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A simple approach to Thom polynomials for C*° maps :
Vassil’ev complex for contact classes

Toru Ohmoto

In recent works by V.A.Vassil’ev ([7]), he has constructed the “universal cochain
complex” related to the hierarchy of degenerate singularities of smooth functions. This
represents combinatrial aspects of complicated relations between distinct singularity
types. The purpose of this note is to construct the “universal complex” for singularities

of smooth mappings, analogous to Vassil’ev’s one.

As usual we let J¥(n,p) denote the space of k-jets of germs from R™,0 to R?,0,
and K¥ k-jets of the group of contact equivalence.

1. K*-classification of J¥(n,p) and Vassil’ev complex

DEFINITION(1.1). Let v be a stratification of J*(n,p) such that each stratum of v
is a semialgebraic set. v is said to be a K*-classification of J*(n,p) if v satisfies the
following properties.

(1) Each stratum of v is K* invariant.

(2) If a stratum of v has connected components L, and Lo, then there are two points
z; € Li(i = 1,2) such that z, is K*-equivalent to z,.

(3) v satisfies the Whitney regularity condition.

Remark(1.2) Let v be a K*-classification of J¥(n,p). Then,

(1) v is finite set. This is verifed from locally finiteness and the fact that elements of
are invariant under the action of positive real numbers Rt on J*(n, p) which is defined
by t.7¥ f := j*(¢tf) where t € R¥.

(2) v satisfies the frontier condition— for X,Y € ywith XNY # ¢, it holds that ¥ C X.
The reason is as follows. We let v denote a stratification of J¥(n,p) into all connected
components of the strata of 4. Then, it follows from (3) in Definition(1.1) that +¢
satisfies the frontier condition ( see Gibon et al.[1], p.61, (5.6) and (5.7) ). Therefore,
for X,Y € v and some connected component L; of Y with XNL, # ¢, wesee L; C X.
For any connected component L, of Y, we can see that X N Ly # ¢ by using (1),(2) in
Definition(1.1), and hence we have L, C X as well as L;. Thus ¥ C X.
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PRroPOSITION(1.3). Let n be a locally finite partition of J*(n,p) into semialgebraic
K* invariant subsets. Then, there is a K*-classification of J*(n,p), any stratum of

which belongs to some element of 7.

In fact, we can construct a K*-classification subordinate to by using only the
follwing operations: Boolean operations, taking the closure, partition into families of
K*_equivalent components on the linear connction, and removing the singular locus

and bad point sets ( e.g. Vassil’ev [7] or Gibson et al.[1]).

(1.4) Assume that we are given a KF*-classification v of J*(n,p). For v, we set

C(7) := Zz-module generated by all elements of v,

C*(y) := Z3-module generated by elements of v with codimension =s (s > 0).

Then, C(7) = &C*(7)-
Let us define the boundary operator 6, : C*(y) — C**+1(~).

Let X be a strata of v with codim s. From the frontier condition of v ( see
(1.2-2) ), X ( closure of X ) admits a stratification whose elements are all the strata
Y € 4 with Y ¢ X. This stratifcation of X induces the filtration (Viing of X by
codimension where V; is the union of the strata with codimension > s + ¢ contained in

X. Set m = dimJ¥(n, p), and let
a . Hm'—-s('VO,‘/l; Z‘Z) — H —3-1(1/1, V'2; ZZ)

denote the connection homomorphism. Here we use closed supported homology groups.
Let px be the fundarmental class of Hp—s(Vo,V1;22). For any Y € v with ¥ C
Vi — V5 and a point y € Y, we define [X;Y]y € Z, by the value of j. o O(ux) where
ju t Hmoer(VisVaiZ2) = Hmss(Vi, Vi — 43 Z2). From the conditions (1), (2) in
Definition(1.1), we can see that [X;Y], depends only on X and Y, and therefore we
can define [X;Y] by [X;V], for some y € Y. For any ¥ € v such that ¥ ¢ V4 — V54,
we set [X;Y] := 0. Now we can define §,(X) € C*+!(v) by Y% (X;Y)Y.
v

LEMMA(1.5). 6406, =0.

Proof. For X € v with codim = s, we show 6., 06,(X) =0. For: > 0, let C}“H
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denote the submodule of C*ti(y) generated by the strata in X with codim s +i. If
Vi — Vit1 # &, then V; — V4, is the union of some Y, € v. Let p, be the fundamental
class of Hy_s—i(Ya,Ya N Vig1). Then, we have a injective homomorphism C}'H —
Hp—s—i(Vi, Vit1; Z2) by sending Yy to jospta Where jo : Yo «— Vi. Thus, we have the
following commutative diagram, which implies that §., 0 §,(X) = 0.

5{ , C;H - C;{+2

g ! !

o ;]
Hm—s(%, ‘/1) — Hm-—s—-l(x/l"v'z) — m-—s—2(%:%)

Q.E.D.

(1.6) The set T of all K*-classifications of J¥(n,p) is partially ordered: For v,~'
in T, 4 <4 if any strutum of 4’ is contained in some strata of 7.

For v, € T, yNvy' = {XNX'|X € 7,X' € 9'} is a locally finite partition of
J¥(n,p) whose elements, X N X', are K* invariant semialgebraic sets, and from (1.2)
it follows that there is a K *-classification 7" such that vy < 4" and 9/ < 4". Thus ' is
a directed set.

If ¥ < 4/, then there is a natural homomorphism (pJ,) : C(vy) — C(¥') : for
X €7, (p2.)(X) := L X';, where X'; € v/ with X C X;. It is easy to see that (pJ,)
commutes with §, and §.+, and that ({C(v)}, {(p“:')})v cr is an inductive system of

cochain complices.
DEFINITION(1.7). C(K7 ) := lim C(v).

(p7,) induces a homomorphism H*(C(7); Z2) — H*(C(7'); Z2), and it is easy to
see H*(C(K} ,); Z2) ~ im H*(C(7); Z2)-

2. Vassil’ev complex for K*°-equivalence

C(K} ,) defined in (1.7) depends only on positive intgers n,p and k. In this
section, we construct a cochain complex depending only on an intger ! := p — n, which

can be considered an inductive limit of C(Ix’,’j,p)’s in some sense.
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In what follows in this section, we fix an intger ! , and a positive intger n is always

assumed n +{ > 0.

J¥(n,n 4 1) is simply denoted by JE, For z = 7¥f(0) € Tk, set
cork(z) := min(n,n + !) — rankdf(0),
and for a subset X of J¥, set

cork(X) := min{cork(z),z € X}.

For intgers m,n such that m > n, we define
I gE o gk 3R (F X ddgmen).

We have the following lemma.

LEMMA(2.1). 1)i® is transverse to every K*-orbit in JX .

2)For a semialgebraic smooth submanifold X of J¥ invariant under the K*-action, set
X(m) = K*(6™ (X)) = {Hi%(2) € JE|z € X, H € K¥(m,m + ])}.

Then, X(m) is a semialgebraic smooth submanifold of J¥, and codimX (m) = codimX.
3)Let Y be a subset of JX, invariant under the K*- action. Then, (i%)~'Y = ¢ if and
only if cork(X) > min(n,n + ).

4)Let Y be a smooth submanifold of JX. If codimY < (n + 1)(n 4+ + 1), then
cork(Y') < min(n,n +1).

We omit the proof.

(2.2) Let v* be a KF*-classification of J¥ and let m > n. We construct a K*-
classification of J¥ induced from X via i®. Set A := {z € J& |corkz < min(n,n + 1)}
and B := {z € Jk|corkz > min(n,n +1)}. Then, J¥ = A U B(disjoint). From
(2),(3) in Lemma(2.1), it follows that A has a K*-invariant semialgebraic stratification:
A = Uxeqr X(m) where X(m) := K*(Gr (X)) for X € 4E. Using Lemma(1.3), we
obtain a K*-classification of J5 ( denoted by (i7,),7 ) subordinate a K*-invariant

semialgebraic partition of JX whose elements are B and all X(m). Moreover, a cochain
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map C(7¥) — C((i%).7¥) is defined by X s X(m). When we take the inductive limit
of cochain maps C(y) — C((i%).7) over all K*-classifications of J¥, we obtain a

cochain map

(im)y 1 C(K g pgt) = C(Kp mad)-

(2.3) Let v* be a K*-classification of J¥, and =} : J. — J¥(k < r) the natural
projection. Then, J. has a KT"-classification which consists of all (w;)"lX where
X € 4k. This K- classification of J7 is denoted by (r})*vE. A cochain map C(v¥) —
C((7L)*v*) is defined by X +— (7})"' X, and we have

(W;c')u : C(K:,n—{-l) - C(K:,n-}-l)'

LEMMA(2.4). The following diagram commutes.

O(KE ) —— C(KE )
.| |

C(Kr';,n+l) _— C(K;,m_'_,)
This can be easily verified from the constructions of (:7,), and (w;)'. ,

DEFINITION(2.5). For an intger I, C(K(1)) = BmC(Kn,n41). We call the cochain
n,k :
complex (C(K(1)),§) Vassil’ev complex for K *°-equivalence.

We have an approximation of C*(KX(!)) for small s .

PROPOSITION(2.6). For an arbitrary intger t > 0, there are two intgers k = k(t),n =
n(t) such that the natural homomorphism C*(K} . ) — C*(K(l)) is an isomorphism
for0<s<t.

It is enough to choose n satisfying (n + 1)(n + !+ 1) > ¢ (by Lemma(2.1-4)) and
sufficient large & (by the fact that limcodimWy (n, p) = 0, see Gibson [1D.
3

3. Calculation of C(X(0))

In this section, we assue ! =0 ( this is the equidimensional case ), and we give

the intial part of H*(C(K(0))) without the detail of calculations.
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From Mather [3,IV], we have the following proposition.

PROPOSITION(3.1). Let k be sufficient large (k > 9) and n > 2. Then there exists K*-
invariant semialgebraic subset A% of J*(n,n) which satisfies the following properties:
1) codimA% =9
2) J¥(n,n)— AL contains finitely many K*-orbits with the associated algebras Q. (I) ~
R([z,]]/I + m*+! listed below.

Ay I=<z" y> (0<¢<8)

I s i< 2 +yd2y> (2<a<ba+b<8)

ILy:<z®+yb,zy > (2<a<bda+b<8, a,b: even)

IV; i< 22 +y2,x3 > |

Gr:< z2,y3 >

Gs :< z? +y3,:z:y2 >,

Thus we have a partition  of J¥(2,2) where elements are AY and K*-orbits in

J*(2,2) listed above. Let 75 be the K¥-classification obtained from 7 by Lemma(1.3).

From Lemma(2.6) we see

C°(v§) ~ C° (KX )~ C*(K(0)) for s<8n>2.

In the following theorem, We determine the value of the differential § on generators

of C*(K(0)) (s<8).

THEOREM (3.2). The differential operator of (C*(K(0)),6) for s < 8 are described by

the following formulae:

1)64, =0 (0<s<8), - 2)6Iy s = 6IL 3 = I3,
3)6I, 3 =0, Q)6Iy s = 614 = L5 + Iy 4,
5)6I3 5 = 6IVs = G, 6)6Ip 5 = 6154 =0,

7)6G7 = 0.

This result is obtained from direct calculus of [X;Y] for all X, Y € v¥. Here we
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omit the detail ( see Ohmoto [5] and Lander [2] ).

COROLLARY(3.3). Cohomology groups H"(C(I{(O)); Zz)(s < 8) are given in Table 1.
Cycles of C*(I(0)) whose classes are zero in H*(C(K(0))) are I 3(s = 5), L s+13 4(s =

7) and G7(s =T7).
* = o ! 2 3 4 5 I3 7

‘ *
Hiewo) z, 2z, z, z, (z,)' z, (2 (z,)°
A

2 AB A‘t- A.r Al Ay
I+ I, Iy* Ty T Cor I3y )

I35+,

Jeueralor A, A,

Table 1

4. Thom polynomials

(4.1) We recall the definition of the Thom polynomials. Let ¥ be a singularity
type in a jet space J¥(n,p) whese closure & carries a Z,-fundamental class, and let
f: N® — PP be a C™ map such that j*f is transverse to the subbundle m
of J¥(IN, P) associated to the fibre £. Then there exists a polynomial Pg(f) in the
Whitney classes of the difference bundle f*TP — T'N such that Pg(f) is equal to the
Poincaré dual of [Z(f)] in H*(N; Z2) where Z(f) = (jkf)-'1 (Z(N, P)). Pg(f) is called
the Thom polynomial of 2 for f. If N is noncompact, we assume that the homology

groups of N are closed supported.

(4.2) H*(C(X(1))) is related to the Thom polynomials for smooth maps f : N* —
PP withl =p —n. For any c € C’(K,‘;,p), there is some K"-classiﬁcat;ion 4 of J¥(n, p)
- and X; € v such that 35 X; € C*(y) represents c. Set L. := JX; C J¥(n,p). It is
easy to see that if cis a c;fcle, that is, 6y¢ = 0, then I, satisfies tfle condition on ¥ in
(4.1) ( right-left invariant; and that T has a fundarmental class ). Then, we can define
the Thom polynomial Pg_(f.) for generic maps f. : N — P.
In the case n = p, it follows immdiately from (3.3) that the Thom polynomials
of type I 3,5 U I; 4 and Gy are all zero (for I3 and G7, This has been known by
Porteous [6] ).
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By more precise investigations of the adjacncy relations of contact orbits in

J¥(N, P) of type Ag,Iap, ..., we can have some relationships in Thom polynomial-

s, for instance, it hold that P4, (f)Pa,,(f) = Pa,,,(f)(s = 1,2,3) for generic smooth
maps f ( see [4]). Therefore it is expected that there would be something like com-
binatrial geometry in K*-orbits of J¥(N, P). To investigate the Vassil’ev complex for
contact equivalence is the first step in this direction.
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