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l.85tatement of the F\r= sl bs

1.1 Definitions. Let %(Z)= 7[{':1““..., :r”) be a Lebesque
integrable function defined on the fundame«.‘ntal cube / —(—77,]7')”

in Euclidean space I? _«Consider the multiple Fourier

\series; of / N
Z 4e" (1.1)

h

where M= (}zf ) ) ”’/V')é Z -the set of vectors

ith 1 S el ) =3 mx:%:x R A
with integer components, 72 s 7 2’/‘/ and

é ,__(217}'—/‘/4 1) T e
f— 7

To sum the series (1.1) we must define partial sums
of (1.1).0ne can consider different kinds of partial sums
(rectangular,square,...).In this paper we shall deal with
partial sums defined by means of elliptic polynomials.
A (f) Z Qo'( {d be a homogeneous polynomial
Kll=m ,
on {é k with constant coefficients,where ol —multi-index,
i.e. of =(°(4 ~--}0(,V) o(d—ncmneqative integers, |[o/| = 0(4"f‘
0( ..(-. + o( and E“ E €M , Suppose that /4(%')
N
is elllptlc i.e. /4({)>0 for all nonzero g & //€>
Each such polynomial determinens partial sums of the series
(1.1) in the following way
' : L trx
£l =2 He e
Aln)< A
. . ‘I 2
In particular,if A (;’) = IEI then 52 £ (x)
coinsideg with the spherical partial sums of (1.1).

In this paper as in most of the literature on eigen -

2
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function expansions only Riesz means will be considered.Thus

we introduce for all S with Re' S 20 the Riesz meane

of E/‘ ;Zfac) :

_ Air) 5/ (n 2
Efie = Z (1~ 5 ) Ee ¢3)
A Aln)< A
Note é-)o/fx) = 6//2‘} .« We allﬁw S to be complex since

this is required in the interpolation method of Stien [1] but

does not cause any significant difficulties.

1.2.8pectral Resolutions of Elliptic Differential

o N
Operators.let C (T ) be the set of all infinitly differen—

‘ 4
tiable and 27[_ periodic on each argument functions.In Lz (T )

we consider a homogeneous differential operator A(J)‘lz a,,( jﬁ(
' oA j=m
with constant coefficjents and domain of definition C“('T”')’

o oy =)
where jd:- 2043]‘12""24/ ) jé = ¢ o=

L P=x,
The operator A(:t) is said tb he elliptic if cgr'respondiﬁ
polynomial A(E) is eilipntic.ﬂbvi.cnutﬁly/ an elliptic operator
A(j) is symmetric and non—negative:

‘ ~ P
(A )= (u hv] , (A u) >0, ¢ oeC™(7T7)
Therefore,according to Friedrichs theorem the operator A(i)
A .
has a selfadjoint extension /4 LIt is not hard to see that

this selfadjioint extension is unigque and it coinsides with the

closure of A ( j) :‘

NN
The operator /‘ has a complete orthonormal in LZ (7 )
system of eigenfunctions
N '
-2 (n= V4
fn™* ™7 nez

3
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R N ;
correspanding to eigenvalues i /4[*1_)}« , YLG/Z Accor-

ding to the spectral theorem of von Neumann we have

A = f;uz

where E) is a resolution of identity.The expression E 7'4'%}
is called the spectral resolution of an element %éza (T"jand

it can be verified that

A: 7{(1) S‘ f{ e th=x
Alr)< A

i.e. the spectral resolution coinsides with partial sums of the
multiple Fourier series (1.2). -

We also will have an importent spectral resolution if we
consider an operator A (.ﬁ) in k Jdet Ca (ﬁ -
the class of all infinitly differentiable functions with com-

pact support, be the domain of definition of an elliptic operator

/4 (j) acting in LZ‘ (ﬁﬁl} LAgain the closure of A(.D)
is the unique selfadjoint extension in Z’Z(PM) of /4 (j)

and i‘n this case we obtain the following spectral resolution of

an element %é LZ (,?/1/) :

e, fex) = (er) * f/f;)e?/f 1.9)

A< A
A

where ?/(g) is the Fourier—~Flancherel transfomation of 7/.'

A s o, -l 2
i =@ b [ e da

R—>o0 x/< /P
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We note that (1.4) is, on the other hand,. paftial inteqgrals
of _‘tl_'\e mgtltiplez Fourier inteeg;"als.ﬁa in classic.al one~dimensional
case the multiple Fourier series are closely connected with the
multiple Fourier integrals. |

1.Z.localization of the Multiple Fourier Series. We shall

discuss the problem of CDHstlOnS for IoralJ zation of the Riesz
/_:'3 ) e : )
means. 5\ sthat is,o0f conditions on a function at points
far from the one under dicussion under which the convergence of
é{:. depends only on the behaviour of the function in a
small neighbourhood of the point in question.In what follows it
is convenient to use the following definitions.
. ' . 7 .
Let lf he an arbitrary region of . We say that localiz-
s - A
ation principle for £; f( holds in the class Z;,(7-,/ if it
follows from the conditions
;ZGZ.P(T”/, Zexy=0 for =el (1.5)
that the following equality holds uniformly on every compact subset
of Lf s
bym E Fex) =0 ¢.6)

A—» co
If for given /7 « S and some 'xo S U there exists a

function 7[ satisfying conditions (1.5) but &’h /E f/(':z' )/_}0
P

we say that the localization principle for the resolution é;sfﬂ
féils in the class Zbo .

In one- dimensional case localization for é; je holds in
the class L, (' Z} (the classical theorem af Rlemann - .Lebesque).
But for multldlmensxonal case the classes (7—1) are too wide to
hold localization and hence we must cunsidar elther a class of smooth

functions or some reqularization methods. in particular, the Riesz

S
means Ea
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The first results on localization for multiple Fourier series
are due to Bcac:hner,“l‘itchmarﬁh,I”Iine:-\l':.esl':immdar*am,Chandr‘asekhar:am,.Le—-
vitan,Stein,Ilin,HE:')rmar\der' and other mathematicians.A detiled survey
.lcvf this question can be found in [2]1,.[3].
Tﬁe question of localization of the Ries:z means E;/ in the
classes Z’/’(T”) for /a>/2 has beerj completly soleved,i.e. if
-1

S = > then for any elliptic polynomial /’(F) localization

: 4 V-1
holds in the class . L/o (7— /; Vit =2 [41.If S< "Z » then
localization fails even for the lLaplace (i.e. (4(2‘) _ )E‘[z )
aoperator and even in the class ( of continuous functions,
. N
hence fortrori in any Z_ /7 /, /02 7 [5].
. - . Vs A »
Thus covergence or divergence of é, / in (1.4) for functions
: N
7C € L/, ( 7 ) does not depend on geometry of the set 'QA =
{{é F”l. AQ‘}(?/when /7 2 2 si.e. behaviour of all partial sums
’
(1.2) is similar to spherical ones.
Ky
Unlike this case the precise conditions for localization of E/-‘
4
in Lf (T ) with < 2 depend strongly on the geomebry of
. . . ,
the surface QQA = {?GR /' A (g )'—"--{j .For example,when
2
A(g’) = /?’/ (in this case all the principal curvatures of the
surface Q_Q o oara equal to 1) Stein [1] has proved that the loca-
A

s M-1
lization pricipal holds for E,‘/i S= 5~ in any Z_/, (7'4./)/ /D)_[

This result holds also for elliptic polynomials /1 (é.) +if all the
principal curvatur‘és of the surface QQA are different from zero
at every point [4] (in this case we say that the set QA is stictly
convex) .But if A(E) is an arbitrary elliptic polynomial, then , as

. s vV
Hormander has shown (4],1localization for EA holds in L/, (7 /'for

4

S > F‘ ) ’{5/’S2 (note, that in [4] this result was proved for the

spectral resolutions associated with an arbitrary selfadioint ellip-

6
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tic differential operator on an N-dimansional paracompact manifold).
The first question which arises here is the following: i% it
possible to improve the condition of localization S > .A—/:_.f

/96[”;2) 7 |

To answer this question we consider an elliptic polynomial

( Zm ZA/ 2\
M) =6 - (/=25)

for

of order 2m (a similar polynomial was first investigated by Feetre
[6£]).The corresponding set QM =; }’6 ’\D,‘ M/:f‘)<.l/ is convex but not
strictly convex,since all principal curvatures are zero on points

(+1,0,...,0).For this reason we have the following - statement.

' ./1’;’/ £
Theorem 1. Let S < Am (/’) = P 7= 2m ) .Then the
-
localization principle fails for 65(/{/) in the classes Z/ (7 /,
1 .
< - — .
1< /D <2 (4 2m
S |
N"1 i'_

[ -4
= o

Localization

L\_oic‘s
holds

v

' \ = |¥|

4/2_ ” C. For A(E) E
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Since A — as 7 > e it follows that the

" m (ID) P : .
condition S = _/t/ for localization is sharp in the class
of all elliptic polynomials.

But is there an elliptic polynomial for which the condition

o5 2

.can not . be improved? The following theorem gives a
negative answer to this question.
Theorem 2. Let A(é’) he an arbitrary elliptic polynomial.

Then there exists a function £A [/7) =0, fA (7)> (0  such that
> .
localization for €I holds in L/, (7"‘/], /S/bsz when

sy Wax [ /4t g (p)f

r
Note,Theorem 1 shows that inf EA (P) =0 and Theorem 2
A
shows that there is no elliptic polynomial r4 for which

€ lp) =0 .
To understand what is happening on the triangle ABC in
Fig.l we introduce the 'fqllmwing classes of elliptic polynomials.
Definition. We shall say that the elliptic polynomial A(g‘)
belaongs to the class A,. ) r= 0, ’f, -y N-1 if at every
point of the surface QQA at leagt r of the N- 7
sprincipal 'curvatures are different from zero.

Obviously

A, C C A cCA,

N—1

and AO' coinsides with the class of all elliptic polynomials.
The smollest class N-1 is the class of all @lliptic polynomials
>
with a strictly convex set .QA For (—:-\:~:amp].e.=.) /E/ 7 6/44,_1, .
. N-1 1_1
We shall use the notation J = — - -= /.
- (P 7 r (/o
Theorem 3. Let A (?) 'S /4,., , r=o0, 4/ ...//V-f . Then

'S
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S

for the Ries: means E;; of order Sgé;(f) localization holds
in the classes Lf’ (T”) ) /‘/’52-

we note when ¥ changes fraom O to /1/"'1 the lines S:é;(/))
fill the triangle ARC in.Fig..l.

When V>0 there is no analogous to Thémr‘em 2 in classes

Ay—\ Nevertheless we have the 'folluwing statement.

Theorem 4. Let A(‘{)G;A,‘, r>0 « and the set QA

is convex.Then there exists a function 8/\ (F))O such. that locali-

holds in classes L/, (7-4/)) /5'/52 when

~

S
zation for EA

s> mac{ L Gtp)—€, (P}

To show that the conditions on S in Theorems % and 4 are

optimal ,consider the elliptic polynomial of order 2m +2

Z'm,r(?)z(g/;)”—f(rdd)( !

which belongs to the class A;— when F< /1/“ / and é %'4,\”'
It is not hard to see that the set ; te R”; Ln,r ({‘)<1} is convex.

Theorem 5. Localization holds for the Riesz means E/] ‘,,,,r_)

1
in the classes L/_, (TM) . 1'5/05 2 (4"5—”1) iff
- 1 .F

s;é\mlr(r)s (”‘r ‘f)C'l Zh\ ’; +2

Since J’;r —> J:\ AS g —> Oe it follows that the con-

/

ditions of Theorems 3 and 4 are sharp in the class /4,- .

Next statement shows the influence of the geometry of the set

_ng to uniform convergence of E: # .

Theorem &. Let A(}')C—Ar ) 7‘20,4,..//1/"'/, S)J;(/’),
[s,pgz and a function 7!54/, [7""// is continuaus on /C 7_?/
Then

ﬁm E:/{fx) = ;Z(x)

oo
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uniformly on any compact subset of D

l.4.Localization c_)_'f Multiple Fourier Integrals. In case of

multiple Fourier integrals one can obtain the precise conditions
for localization in classes of smooth functions.
Here it is convenient to consider the Liouville classes er AD//

a
-a>0 «To give the definition of L/o oowe introdude the operators

Hay- et f, froe s

F e =en)? / #/?)elx‘df

We 5“«:\11 say that a function /CZ (ﬁ / helongs

v4
to the class L (/? } 4520 if the following norm is bounded

-1
12 =l F (1+11?) I,f//m,,)
LA (RY)
v
When Qa is an integer then [-'P (A) / coinsides with
W (%) i
the usual Sobolev classes ~the set of functions
fé[l_,(k) for which all par tial derivatives of order Q
¥4

belong to L (R/

We shall also consider the MNikolskii classes //q Q= /"‘
Z is integer, o< 63 .l ~the set of funchtions /('[ (M
for which all partial derivatives jo(/@é (ﬁﬂlj /o{/._ Z and

15 L tcel) = 25%Fee) £ 7 L. A o , =e/AlT

Theorem 7. :»uppofse that A(F)éAy\ ) =0, /,»-~/ - /’

Then for the Riesz means G’ 7! localization holds in the classes
q '’ - V-1
L R ) 1<f._400 when a+s = rmax ‘ 3 J;(/D)} .

For the partial integrals associated with the elliptic

/o
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polynaomials Lmr(g) we have the following assertion.
/

S
Theorem 8.Localization holds for the Riesz means 6; (-[M,r)

Q N
; - H K sPLoo ;¢ V-1
in the classes P ( \ ), I</ iff Q+S> mﬂ,\r«f E-)J;Ir(f’))'.

a+g q
By virtue of the imbedding /7;, "94" for any £ >0
(see [7]. § 7.3),it follows from Theorem 8 that the conditions stated
qQ
in Theorem 7 for localization in Lf are sharp in the class /p

(since Jm’p '*"‘Xh as pa—>oo ).

1.5.Convergence Almost Everywhere .The question of convergence

almost everywhere of onedimensional trigonometric Fourier series has
‘been completely solved in classes LF('F/ 7') si.e.if */é é/o(-;;y)' /7_;7
then its Fourier series converge to 7[('1) almost everywhere on (‘7/7)
(Carleson- Hunts theorem) and there exists a function 7[6 é’ (-7/, 7/')
having Fourier series M"lich diverge almost everywhere on ("7’/ 7’)
(I‘:Zo].mc:\gc)r'ov{a theorem).

In multidimensional case there is no convergence almost everywhere

of the partial sums E:{ 7‘[ in classes A/, [74/} at least when

/g/)<2 (l\lil«:.ishin‘s theorem, see [2]‘,[3]).&‘0:" that reason we must again
regularizate E:‘ {) by Ries:z means. Convergence almost everywhere
of the Riesz means E/‘s was investigated by many authors (see for

example the survay papers[2],[3]).Here we only rémind some results.

2
For the elliptic polynomial A(E)= ¥ Stein [1]
proved convergence almost everewhere on T of the Riesz means
, EAS of the order S > ('V"") (75 -3 of functions from
N 2 .This result holds also for any elliptic
L,(TY), 1= pP < y ptis

N - :
polynomials A (%')é 74”_’ [(43.1F /4(?} is an arbitrary ellip-

.4
tic polynomial then the Riesz means of functions 7‘/6 Lf(T /' /5/’5'2

V7
- gonverge to 7{[9(_) almost everywhere on 7 when S >

11
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._4. -..4.) .This result is due to ngmander [41.
Z(N"’)( ’) 2 -
b2
N-1 ,
it ' B
Camver‘gence a.e.

ha]&ts‘ ~— l\010($
(C for Alx)e A,

1 .

— -
Y Yp

The first impression is that that on the triangle ARBC in Fig.2

F‘\s.?.

the precise conditions for convergence almost everswhere of ES )
like localization pricipale,must depend on the number of nonzero
curvatures of the surface QQA (this was infact proved by N.Maha—
\m'edjanov,Candidetes Dissertation,Moscow State Ur)iVEFEi'hf,l‘??’E- ).
The following statement shows that this is not the case.

Theorem 9. Let A’(%’) be an arbitrary elliptic polynomial

/, . s
and Q = { ?é k )‘ A(I;)‘(-{j’ be a covex set.Then éff"' EJI 7!("7.’#)‘/
I 7Y y_L)
for almost every =X & if S'.>(/|/‘/}(/u -3 }_/ /=o€ 2 .

The analogouse theorem is true for the multiple Fourier integ-
)y S
rals G; 7Z

We note that convexsity of the set QA csimplifies the

proof.But, as examples show,this condition is likely not necessary.

/2



"2.Froofs of the Theorems

In this chapter we present some main points of the proofs of

the theorems formulated in chapter 1.

s
2.1.8pectral Functions. Consider the Riesz means EA 7 .

Using the definition of coefficients / we have

é:ls/(:;):- 7{/ Qs(xy, ﬁ)i/lﬁ)éf

where
‘nx
-—A/ — ‘ _ /4/’&) S_e
s 7 - — .
O%(x )= (1) £ (7- 5 )
- Aln)< A
S
The partial integrals éq ‘ﬁhi) are also an integral opera-—

tors with a kernal

‘ - —A/ A(;.} S ’lé’x
e(-x",\)z(zn) f (’/“ _7‘__)@ a/f'
AQ’)<;\

In the spectral theory of differential operators the functions
@(,x’ﬂ): @o(x’ )) and Q(x, ,\):: eo(x,,\) are called a
spectral function. , _

To study c:o;"we.“r'gence of E/{g/(?f) (@:\S% (x)) as 5] -3 O9
we must investigate an asymptotic behaviour of the spectral function
@g(-_zl/\) ( e?(:r',\)) when /\ - o0 .One can investigate the

S
asymptotics of e (’.’Z"z\) by the method of stationary phase since

: N 7 s ,
< -N ™. LA ¢ s
EA)=(m) A f e’ f (1- 4¢)) o/; (2.1)
s, -Ag)< 1
and therefore e (’C: /\) is an oscillatory integral.Note when s=0

the integral in (2.1) is the Fourier transformation of an indicator

13
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function. of the set QA
A phase thnFtion (p({)sc)-.—l Z-'x of the integral (2.1) dogs not
have stationary points in the set -QA «Therefore it is clear
that the basic contribution to the integral (2.1) for large ﬂ
is given by a neighbourhood of those critical (stationary) points
of the surface 9% where the exterior normal coinsides with &= 7;5/‘
For example, if /4(?) é‘A "then for all directions W &
3”4 (unit sphere in PA/A ) the phase function of Q ('DC ;\)
is the Morse type, hence it has a good estimate uni formly on we‘s

l

4

; L
e < 2-2)

2
what is analogous to the simple case A(r /{i‘/ Since this

estimate the Foisson summation formula allows us to prove the foll-
owing equality far '?e s > %:'/
s = s 1) 2
O%x ) = = e (x+21p,4). &3)
‘ neZz”
Now we can establish the necessary estimates for Qs(x; /’l)
But if A (f)fAN_’ then the series (3.3)) in general ,does not .
converge, since the estimate (2.2) is true only for almost all direc-
tions W& S ] .Nevertheless, if we integrate {eS(x, /\),Z on the

-1 :
sphere S then we will have a similar to (2.2) estimate

< .2 Z V ¢/ |
(j /-e(re,ﬂ\)/ 060/ = f/,.,/!!_’fﬁes 37

o (4+ rA

3\\

(for g=0 this estimate was proved in [B]) .Using the estimate

(2.4) one can prove the following assertion .

I 4
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Let -]CGLf [TA//, P> 4 - By F[I)= F(ﬂ.”,,_..):(‘”)

we denote a function which is 217~ periodic in each variable, XX

4 . Jd
and F(x)= K[x) for & 4

N-1

N
Lemma 1. Let Ee 5>? .Then for each X & 7 we have the

equality

s (-2 ﬁeixn:- | ésc ) F (- . (2.5)
1 A)f Rjﬂ/ ) (7)0? 2

Aln)< A

Both functions in (2.5) are 29—~ periodic in each Q. and since
4
the estimate (2.4) the right-hand side of (2.5) belongs to th (7—}'
Hence to |:n"c3m-'l lemma 1 it is enough to show that the Fourier coef-
inx
ficients by the system {e }‘ of both functions in (2.3) are equal.
But this can be verified by a simple calculations. Lemma 1 is pr‘q\'/ed.
. ﬁ",{
The equality (2.95) will be our main tool in the study of A ’
o : ‘ s
By this Lemma we can reduce the investigation of the Riesz means % 7/
to the investigation of -the integral opertors 6)57[ with more simpia
A
kernals.

»
alw

2 Froof of the Theor‘r«'ms on Localization. As we have seen above

to prove theorems on convprgence of 57{ we must study an asymptmtlc.
behaviour of the oscillatoryintegral £ (I’ A )

Lemma 2. Let A € AP‘ ) k =0, 4/ M V-1

Then the es timate

s ca” (2.6)
2.
, e C’x| (X) l . f‘fz ResS
. ’F; — -t e
(4+ 2™ 1= )
.holds uniformly with respect to X & R , where C is a ﬁasitiv

constant.

ts
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Froof. Let $=0 .Using the divergent formula we write the

spectral function in the form
4
Y R 4 4

=Gen) = ‘w)de  @3%)
6(1,5\)—@77') L% 1/ Alg)=1 COS(w'h{_) G‘F'

where V\.? is the exterior normal at the point ’; ’ de;_ is the elemerl

of erea.By the localization principle in the stationary phase method,

we have

jr&ﬂ 22 fﬁ

= AG)=1

1
tﬂ”x;

Cos(w,"r%_')j/”.(r)o/g,; T 0//?07 e.¢)

‘wher'é I (I) is the inteqgral in (2.7) and f are the truncating
functions of the neighbourhoods of the qt«atlondr‘y points {(w) corres-
Pcmd:.ng to the vector W = I:} JHe note that if the set QA is
t:on\;'e:-: then to each direction &) there correspond only two stationary
points and if it is not convex then there correspond either finite sta-
tionary points or even - —dimensional surfaces, h. = A/-Z-

The integrals in the sum (2.8) are estimated in an entirely similar
manner.Let J:\ ('-’C) be one of thsr:?sse in'tegrals.F“er‘fcnr’ming a. change of

variables in the integral J_('JC) we obtain

J:\(ac) = gem P f(?)ola 0/;"
Q

where (‘E/‘ )= ?” - ’) Q is a neighbouwrhood Df zero in Rﬁ/ and
{ [r ) & CM(Q) We note that V ,ﬂ /-\, =0 and r_an‘f (ﬂ.,\, (0) r
(since /4- ({) & A ). A(_rordlr\g to a gener«.\ll.‘.atmn c:f Morses

~
lemma (see [?].Lemma T.5.1) there exists a diffeomorphism F = Y/(Z)
( VI(O) - O) such that in a small neighbourhood of the critical
A

point }’ = 0 we  have

/16
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(’ﬂ”aq/)’(‘() = COVLS% + Z 7=i ?2 * V (?rr/ S -/ )’

where Vw (O)'—‘— @) Bzﬁ CO) = 0 for all ' = /; M 7.
| ) >0 D‘Z . A/) ,
d k .

Using this assertion and estimating first F integrals we obtain
the estimate (2.4) for S=0 ,To obtain (2.6) for an integer s> 0
we must first integrate by parts in (2.1) .Applying, for example, a
tauberian theorem of Fi&r‘m&mder (see theorem 2.4 c»f’[ll-]) we establish
2.6) for general S Lemma is proved.

%é L (TA/) f>_{ and /(x)— for e UC 7-4/
If Re. s > /V“""‘}_" then application of Lemmas 1 and 2 to E j{

-giveé the unifarm on —C & K estimate
o | @.9)
[ EA#@),‘—‘?C H#HLFCTM) '

where K is an arbitrary compact subset of U
#é Z‘Z (T’V) then the estimate (2.9) holds for S with

Re s ;A'/Z:!‘ To see this we first note that since (2.4) we get

[/V‘ 1-2 RGS);,,

[ 1€ t=- 9,01 021<C A L <eX, €1)
T\U -

s S
Now,using an estimate in ij of the difference @ - e P estab—

lished by Bergendal [10] we obtain (2.10) for &S ’ I(’ﬂ s 20

Hence we have

|Ey fex) [ < c//;f//(T,) , xeK | (2.11)

for all § with Ke s> _2:.

Applying to the estimates (2.9) and (2.11) the interpolation

7
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theorem of Stein [11] for linear operators,depending analytically

on a parameter’ we get

IE;{I(X){S e ({f{/l‘ (T”)V , ~e K , (2.12)
P

where 1< P = 2 and Sz é:([:') .Note to use this theorem
we allow S to be comple:x.

oo - N

Theorem I follows from the estimate (2.12) since C— ( T )

is dense in Lr CTV ) : and for 7£ & C’o(‘Tﬂ) the theorem is

obviously true.

-~

To prove Theorem 2 we use the following estimate

14

s ca” _
e (=) = -+ 1=l A% )ME’ - ’

which is based on the estimate of a oscillatory integral estab-

lished in [12].

2.%2.0n the Absence of Localization. The proofs of Theorem 1

and the part " and only if" of Thém‘ems 5 a!jd 2 are technicaly
complicated to present here.For this reason,ws give only the main
ideas of the proofs of these Theorems.

To prove these theorems we actualy construct such a function

7/ (x) from a necessary class that 7/ (7(').:‘—0 in a neig-
e 0

hbourhood aof the arigin and

Lo [ EF ()] > 0.

A==

. " ,
We note that if €\ ]/(x} converges then this is because
' s
of the oscillation of the spectral function @ (T,}]) as /’)-9 s

Therefore we first construct a sequence of functions 7/ (x} which

.

18 -
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have a support in outside of the origin and the same asymptotic

behaviour as @g(x, AJ) .Then we consider a function
;f(xyzzgfzfcx) .
o J ‘/

It is obvious that 7{(7—'}:0 in a neighbourhood of the origin.
A i
We shall choose sequences of numbers ?’ JFI and {;IJ ;1 such

that the function A (x) belongs to a necessary class and

A& /€‘./,S7‘{(0) />0.

‘We obtain this inequality as follows: choosing the numbers /’b

seldom enough we make quantatives and

R el / ;

s ) 0
Ef (Z A ’ (¢)
s o g ke
E Z. # )(o) to be much more smoller (since the

Ay N k=g R TA s .

& .
oscillation of 99(-_7(",\.) ) in compering with "U‘; EA- ‘ﬁ’\ (O).

d .

The latter does not tend to zero since the asymptotic behaviour
of the functions {i\ (x) and Q(f, z\J‘) coinsides as Aj - s

To do all this we must know the asymptotic behaviour of the

s
spectral function G (’X‘,/l) as | =90 | The elliptic
polynomials MCE) and Z:m’\ C?} have been chosen such that
V]
one can easily study the asymtotics of the corresponding spectral
S
functions € (’JC,R) by the stationary phase method.Having this
: . V-7

done we prove the equality (2.3) in this case for /?e S >T .

“The equality (;"E) allows us to ebtain the aﬁymm:__otics of the

s
function @ _(Z'I ;\) - for large /‘ .

2.4.0n Locali:-:aticin of Multiple Fourier Integrals. We start

with the following very known assertion.

19
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Lemma Z. Let /4(?) he an arbitrary ellitic polynomial

of order mM . Then

Il (1+ /f(J))‘f@f(R”) = ///Zf

where A >0, Ispsoo.

2.'1
(R”) "’ e 14)

A
In this lemma A(T) is the closure (selfadjioint operator )
' A@)=Z a,
of the positive elliptic operator WEmM with the
. oo ,
domain of definition Co.( rE ) For this reason we can define

A
the power (4+A(:b)) by the spectral theorem.

We note that for P:Z. the lemma follows from the obvious
o . \> ) 2 m
inequality (4 + ‘.?l. - ayt ) = C (4 “+ '{‘ ) )

S
Now we return to study the Riesz means G>A f .Note that
A

the operator /4 { and its powers ) is commutable with its

s
resolution of the identity 6’}\ Therefore we can write 6;\ 76—'—

3

'_3' L3 A -
(4'(' K ) ”‘6/\5 (4“'/"4) ™ Here the operator (’H‘ A ) is

defined by the spectral theorem and it is not hard to see that

a
(4+ A )_ m dj is r?m integral operator with the kernal
. 2 . ]
s m
— +% €
eq(x‘,\) — J (’I ) OL CT,"![J)

0
Hence uwsing the estimates (2.6) and (2.10) one can establish [’oo
and Lz estimates for the kernal e‘; (1‘/ /ll) .,which cor-
responas to an e2lliptic polynomial /l [;’)6/4,. Having done
this we get for a function ]Zé [1‘?(/A>4/) Jwhich is equal to

4zero in UC k”)

20



72

/G) 7!/%)/4 C//(A+4) ///(k"' = c////"(,w’)

whare Qo+ ReS = /1/—/- -  ard if 7{6 Lq(' K"’) Ll For

a+ p e s >/ _Aé:-/ g .hél"./ =

Iaf#m)/s //7/// s

whezre 2 € K ) / < iz & arbitrary comeact of L .

fpplyivg bo bhe last e estimeabes b inlerpolahicorn mee

fhed we et

/6: /(’xD/ C //%/4/4(/’”) ,

whare 1< Vot £ 2 and Q7S = é; 6«: D W Thmcram 7OFollows From
thiz estinmabe. sirnce C:a (RM) ] ZJ/,q (‘ﬁ”) .

2aS. O Corvveraerwce Alinosh Dvervebses, e dernotae by f;*‘

so-cal led the naxinal operabor

‘A;S';er)zlsx | E, i/&r—)/ %C (77*)

A>1

s
(L maximal opaerabor @) cafinss in e same way) . The

irmvestigation of conver :zwru.:»: Mm‘”"n avarywhers of bhe Rissz mean

s . . £ .
£ ){ iz based on estimates of majorasts & 7{ in L
A * /oo

o /a wlozsed to 1 and AZ and o a zubsegueet aeelication

.Lﬂ

of Steins interpolation Stheoren (zealll).
s .
Eztimataes of EA‘ 7Z in L/, are Fournded om asyBpho-

i ezhimates of Skhe Furmction es[ z-, ﬂ)

e

szbalel dzshed by Ramool

[13] (robe to use Lhese results we mesd cormvaxsity of the st _%

ained bhe following asmaeralizabicon oF bthe MHeaedy-Littlewood insgual-

¥

= S
Lat W= — 5 6‘ ( W) ez & positive Furnshion

21/
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161 = [ Fande < eo.
L" (5”’1‘) , s/ .
DoWe define an operabor M @C;tir‘\-;: i L/o (f"// BE

Mycer = sep ™ | Igtg)]e(F),

E>0 {j/<f

whs b e jé Zl/o (WM/) /”’/ LIF 6: = £ b Mj iz the

usual maximal Ffunction of Heordy-Litdhlewood,

Lemma 4. There sxizts constant C =C()O) >0 capars Lng

‘ 1y} /s >/ zo bhat
M, = & / 215
//Mj //Lf Ce) <c/ /éf (s7) j//LF(f”) @)

Froof. We have

£ .
Mj x) = s4p [ @) / /j (-reo) | r " drdu

>0 51\/-

£
< | Guyswp & f /f (x-rw)ldrda
s -1 £>0 —&

According o tha Mirkowskik drmauality we getb

<[ @(w)/ [ e | [ geerald ]t
s"’ £

£>o0 -

Y
I f L(R")

22
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For fixed &) :ﬁlﬂg the one-~-dimernsional Hardy-Litthlewood in-
equaliby we obbain (2.15).
In conclusion we comgider the Following elliptic polyrnonial

of order 4

Légy)- 3?27‘ ("/?*/!/") o (735 )IE) 1"

' -4
where £€ k[, b€ kf, O<€< 2 % | e note that the set
{(g)z)e R € ; LCE 5) < ff iz Mot conves. Furthernors, the
sat of stabtionary pointz corregponding bo bhe direction e={0,...,0,1)
of the intsaral (2.7),connected with the polyremial L (F, 4 ) ,

iz k*f ~dimerzional zphere. Neverthaelezes Tor the Riezz means

EAS# corresponcing Lo L Q'Z) the Theorasm 8 holds.

Ackrowlaedanant, The aubbor iz deeply aratefull to Professor

s rasilhs.,

Hidercr i Fujiwara for dizcussiorny of LF
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