Filtered Modules と長さ有限 p-進表現について

東大理 都築 暢夫 (Nobuo Tsuzuki)

1. はじめに

混標数 (0,p) 局所体の Galois 群の p-進表現の理論は、J.-M.Fontaine によりその概念(Hodge-Tate 表現、de Rham 表現、crystalline 表現)が正確に定義され、局所体上の多様体の p-進 étale cohomology に対する予想を定式化した[Fo]。 これらの予想は最終的に G.Faltings により解決された[Fa1][Fa2]。 さらに、絶対不分岐な局所体上の多様体で good reduction の場合には、その上の Filtered Module の圏から p-べき torsion étale 層の圏への充満忠実な関手があり、これは cohomology と可換になる。(局所体の場合は[FL]、一般には[Fa2]。)

ことでは、絶対分岐指数が p-1 より小さい局所体の場合に Fontaine-G.Laffaille の理論の一般化をする。局所体の整数環を Witt 環上のアフィン直線へ埋め込み その divided power 包絡環 (以下 P.D.-包絡環) をとり、その上の Frobenius、減少列と接続をもつ加群として Filtered Module を定義する。また、Filtered Module の圏から p-進 Galois 表現の圏への充満忠実関手を構成する。

次のように記号を定める。

K: 剰余体 k が完全体である混標数 (0,p) 完備離散付値体

A: K の整数環

 $\pi: K$ の素元(一つ固定)

e: K の絶体分岐指数

W = W(k) : k-係数 Witt 環

 $\overline{K}:K$ の代数閉包 $\overline{A}:\overline{K}$ の整数環

 $G=Gal(\overline{K}/K):K$ の絶対 Galois 群

 $\mathbf{Rep}_{\pi}(G): \mathbb{Z}_p[G]$ -加群の圏

環 R および環準同型 f に対して $\operatorname{mod} p^n$ したものを、それぞれ、 R_n と f_n とで表す。

2. FILTERED MODULES

W-環準同型

 $i:W[t] \longrightarrow A$ $(t \mapsto \pi, t$ は変数)

を、 $Spec\ A$ のアフィン直線への埋め込み、 σ を W[t] 上の Frobeniusu $(\sigma:t\mapsto t^p,W$ 上は通常の Frobenius)とする。 R_n を W_n 上の自然な P.D.-構造と可換な i_n に対する P.D.-包絡環とする。すなわち、 $f(t)\in W[t]$

を π の最小多項式とするとき、 $W[x] \to W[t]$ $(x \mapsto f(t))$ による係数拡大により

$$R_n = W_n[t] \underset{W_n[x]}{\otimes} W_n\{x\}$$

とあらわせる。ただし、 $W_n\{x\}$ は一変数 P.D.-多項式環とする。また、各自然数 m に対して $J_n^{[m]}$ を m 次の P.D.-イデアルとする。このとき、P.D.-構造の性質から σ_n は R_n 上に延びる(P.D.-構造は保たない)。 $R_\infty, J_\infty^{[m]}, \sigma_\infty$ を、それぞれ、 $R_n, J_n^{[m]}, \sigma_n$ の射影極限とする($m \leq 0$ のとき $J_\infty^{[m]} = R_\infty$ とする)。 R_∞ において p は零因子でなく、各 $m \leq p-1$ に対して $\sigma_\infty(J_\infty^{[m]}) \subset p^m R_\infty$ であることから、

$$\varphi_{R_{\infty}} = p^{-m} \sigma_{\infty} : J_{\infty}^{[m]} \longrightarrow R_{\infty} \qquad (m \le p - 1)$$

が定義される。

 ω^1 を t=0 において一位の極をゆるした Spec W[t] の微分加群、すなわち、 $\omega^1=W[t]dlog(t)$ とする。とのとき、W[t] 上の Frobenius σ により σ -準同型

$$rac{d\sigma_{\infty}}{p}:\omega^{1}\longrightarrow\omega^{1} \qquad \qquad adlog(t)\mapsto\sigma_{\infty}(a)dlog(t)$$

が導かれる。 d_{R_∞} を R_∞ 上の自然な微分とすると、 $d_{R_\infty}(J_\infty^{[m]}) \subset \omega^1 \otimes W^{[m]}$ $U_\infty^{[m-1]}$ (Griffith transversarity) が成り立ち、 $m \leq p-1$ のとき下の図式

$$J_{\infty}^{[m]} \xrightarrow{d} \omega^{1} \underset{W[t]}{\otimes} J_{\infty}^{[m-1]}$$

$$\varphi_{R_{\infty}}^{m} \downarrow \qquad \qquad \downarrow_{\frac{d\sigma_{\infty}}{p} \otimes \varphi_{R_{\infty}}^{m-1}}$$

$$R_{\infty} \xrightarrow{d} \omega^{1} \underset{W[t]}{\otimes} R_{\infty}$$

が可換となる。

定義 1. (圏 <u>MF</u>[▽]_{big} の定義)

- (1) M, M^k は p のべきで消える R_{∞} -加群である。
- (2) (M^k) は減少列で、 $k \leq 0$ のとき $M^k = M$ となる。
- (3) 各 j,k に対して $J_{\infty}^{[j]}M^k \subset M^{j+k}$ となる。

(4) 各 k に対して $arphi_M^k:M^k o M$ は σ_∞ -準同型で、次のふたつの図式が可換となる。

(5) $\nabla_{\mathbf{M}}: M \to \omega^1 \underset{W[t]}{\otimes} M$ は W-接続で、Griffith transversarity $\nabla_{\mathbf{M}}(M^k \subset \omega^1 \underset{W[t]}{\otimes} M^{k-1}$ を満たす。また、次の図式

$$\begin{array}{ccc} M^k & \xrightarrow{\nabla_{M}|_{M^k}} & \omega^1 \underset{W[t]}{\otimes} M^{k-1} \\ \\ \varphi_{M}^k \Big\downarrow & & & \Big\downarrow \frac{d\sigma_{\infty}}{p} \otimes \varphi_{M}^{k-1} \\ \\ M & \xrightarrow{\nabla_{M}} & \omega^1 \underset{W[t]}{\otimes} M \end{array}$$

が可換となる。

 $\mathbf{MF}^{m{\nabla}}_{\mathbf{big}}$ の射は上の構造と可換な R_{∞} -準同型とする。

補足 2. $\underline{\mathbf{MF}}^{\nabla}_{\mathrm{big}}$ は W-線型な加法圏となる。後に Hom や Ext を考える都合上 $\underline{\mathbf{MF}}^{\nabla}_{\mathrm{big}}$ を含むアーベル圏 $\underline{\mathfrak{MS}}^{\nabla}_{\mathrm{big}}$ が必要になるが、ここではその定義を省く。(減少列のところを、単に列にする。)

 $\mathbf{MF}^{m{\nabla}}_{\mathbf{big}}$ の対象 \mathbf{M} に対して R_{∞} -加群 $\widetilde{\mathbf{M}}$ を次のように定める。

$$\widetilde{\mathbf{M}} = (\bigoplus_{k \le p-1} R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^{k})/T$$

ととで $R_{\infty}\otimes$ は Frobenius $\sigma_{\infty}:R_{\infty}\to R_{\infty}$ による係数拡大を表し、T は下の(ア)および(イ)なる形の元により生成される $\bigoplus_{k\leq p-1} R_{\infty}\otimes M^k$ の R_{∞} -部分加群である。

$$(\mathcal{T}) \ (1 \otimes x) \oplus ((-p) \otimes x) \in R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^{k-1} \oplus R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^{k} \quad (x \in M^{k})$$

$$(\mathcal{A}) \ (\varphi_{R_{\infty}}^{j}(a) \otimes x) \oplus ((-1) \otimes ax) \in R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^{k} \oplus R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^{j+k}$$

$$(a \in J_{\infty}^{[j]}, \quad x \in M^{k})$$

定義 1.4 により $\bigoplus\limits_{k\leq p-1} arphi_{\mathbf{M}}^k$ から R_{∞} -準同型

$\tilde{\varphi}_{\mathbf{M}}: \tilde{\mathbf{M}} \longrightarrow \mathbf{M}$

が導かれる。これも M の Frobenius と呼ぶことにする。 R_∞ -加群 M に対して W-接続 $\widetilde{\nabla}_{\mathbf{M}}: \widetilde{\mathbf{M}} \to \omega^1 \otimes \widetilde{\mathbf{M}}$ を次のように定 W[t] める。

 $a \otimes x \in R_{\infty} \underset{\sigma_{\infty}}{\otimes} M^k$

$$\mapsto (a(\frac{d\sigma_{\infty}}{p}\otimes id_{\mathbf{M}^{k-1}})\circ\nabla_{\mathbf{M}}(x))\oplus (da\otimes x)\in\omega^{1}\underset{\sigma_{\infty}}{\otimes}M^{k-1}\oplus\omega^{1}\underset{\sigma_{\infty}}{\otimes}M^{k}$$

定義 1.5 により $\widetilde{\nabla}_{\mathbf{M}}$ は W-接続となり、 $\widetilde{\nabla}_{\mathbf{M}}$ と $\nabla_{\mathbf{M}}$ とは $\widetilde{\varphi}_{\mathbf{M}}$ に関して平行、すなわち $\nabla_{\mathbf{M}}\circ\widetilde{\varphi}_{\mathbf{M}}=(id_{\omega^1}\otimes\widetilde{\varphi}_{\mathbf{M}})\circ\widetilde{\nabla}_{\mathbf{M}}$ となる。

上で定めた $M \mapsto \tilde{M}$ は圏 $\underline{MF}^{\nabla}_{\text{big}}$ から R_{∞} -加群の圏への関手を定めて、Frobenius $\tilde{\varphi}_{M}$ と W-接続 $\tilde{\nabla}_{M}$ とはその定義より $\underline{MF}^{\nabla}_{\text{big}}$ の射と可換になる。さらに、上の関手は注意 2 のアーベル圏 $\underline{\mathfrak{M}\mathfrak{T}}^{\nabla}_{\text{big}}$ から R_{∞} -加群の圏への右完全関手に延びる。

定義 3. 以下の条件 (1)-(3) を満たす圏 $\underline{\mathbf{MF}}^{\nabla}_{\mathrm{big}}$ の対象 M を Filtered Module と呼び、それらからなる充満部分圏を $\underline{\mathbf{MF}}^{\nabla}$ とする。

- (1)~M は R_∞ -加群として有限個の R_∞/p^nR_∞ の直和(n はいろいろ)である。
 - (2) Frobenius $\widetilde{arphi}_{\mathbf{M}}: \widetilde{\mathbf{M}} \to M$ は同型である。
- (3) 各自然数 n と各元 $x\in M^{k-1}$ に対して $arphi_{\mathbf{M}}^{k-1}(p^nx)\in p^{n+1}M$ ならば $p^n\in p^nM^k+p^nM^{k-1}$ である。

補足 4. (1) $\tilde{\nabla}_{M}$ のべき零性により \underline{MF}^{∇} の対象 M は $Spec\ A$ 上の対数型の極つき crystal とみなせる。[K1]

(2) 圏 $\mathbf{MF}^{rave{y}}$ は 標準的な同型をのぞいて K の素元 π のとり方によらない。

定義 5. d を $0 \le d \le p-1$ を満たす自然数とする。Filtered Module M が レベル[0,d] とは、各 k に対して $M^k = \sum_{j=0}^d J_\infty^{[k-j]} M^j$ を満たすことをいう。レベル[0,d] なる Filtered Module の圏を $\underline{\mathbf{MF}}_{[0,d]}^\nabla$ で表す。

次の補題が重要である。

補題 6. <u>MF</u> _{big} の対象 M が次の条件

(1)~M は R_{∞}/pR_{∞} -加群として有限生成かつ自由である。

- (2) R_{∞}/pR_{∞} -準同型 $\widetilde{arphi}_{\mathbf{M}}:\widetilde{\mathbf{M}} o M$ は全射である。
- (3) 各元 $x \in M^{k-1}$ が $\varphi_M^{k-1}(x) = 0$ を満たせば $x \in M^k$ となる。を満たせば、M は Filtered Module になる。

とのとき、M の元 e_1, \cdots, e_r $(r = \operatorname{rank} M)$ と整数 i_1, \cdots, i_r $(0 \leq i_n < e(p-1))$ が存在して、 α_n , β_n を

$$i_n = \alpha_n e - \beta_n \qquad (0 \le \beta_n < e)$$

で定めると、

$$M = \bigotimes_{n=1}^{r} (R_{\infty}/pR_{\infty})e_{n}$$

$$M^{k} = \bigotimes_{n=1}^{r} ((t^{\beta_{n}}J_{\infty}^{[k-\alpha_{n}]} + J_{\infty}^{[k-\alpha_{n}+1]})/p)e_{n}$$

となり、 $arphi_{\mathbf{M}}^{lpha_n}(t^{eta_n}e_n)=\sum a_{mn}e_m$ で (a_{mn}) を定めると、行列 (a_{mn}) は可逆となる。

証明: M/M^1 は有限生成 $A_1=R_1/J_1^{[1]}$ -加群より、

$$M/M^1 \cong \bigoplus_{n=1}^{r_1} (A/\pi^{e-i_n}A)\overline{e}_n \qquad i_1 \leq \cdots \leq i_{r_1}$$

とする。ただし、 e_1,\cdots,e_{r_1} は生成元の M への持ち上げとする。定義 1.3 および条件(3)により、 $M/(M^2+R_1e_1+\cdots+R_1e_{r_1})$ は $A_1=R_1/J_1^{[1]}$ 加群となり、

$$M/(M^2 + R_1e_1 + \dots + R_1e_{r_1}) \cong \bigoplus_{\substack{n=r_1+1\\i_{r_1}+1}}^{r_2} (A/\pi^{2e-i_n}A)\overline{e}_n$$

とする。以下帰納的に $e_n, i_n = \alpha_n e - \beta_n$ $(1 \le n \le r, 0 \le \beta_n < e)$ を定める。条件(3)より $\widetilde{\mathbf{M}}$ は $t^{\beta_1}e_1, \cdots, t^{\beta_r}e_r$ で生成されるから、 $\widetilde{\varphi}_{\mathbf{M}}$ は同型になる。 \blacksquare

命題 7. <u>∭₹</u> の完全列

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

に対して、M, M', M" のいずれか二者が Filtered Module ならば残りの一つも Filtered Module である。

証明: $p^nM=0$ なる n に関する帰納法による。n=1 のときは補題 6 から示される。

定理 8. de < p-1 のとき圏 $\mathbf{MF}_{[0,d]}^{\nabla}$ はアーベル圏である。

証明は、剩余体 k が代数閉体の場合に帰着できる。

剰余体 k が代数閉体のとき、 $\underline{\mathbf{MF}}^{\nabla}$ の基本対象を次のように定める。 各周期写像

$$i: \mathbb{Z} \to \{0, 1, \cdots, e(p-1)\}$$
 modulo h $(n \to i_n)$

に対して $lpha_n^i,eta_n^i,q_n^i$ および Filtered Module $\mathrm{M}=\mathrm{M}(i)$ を下のように定義する。

$$i_n = lpha_n^i e - eta_n^i \quad (0 \le eta_n^i < e);$$
 $q_n^i = (\sum_{m=0}^{h-1} i_{m+n+1} p^m)/(p^h - 1);$

$$M = \begin{cases} M = \bigoplus_{n=0}^{h-1} (R_{\infty}/p) e_n & \{e_n\} & \text{は } M \text{ の標準基底とするo} \\ M^k = \bigoplus_{n=0}^{h-1} ((t^{eta_n^i} J_{\infty}^{[k-lpha_n^i]} + J_{\infty}^{[k-lpha_n^i+1]})/p) e_n \\ \varphi_M^{lpha_n^i}(t^{eta_n^i} e_n) = e_{n-1} \\ \nabla_M(e_n) = 0. \end{cases}$$

 $\mathbb{F}_{p^k}\subset \overline{k}\subset R_\infty/pR_\infty$ より、各基本対象 $\mathrm{M}=\mathrm{M}(i)$ に対して環準同型

$$\nu : \mathbb{F}_{p^h} \longrightarrow \operatorname{End}_{\mathbf{MF}} \mathsf{v}(\mathbf{M}) \qquad a \mapsto \nu_a$$

が $\nu(e_n)=a^{p^{-n}}e_n$ により定義できる。明らかにこれは単射である。

補題 9. $\mathbf{M} = \mathbf{M}(i), \mathbf{M}' = \mathbf{M}(i')$ を $\mathbf{\underline{MF}}^{\nabla}$ の基本対象で、i,i' の値はともに p-1 より小さいとする。

- (1) $\operatorname{Hom}_{\mathbf{MF}^{\triangledown}}(\mathbf{M},\mathbf{M}') \neq 0$ となる必要十分条件は、ある整数 l が存在して各整数 n に対して $q_n^i q_{n+l}^{i'}$ が非負整数となるととである。
 - (2) i の周期がちょうどんのとき、単射 $\,
 u$ は同型になる。

補題 10. de < p-1 とする。このとき、 $\mathbf{MF}^{\nabla}_{[0,d]}$ の対象 \mathbf{M} に対して \mathbf{M} の部分対象である基本対象 $\mathbf{M}(i)$ (i の値は de 以下) が存在する。

証明のポイントは、 $\sigma_{\infty}(t)M=t^pM\subset M^{d+1}$ および補題 6 における Filtered Module の構造である。

命題 7、補題 9、10 から定理 8 が示される。特に、k が代数閉体のとき圏 $\mathbf{MF}^{\nabla}_{[0,d]}$ はアルティン圏となり、その単純対象は基本対象である。

3. 表現の構成

 $f:Spec \overline{A} \to Spec A$ を構造射とする。対数型の極つき crystal の理論より、 $f_{n_*}O_{cry_*}$ (O_{cry_*} は $Spec \overline{A_n}$ 上の対数型の極つき crystalline site に付随する topos の構造層とする。)は $Spec A_n$ 上の準連接平坦 crystal となる[K2]。 crystal の理論から、 $f_{n_*}O_{cry_*}$ は自然に接続をもつ R_n -P.D.-多元環 P_n とみなせて[K1]、その P.D.-構造により減少列が定まる。また、crystalline cohomology の関手性より Frobenius および、上にあげた諸構造と可換な Galois 群 G の作用が定まる。これより、 P_n は圏 $\underline{\mathbf{MF}}^{\nabla}$ big の対象とみなせる。 P_n の射影極限を P_{∞} とかくと、 $P_{\infty}\otimes \mathbb{Q}_p/\mathbb{Z}_p$ も圏 $\underline{\mathbf{MF}}^{\nabla}$ big の対象とみなせる。

Filtered Module の圏から p-進表現の圏への反変関手を

$$\begin{array}{cccc} \mathbb{D}: & \underline{\mathbf{MF}}^{\nabla} & \longrightarrow & \underline{\mathbf{Rep}}_{\mathbb{Z}_p}(G) \\ & \mathbb{M} & \longmapsto & \mathbb{D}(\mathbb{M}) = \mathrm{Hom}_{\underline{\mathfrak{MF}}^{\nabla}_{\mathrm{big}}}(\mathbb{M}, P_{\infty} \otimes \mathbb{Q}_p/\mathbb{Z}_p) \end{array}$$

と定める。ことで、 $\underline{\mathfrak{MS}}_{\mathrm{big}}^{oldsymbol{
abla}}$ は補足 2 における $\underline{\mathbf{MF}}_{\mathrm{big}}^{oldsymbol{
abla}}$ を含むアーベル圏で、 $\mathbf{D}(\mathbf{M})$ への G は P_{∞} をとうして作用する。

定理 11. レベルが [0,d] である Filtered Module M に対して、 $R_{\infty} \otimes \mathbb{D}(M)$ \mathbb{Z}_p と M とは R_{∞} -加群として同型である。(標準的ではない。)また、制限 関手 $\mathbb{D}: \underline{\mathbf{MF}}_{[0,d]}^{\nabla} \to \underline{\mathbf{Rep}}_{\mathbb{Z}_p}(G)$ は完全かつ充満忠実である。

証明は、剩余体が代数閉体のときに帰着される。そのとき、圏 <u>MF[0,d]</u>はアルティン圏より基本対象の D による振る舞いをみればよい。

定理 12. 剰余体 k が代数閉体かつ de < p-1 とする。周期がちょうど h(h') である周期関数 i(i') の $\underline{\mathbf{MF}}_{[0,d]}^{\nabla}$ の基本対象 $\mathbf{M} = \mathbf{M}(i)$ ($\mathbf{M}' = \mathbf{M}(i')$) に対して以下が成り立つ。

(1) 補題 9.1 の同型 $\nu: \mathbb{F}_{p^k} \to \operatorname{End}_{\mathbf{MF}^{\nabla}}(\mathbf{M})$ により $\mathbb{D}(\mathbf{M})$ を \mathbb{F}_{p^k} -ベクトル空間とみなしたとき、

$$\dim_{\mathbb{F}_{\mathbb{P}^h}} \mathbb{D}(M) = 1$$

である。

(2) χ_h をレベル h の基本指標とする。すなわち、 $g \in G$ に対して $g(\pi^{p^{-h}}) = \chi_h(g)\pi^{p^{-h}}$ で定められる。このとき、D(M) への G の作用は

$$\chi_h^{i_0+i_1p+\dots+i_{h-1}p^{h-1}}:G\to \mathbb{F}_{p^h}^\times$$

により与えられる。

- $(3) \operatorname{Ext}^{1}_{\mathfrak{M}\mathfrak{F}^{\nabla}_{\bullet}}(M, P_{1}) = 0$
- (4) 自然な変換

$$\operatorname{Ext}^1_{\operatorname{\mathbf{MF}}^{\triangledown}}(M,M') \longrightarrow \operatorname{Ext}^1_{\operatorname{\mathbf{Rep}}_{\pi_{\mathbf{p}}}(G)}(\mathbb{D}(M'),\mathbb{D}(M))$$

は単射になる。

証明は具体的な計算によるが、かなり面倒である。

補足 13. 定理 12 は J.-P.Serre の予想[S]

X を K 上の非特異完備な代数多様体で A 上 good reduction とする。 de < p-1 ならば、d 次 étale homology 群 $H_d(X \otimes \overline{K}, \mathbb{Z}/p\mathbb{Z})$ への

K の惰性群の各単純部分商への作用は下のかたちで与えられる。

$$\chi_h^{i_0 + i_1 p + \dots + i_{h-1} p^{h-1}}$$
 $(0 \le i_n < e)$

と適合する。

参考文献

- [BO] Berthelot, P., Ogus, A., "Notes on crystalline cohomology," Princeton University Press, 1978.
- [Fa1] Faltings, G., p-adic Hodge Theory, J. Am. Math. Soc. 1 (1988), 255-299.
- [Fa2] Faltings, G., Crystalline cohomology and p-adic Galois representations, Algebraic and Analysis, Geometry and Number Theory (1990), 25-80, Johns Hopkins University Press.
- [Fo] Fontaine, J.-M., Sur certains types de représentations p-adiques du groupe de Galois d'un corps local, construction d'un anneaux Barsotti-Tate, Ann. of Math 115 (1983), 529-577.
- [FL] Fontaine, J.-M., Laffaille, G., Construction de représentations p-adiques, Ann. Sci. Ec. Norm. Sup. 15 (1982), 547-608.
- [HK] 兵頭 治, 加藤 和也, Semistable reduction and crystalline cohomology with logarithmic poles, preprint.
- [K1] 加藤 和也, Logarithmic structures of Fontaine-Illusie, Algebraic and Analysis, Geometry and Number Theory (1990), 191-224, Johns Hopkins University Press.
- [K2] 加藤 和也, Semi-stable reduction and p-adic etale cohomology, preprint.
- [S] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.