition 3.5 is straightforward. Theorem 3.6 follows from Theorem 2.4, Corollary 3.4 and Proposition 3.5.

References

18. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent.
Math. 2 (1966), 134-144.