Galois representations attached to Drinfeld modules

Algebraic Number Theory

Author(s)

Taguchi, Yuichiro

Citation

数理解析研究所講究録 (1991), 759: 46-57

Issue Date

1991-06

URL

http://hdl.handle.net/2433/82200

Right

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Galois representations attached to Drinfeld modules

都立大理 田口 雄一郎 (Yuichiro Taguchi)

In the talk, I announced some results on Galois representations attached to Drinfeld modules (see §1 below) and sketched the proof of the finiteness theorem (1.2). In this note, I will show how a theorem of Fontaine (Théorème 1 of [4]) can be modified (§3) so as to work in the course of the proof of Theorem (1.3).

1. Results and proofs

In this section, let K be an algebraic function field in one variable over a finite field. Fix once for all a place ∞ of K, and let A be the ring of elements of K which are regular outside ∞.

Let F be a field of finite type over A, i.e., a field F which is endowed with a ring homomorphism $\gamma : A \to F$ and is finitely generated over $\text{Im}(\gamma)$ as a field. We say that the "characteristic" of F is infinite if γ is injective and finite if $\text{Ker}(\gamma)$ is a non-zero prime ideal \mathfrak{p} of A, and write "char"(F) = ∞ or \mathfrak{p} accordingly.

Given a Drinfeld module ϕ over F of rank r, one can attach the v-adic Tate module $T_v(\phi)$ for any non-zero prime ideal $v \neq \text{char}(F)$. This is a free A_v-module (A_v is the v-adic completion of A) of rank r on which the absolute Galois group $\text{Gal}(F^{sep}/F)$ acts continuously. For fundamentals of Drinfeld modules, see [1] and [2]. (See also [5] in this volume.)

Denote by K_v the fraction field of A_v. Our main result is:

THEOREM (1.1) ([6], [7]). Assume F is a finite extension of K or $\text{char}(F)$ is finite. Let ϕ be a Drinfeld module over F. Then for any non-zero prime ideal v of A different from $\text{char}(F)$, $T_v(\phi) \otimes_{A_v} K_v$ is a semi-simple $K_v[\text{Gal}(F^{sep}/F)]$-module.

This follows ([6], Appendix) from

THEOREM (1.2) ([6], [7]). Let F, ϕ and v be as in (1.1). For any $\text{Gal}(F^{sep}/F)$-stable A_v-direct summand of $T_v(\phi)$, to which corresponds a sequence $\phi \to \phi_1 \to \phi_2 \to \cdots$ of isogenies of Drinfeld modules over F, there are only finitely many isomorphism classes of Drinfeld modules in $\{ \phi_n ; n \geq 1 \}$.

Remark. The assumption that the extension F/K is finite (when $\text{char}(F) = \infty$) should be removed, but I have not yet checked it.
The proof of (1.2) goes in a similar way as in Zarhin [8] and Faltings [3], and uses the theory of modular heights. In the infinite "characteristic" case, the Arakelov theoretic arguments and the study of \(\pi \)-divisible groups are needed. For details, see [6] and [7].

Now we restrict ourselves to the case where \(F \) is a finite extension of \(K \). Then for a Drinfeld module \(\phi \) over \(F \), we can define the "discriminant" \(\Delta(\phi) \) of \(\phi \) ([7], §6), which is an ideal of the integral closure \(R \) of \(A \) in \(F \).

THEOREM (1.3) ([7], §6). Let \(n \) be a non-zero ideal of \(R \) and \(v \) a non-zero prime ideal of \(A \). Then there are only finitely many isomorphism classes of Galois representations \(T_v(\phi) \otimes_{A_v} K_v \) arising from Drinfeld modules \(\phi \) over \(F \) with \(\Delta(\phi)|n \).

In the case of abelian varieties, the corresponding theorem ([3], Satz 5) holds under a weaker restriction (i.e. "Supp(\(\Delta(\phi) \)) \subset Supp(\(n \))" replacing "\(\Delta(\phi)|n \)"). But it is unlikely that we can weaken the restriction in our case because of the lack of the Hermite-Minkovski theorem for function fields. So the proof of our theorem requires an estimate of the different of field extensions arising from division points of Drinfeld modules:

PROPOSITION (1.4) ([7], §6). Let \(\phi \) be a Drinfeld module over \(F \) of rank \(r \), and let \(a \in A-0 \). Then we have the following inequality of divisors (denoted additively) of \(F \):

\[
\mathcal{D}(F(\phi;a)/F) \leq r \left[(a) + \delta(r,a)q^{r \deg(a)-2}\Delta(\phi) + (q^r - 2) \cdot \infty \right],
\]

where \(F(\phi;a) \) is the field of \(a \)-division points of \(\phi/F \), \(\mathcal{D}(\cdot) \) the different, \(q \) the cardinality of the constant field of \(K \), \(\deg(a) := \log_q \#(A/aA) \), and \(\delta(r,a) := (q^{r \deg(a)} - 1)/(q - 1) \).

The estimate of the different is performed separately at each infinite or finite place of \(F \). In the case of infinite places, a "successive minimum base" of an \(A \)-lattice is used ([7], (6.6)). The case of finite places is easy ([7], (6.4) and (6.5)), but it would be interesting to give a general statement (Theorem (3.4) below), which can be regarded as a higher dimensional generalization of (6.4) of [7].
2. The Taylor expansion

This section is a preliminary for §3.

Let \(R \) be a commutative ring and \(R[[X]] = R[[X_1, \ldots, X_h]] \) the ring of formal power series over \(R \) in \(h \) variables. For a multi-index \(n = (n_1, \ldots, n_h) \in \mathbb{N}^h \) (\(\mathbb{N} \) is the set of natural numbers including 0), we define a “differential operator” \(\frac{\delta^n}{\delta X^n} \) as follows:

If \(f(X) = \sum a_m X^m = \sum a_{m_1, \ldots, m_h} X_1^{m_1} \cdots X_h^{m_h} \in R[[X]], \) then

\[
\frac{\delta^n}{\delta X^n} f(X) := \sum a_m \binom{m}{n} X^{m-n}
\]

\[
= \sum a_{m_1, \ldots, m_h} \binom{m_1}{n_1} \cdots \binom{m_h}{n_h} X_1^{m_1-n_1} \cdots X_h^{m_h-n_h},
\]

where \(\binom{m}{n} = \binom{m_1}{n_1} \cdots \binom{m_h}{n_h} \) is the “multi-binomial coefficient” with \(\binom{m_i}{n_i} := 0 \) if \(n_i > m_i \).

Remarks (2.1).

1) \(\frac{\delta^n}{\delta X^n} \) is \(R \)-linear.

2) \(\frac{\partial^n}{\partial X^n} = n! \frac{\delta^n}{\delta X^n} \) (where \(n! := n_1! \cdots n_h! \)) is the usual differential operator, and \(\frac{\delta^n}{\delta X^n} = \frac{1}{n!}(\frac{\delta}{\delta X})^n \) if \(n! \) is invertible in \(R \). In particular, we have \(\frac{\partial}{\partial X} = \frac{\delta}{\delta X} \).

3) For \(f(X) \in R[[X]], \) put \(f_Y(X) := f(X + Y) \in R[[X, Y]] = R[[X]][[Y]]. \) We have

\[
\frac{\delta^n}{\delta X^n} f_Y(X) = \left(\frac{\delta^n}{\delta X^n} f \right)(X + Y) \quad \text{in} \ R[[X, Y]].
\]

4) \(\frac{\delta^n}{\delta X^n} (fg) = \sum_{k+l=n} \left(\frac{\delta^k}{\delta X^k} f \right) \left(\frac{\delta^l}{\delta X^l} g \right) \quad \text{for} \ f, g \in R[[X]]. \)

5) Let \(S \) be an \(R \)-algebra and \(I \) an ideal of \(S \). Assume \(S \) is complete with respect to the \(I \)-adic topology. If \(f(X) \in R[[X]] \) has the value \(f(x) \in S \) at a point \(x = (x_1, \ldots, x_h) \in S^h \), then \(\frac{\delta^n}{\delta X^n} f(x) \) also has the value \(\frac{\delta^n}{\delta X^n} f(x) \) at \(x \) for any \(n \in \mathbb{N}^h \).

Proposition (2.2). For \(f(X) \in R[[X]], \) we have the formal Taylor expansion (or rather, the binomial expansion)

\[
\sum_{|n| \geq 0} \frac{\delta^n}{\delta X^n} f(X) \cdot Y^n \quad \text{in} \ R[[X, Y]].
\]
If $f(X)$ has the value $f(x) \in S$ at $x \in S^h$ and y is an element of I^h, then $f(x+y) \in S$ also exists and we have

\[(2.2.2) \quad f(x+y) = \sum_{|n| \geq 0} \frac{\delta^n}{\delta X^n} f(x) \cdot y^n \quad \text{in } S.\]

Proof. Write $f(X+Y) = \sum a_n(X)Y^n$ with $a_n(X) \in R[[X]]$. Applying $\frac{\delta^n}{\delta X^n}$ to both sides and reducing modulo Y, we obtain (cf. Remark (2.1), (3))

\[\frac{\delta^n}{\delta Y^n} f(X) = a_n(X)\]

and hence (2.2.1).

The latter half of the Proposition is obvious.

3. Estimate of different

First we recall Fontaine's numbering of the ramification groups of a local field and some of his results (\cite{4}, §1). Throughout this section, if L is a discrete valuation field, D_L (resp. m_L, resp. k_L) denotes the integer ring of L (resp. the maximal ideal of D_L, resp. the residue field D_L/m_L).

In the following, K is a complete discrete valuation field with perfect residue field k of characteristic $p \neq 0$. Let v_K denote the valuation on K normalized by $v_K(K^\times) = \mathbb{Z}$, and also its unique extension to any algebraic extension of K. If a is a subset of an algebraic extension of K, we put $v_K(a) := \inf\{v_K(x); x \in a\}$.

For a finite Galois extension L/K, Fontaine defines a lower (resp. upper) filtration $G^{(i)}$ (resp. $G^{(u)}$) ($i, u \in \mathbb{R}$) on the Galois group $G = \text{Gal}(L/K)$, which is connected with the usual filtration G_i (resp. G^u) defined in Chapitre IV of \cite{Corps locaux} by

\[G_i = G_{(i+1)/e}, \quad \text{resp. } G^u = G^{(u+1)},\]

where $e = e_{L/K}$ is the ramification index of L/K.

He also defines a real number $i_{L/K}$ (resp. $u_{L/K}$), which is characterized as the largest real number i (resp. u) such that $G^{(i)} \neq 1$ (resp. $G^{(u)} \neq 1$). $i_{L/K}$ and $u_{L/K}$ are connected by

\[u_{L/K} = \int_0^{i_{L/K}} (G(x) : 1)dx.\]

Then he proves the following
PROPOSITION (3.1). Let L be a finite Galois extension of K.
(1) ([4], 1.3) Let $\mathcal{O}_{L/K}$ be the different of the extension L/K. We have

$$v_K(\mathcal{O}_{L/K}) = u_{L/K} - i_{L/K}.$$

(2) ([4], 1.5) For a real number $m \geq 0$, consider the following property (P_m) on the extension L/K:

$$\begin{cases}
 \text{For any algebraic extension } E \text{ of } K, \text{ if there exists an } \mathcal{O}_K\text{-algebra homomorphism } : \mathcal{O}_L \rightarrow \mathcal{O}_E/a^m_{E/K} \\
 \text{ (where } a^m_{E/K} := \{ x \in \mathcal{O}_E; v_K(x) \geq m \}, \\
 \text{ then there exists a } K\text{-embedding } : L \hookrightarrow E.
\end{cases}$$

Then

(i) if $m > u_{L/K}$, L/K has the property (P_m);
(ii) if L/K has the property (P_m), we have $m > u_{L/K} - e_{L/K}^{-1}$.

Now we shall refine Fontaine's Proposition 1.7 of [4] as follows. The main point is that it works, mutatis mutandis, even in positive characteristics.

PROPOSITION (3.2). Let B be a finite flat \mathcal{O}_K-algebra which is locally of complete intersection over \mathcal{O}_K. Suppose that there exists an element $a \in \mathcal{O}_K$ such that $\Omega^1_{B/\mathcal{O}_K}$ is a flat (B/aB)-module.

(i) Let S be a finite flat \mathcal{O}_K-algebra and I an ideal of S. Suppose either the S-submodule $a^{-1}I^{p-1}$ of $K \otimes_{\mathcal{O}_K} S$ is topologically nilpotent (i.e. $\cap_{n \geq 1}(a^{-1}I^{p-1})^n = 0$), or I has a PD-structure such that $\cap_{n \geq 1}I^n = 0$.

(a) For any \mathcal{O}_K-algebra homomorphism $u : B \longrightarrow S/aI$, there exists an \mathcal{O}_K-algebra homomorphism $\hat{u} : B \longrightarrow S$ which is uniquely determined by $u(mod.I)$ and makes the following diagram commutative:

$$\begin{array}{c}
B \xrightarrow{u} S/aI \\
\uparrow \hat{u} \downarrow \uparrow \\
S \longrightarrow S/I.
\end{array}$$

(b) The canonical map of sets

$$\text{Hom}_{\mathcal{O}_K\text{-alg}}(B, S) \rightarrow \text{Hom}_{\mathcal{O}_K\text{-alg}}(B, S/I)$$

is injective.
(ii) The K-algebra $B_K := K \otimes_{\mathcal{O}_K} B$ is étale. Let L be the smallest subfield of a separable closure K^{sep} of K which contains the images $u(B)$ for all $u \in \text{Hom}_{K^{sep}}(B_K, K^{sep})$. Then L/K is a finite Galois extension and $u_{L/K} \leq v_K(a) + \frac{1}{p-1} \cdot \min\{v_K(a), v_K(p)\}$.

The proof is essentially the same as the original one due to Fontaine, but we reproduce his proof here for the convenience of the reader.

Proof. (i),(a): We may and do suppose B is a local ring, because B is the product of a finite number of local rings. Let m_B be the maximal ideal of B. Replacing K by an unramified extension if necessary, we may also suppose $B/m_B = k$, the residue field of \mathcal{O}_K.

Then $\Omega^1_{B/\mathcal{O}_K}$ is a free (B/aB)-module. Let x_1, \ldots, x_h be elements of m_B the images of which form a k-base of $m_B/(m_B^2 + m_K B)$. We see from the definition of differential modules that dx_1, \ldots, dx_h generate $\Omega^1_{B/\mathcal{O}_K}$, and further, they form a (B/aB)-base of $\Omega^1_{B/\mathcal{O}_K}$ because of the canonical isomorphisms

$$\Omega^1_{B/\mathcal{O}_K} \otimes_B B_o \sim \Omega^1_{B_o/k} \quad (B_o := B/m_K B),$$

$$m_B/(m_B^2 + m_K B) \sim m_{B_o}/m_{B_o}^2 \sim \Omega^1_{B_o/k} \otimes_{B_o} k,$$

where $m_{B_o} = m_B/m_K B$ is the maximal ideal of B_o.

Now let

$$\alpha : \mathcal{O}_K[[X_1, \ldots, X_h]] \rightarrow B$$

be the unique continuous \mathcal{O}_K-algebra homomorphism such that $\alpha(X_j) = x_j$, and let $J := \text{Ker}(\alpha)$. Since B is finite of complete intersection over \mathcal{O}_K, J is generated by h elements, say $P_1, \ldots, P_h \in \mathcal{O}_K[[X_1, \ldots, X_h]]$.

For each i, we have $\sum_j \frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h)dx_j = 0$ (note $\frac{\delta}{\delta X_j} = \frac{s}{\delta X_j}$), which implies $\frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h) \in aB$. Hence there are $p_{ij} \in B$ such that $\frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h) = ap_{ij}$. The fact that $\Omega^1_{B/\mathcal{O}_K}$ is a free (B/aB)-module means that the free B-submodule of $\bigoplus_{j=1}^h B dX_j$ generated by $\sum_j \frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h) dX_j, 1 \leq i \leq h$, coincides with the one generated by $adX_j, 1 \leq j \leq h$. We can therefore find $q_{ii} \in B$ such that

$$adX_i = \sum_i q_{ii}(\sum_j \frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h) dX_j), \quad 1 \leq l \leq h,$$

i.e., $a1_h = (q_{ii})(ap_{ij})$. (1_h is the unit matrix of degree h.) Since B is a free \mathcal{O}_K-module, we can divide both sides by a. Thus the matrix (p_{ij}) is invertible in $M_h(B)$ and $(q_{ii}) = (p_{ij})^{-1}$.
The case of PD-ideals is proved in [4], so we suppose $a^{-1}I^{p-1}$ is topologically nilpotent. Then the ideal $a^{-1}I^{p-1} + I$ is also topologically nilpotent. Set $I_n := (a^{-1}I^{p-1} + I)^{n-1}I$, $n \geq 1$ (so that $a^{-1}I^{p-1}$ is again topologically nilpotent, and S is canonically isomorphic to the projective limit of the system $(S/I_n)_{n \geq 1}$). It is easily seen that $I_n^p \subset aI_{2n}$ and $I_n^2 \subset I_{2n}$. To show the assertion, it is enough to verify:

For any integer $n \geq 1$ and a \mathcal{O}_K-algebra homomorphism $u : B \rightarrow S/aI_n$, there exists an \mathcal{O}_K-algebra homomorphism $u' : B \rightarrow S/aI_{2n}$ such that $u'(\text{mod.}I_{2n})$ is uniquely determined by $u(\text{mod.}I_n)$ and u' makes the following diagram commutative:

$$
\begin{array}{ccc}
B & \xrightarrow{u} & S/aI_n \\
\downarrow{u'} & & \downarrow \\
S/aI_{2n} & \rightarrow & S/I_n.
\end{array}
$$

In other words, writing I for I_n and I_2 for I_{2n}:

For any elements u_1, \ldots, u_h of S such that

$$P_i(u_1, \ldots, u_h) = a\lambda_i \quad \text{with some } \lambda_i \in I \quad (1 \leq i \leq h),$$

there exist $\mu_1, \ldots, \mu_h \in I$ such that $\mu_j(\text{mod.}I_2)$ are uniquely determined by $u_j(\text{mod.}I)$ and

$$P_i(u_1 + \mu_1, \ldots, u_h + \mu_h) \in aI_2 \quad (1 \leq i \leq h).$$

If $\mu_j \in I$, we have the Taylor expansion (2.2.2)

$$P_i(u_1 + \mu_1, \ldots, u_h + \mu_h) = a\lambda_i + \sum_j \frac{\delta P_i}{\delta X_j}(u_1, \ldots, u_h)\mu_j + R_i$$

with $R_i := \sum_{|r| \geq 2} \frac{\delta^r P_i}{\delta X_i^r}(u_1, \ldots, u_h)$.

For any element $P \in J$, we have $\frac{\delta P}{\delta X_j}(x_1, \ldots, x_h) \in aB$, i.e.

$$\frac{\delta P}{\delta X_j}(X_1, \ldots, X_h) \in a\mathcal{O}_K[[X_1, \ldots, X_h]] + J.$$

If $|r| \geq 1$ and $r!$ is invertible in \mathcal{O}_K, we see inductively (cf. Remark (2.1), (2))

$$\frac{\delta^r P}{\delta X^r}(X_1, \ldots, X_h) \in a\mathcal{O}_K[[X_1, \ldots, X_h]] + J,$$
so
\[\frac{\delta^r P}{\delta X^r}(u_1, \ldots, u_h) \in aS + aI = aS. \]
Since \(I^2 \subset I_2 \), we have
\[\frac{\delta^r P}{\delta X^r}(u_1, \ldots, u_h) \cdot \mu^r \in aI_2, \]
if \(|r| \geq 2 \) and \(r! \) is invertible in \(\mathcal{O}_K \).
On the other hand, we have \(\mu^r \in I^{|r|} \subset P \subset aI_2 \) if \(p \) divides \(r! \), and \(\frac{\delta^r P}{\delta X^r}(u_1, \ldots, u_h) \) are always in \(S \) (Remark (2.1), (5)). Thus we have
\[
(3.2.3) \quad R_i \in aI_2.
\]
Take an element \(P_{ij} \in \mathcal{O}_K[[X_1, \ldots, X_h]] \) such that \(\alpha(P_{ij}) = p_{ij} \in B \) for each \((i,j)\). We have
\[\frac{\delta P_i}{\delta X_j}(x_1, \ldots, x_h) = ap_{ij}, \]
i.e. \(\frac{\delta P_i}{\delta X_j} = aP_{ij} + R_{ij} \) with some \(R_{ij} \in J \), from which follows the congruence
\[\frac{\delta P_i}{\delta X_j}(u_1, \ldots, u_h) \equiv aP_{ij}(u_1, \ldots, u_h) \pmod{aI}, \]
and
\[(3.2.4) \quad \frac{\delta P_i}{\delta X_j}(u_1, \ldots, u_h) \cdot \mu_j \equiv aP_{ij}(u_1, \ldots, u_h) \cdot \mu_j \pmod{aI_2}. \]
Putting (3.2.3) and (3.2.4) into (3.2.2), we have
\[P_i(u_1 + \mu_1, \ldots, u_h + \mu_h) \equiv a(\lambda_i + \sum_j P_{ij}(u_1, \ldots, u_h) \cdot \mu_j) \pmod{aI_2}. \]
Since \(S \) is flat over \(\mathcal{O}_K \), the condition (3.2.1) for \(\mu_j \) is now equivalent to
\[\lambda_i + \sum_j P_{ij}(u_1, \ldots, u_h) \cdot \mu_j \equiv 0 \pmod{I_2}, \quad 1 \leq i \leq h. \]
Since the matrix \((p_{ij}) = (P_{ij}(x_1, \ldots, x_h)) \) is invertible, the matrix \((P_{ij}(u_1, \ldots, u_h)) \) is invertible modulo \(aI \). Now the existence of \(\mu_j \in I \) satisfying (3.2.1) is clear. Moreover \(u_j \pmod{I}, 1 \leq j \leq h, \) determine
\[
\mu_j(\text{mod.} I_2), \ 1 \leq j \leq h, \text{ uniquely, because they determine } \lambda_i \equiv 0 \pmod{I} \text{ and } P_{ij}(u_1, \cdots, u_h) \pmod{I} \text{ uniquely and } I^2 \subset I_2.
\]

Part (b) of (i) follows immediately from Part (a).

Proof of (ii): Since \(B_K \) is finite over \(K \) and \(\Omega^1_{B_K/K} = K \otimes_{O_K} \Omega^1_{B/O_K} = 0 \), \(B_K \) is étale over \(K \). So we can write \(B_K = \prod_{s=1}^{t} L_s \), where \(L_s \) are finite separable extensions of \(K \) assumed to be contained in \(K^{\text{sep}} \), a fixed separable closure of \(K \). Then \(L \) is the composition of the Galois closures in \(K^{\text{sep}} \) of \(L_s/K, s = 1, \cdots, t \). Hence \(L/K \) is a Galois extension.

If \(a \) is a unit, then \(\Omega^1_{B/O_K} = 0 \), \(B \) is étale over \(O_K \), \(L/K \) is unramified, and \(u_{L/K} = 0 \).

Suppose \(a \in m_K \). We will show that \(L/K \) has the property \((P_m)\) for any \(m > v_K(a) + \epsilon \) with \(\epsilon := \frac{1}{p-1} \cdot \min\{v_K(a), v_K(p)\} \).

Writing \(J(E) := \text{Hom}_{O_K-, \text{alg}}(B, D_E) \) for a finite extension \(E \) of \(K \), we see that
\[
J(E) = \text{Hom}_{K-, \text{alg}}(B_K, E) = \prod_{s=1}^{t} \{K - \text{embeddings : } L_s \hookrightarrow E\}.
\]

Here we have \(\# \{ K - \text{embeddings : } L_s \hookrightarrow E \} \leq [L_s : K] \) and the equality holds if and only if \(E \) contains a subfield which is \(K \)-isomorphic to the Galois closure of \(L_s/K \) in \(K^{\text{sep}} \). Hence we have
\[
\#J(E) \leq \#J(L)
\]
and the equality holds if and only if there exists a \(K \)-embedding : \(L \hookrightarrow E \). So it suffices to show:

If there exists an \(O_K \)-algebra homomorphism
\[
\eta : O_L \longrightarrow O_E/a^m_{E/K} \quad \text{with} \quad m > v_K(a) + \epsilon,
\]
then we have \(\#J(E) \leq \#J(L) \).

Noticing that \(a^m_{E/K} \) is of the form \(aI \) with an ideal \(I \) of \(O_E \) which satisfies the assumption of Part (i), we can define, by (a) of (i), a map
\[
J(L) \longrightarrow J(E) ; \quad u \longmapsto u^\eta,
\]
where \(u^\eta \) is the unique element of \(J(E) \) which makes the following diagram commutative:

\[
\begin{array}{c}
B \xrightarrow{\eta \circ u} O_E/aI \\
\downarrow u^\eta \\
O_E \longrightarrow O_E/I.
\end{array}
\]
It suffices now to show that this map is injective.

To see what the kernel I' of the composition

$$\mathcal{O}_L \overset{\eta}{\longrightarrow} \mathcal{O}_E/\alpha I \xrightarrow{\text{canon.}} \mathcal{O}_E/I$$

is, let K' be the maximum unramified extension of K contained in L. Then there exists a unique K-embedding : $K' \hookrightarrow E$ for which η is an \mathcal{O}_K-algebra homomorphism, because $\mathcal{O}_{K'}$ is formally étale over \mathcal{O}_K. Let α be a prime element of \mathcal{O}_L and let P be the monic minimal polynomial of α over $\mathcal{O}_{K'}$. Since L/K' is totally ramified, P is an Eisenstein polynomial;

$$P(X) = a_0 + a_1 X + \cdots + a_{n-1}X^{n-1} + X^n,$$

with $a_i \in \mathcal{O}_{K'}$, $v_{K}(a_1) \geq 1$, $v_{K}(a_0) = 1$, and $n = e_{L/K} = [L : K']$. If β is an element of \mathcal{O}_E with $\beta \pmod{\alpha I} = \eta(\alpha)$, we must have $P(\beta) \in \alpha I$. Comparing the valuations of $P(\beta)$ and its terms, we see $v_{K}(\beta) = v_{K}(\alpha) = 1/n$. Thus the kernel I' is $\{x \in \mathcal{O}_L; v_{K}(x) \geq m - v_{K}(a)\}$, which satisfies the assumption of Part (i).

If $u, v \in J(L)$ and $u^n = v^n$, we have $\eta \circ u \equiv \eta \circ v \pmod{\alpha I}$ and $u \equiv v \pmod{I'}$, from which we obtain $u = v$ by Part (b) of (i). Thus L/K has the property (P_m).

By Proposition (3.1), (2), (ii), we have $m > u_{L/K} - e_{L/K}^{-1}$ if $m > v_{K}(a) + \epsilon$. Hence $u_{L/K} \leq v_{K}(a) + \epsilon + e_{L/K}^{-1}$.

If $e_{L/K}$ is prime to p, L/K is tamely ramified and

$$u_{L/K} = 1 \leq v_{K}(a) + \epsilon.$$

Suppose p divides $e_{L/K}$, and let $G := \text{Gal}(L/K)$. Then $e_{L/K}u_{L/K}$ is an integer divisible by p, because $u_{L/K} = \int_0^{i_L} (G(x) : 1)dx, p|[G(x) : 1]$ if $x \leq i_L$, and $G(x)$ may “jump” only at points $x \in e_{L/K}^{-1}Z$. Hence the inequality

$$(p-1)e_{L/K}u_{L/K} \leq (p-1)e_{L/K}v_{K}(a) + e_{L/K}(p-1)\epsilon + (p-1),$$

where the terms except $(p-1)$ are integers divisible by p, implies $u_{L/K} \leq v_{K}(a) + \epsilon$.

COROLLARY (3.3). Let the notation and hypothesis be as in Proposition (3.2), and let $D_{L/K}$ be the different of the extension L/K. Then we have $v_{K}(D_{L/K}) < v_{K}(a) + \frac{1}{p-1}\min\{v_{K}(a), v_{K}(p)\}$ unless $v_{K}(D_{L/K}) = 0$.

Proof. If L/K is unramified, then $v_{K}(D_{L/K}) = 0$. If not, we have $i_L > 0$ and (Proposition (3.1), (1))

$$v_{K}(D_{L/K}) = u_{L/K} - i_L < u_{L/K} \leq v_{K}(a) + \frac{1}{p-1}\min\{v_{K}(a), v_{K}(p)\}.$$
Theorem (3.4). Let A be a complete discrete valuation ring with finite residue field, and fix a prime element π of A. Let K be a local field of "mixed characteristic" over A, i.e., a complete discrete valuation field K with perfect residue field which is endowed with an injective ring homomorphism $A \rightarrow K$ inducing a local homomorphism $A \rightarrow \mathcal{O}_K$. Let $n \geq 1$ be an integer and J a finite flat π-module scheme over \mathcal{O}_K such that the invariant differential ω_J of J is a free $(\mathcal{O}_K/\pi^n\mathcal{O}_K)$-module. (A typical example of such a π-module is the kernel of π^n on a π-divisible group (loc. cit.)). Let $u_\circ := n\nu_K(\pi) + \frac{1}{p-1}\min\{n\nu_K(\pi), \nu_K(p)\}$, H the kernel of the action of $G = \text{Gal}(K^{sep}/K)$ on $J(K^{sep})$, $L := (K^{sep})^H$, and $\mathcal{D}_{L/K}$ the different of the extension L/K. Then we have $G^{(u)} \subset H$ for all $u > u_\circ$, and $v_K(\mathcal{D}_{L/K}) < u_\circ$.

Proof. Replacing K by its maximum unramified extension, we may suppose the residue field k of K is algebraically closed. Then the general theory of group schemes says that the affine ring B of J is locally of complete intersection. Since $\Omega^1_{B/\mathcal{O}_K} = B \otimes_{\mathcal{O}_K} \omega_J$ is a free (B/π^nB)-module, we can apply Proposition (3.2) and Corollary (3.3) with $a = \pi^n$ and obtain the theorem.

Remark (3.5). In some simple cases, direct calculations yield sharper results. For example, let A and π be as above, F the fraction field of A, and F_n, $n \geq 0$, the field of π^n-division points of a Lubin-Tate group over A associated with π. If $L/K = F_m/F_n$ with $m > n$, we have

$$u_{L/K} = \begin{cases} m, & \text{if } n = 0 \\ q^n + (m - n - 1)q^{n-1}(q - 1), & \text{if } n \geq 1 \end{cases}$$

$$v_K(\mathcal{D}_{L/K}) = [L : K] \left[\min\{m, v_F(q) + q^{1-m}\} - q^{n-m+1}/(q - 1) \right].$$

References

[5] 浜崎芳紀: Drinfeld 加群 に同伴する Tate 加群 について, (this volume)

Tokyo Metropolitan University, Hachioji, Tokyo, 192-03 JAPAN