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THOM’S CONJECTURE ON SINGULARITIES
OF GRADIENT VECTOR FIELDS

By FuMio ICHIKAWA

1. Introduction.
In [3], R.Thom gave the the following conjecture.

Conjecture. Let f(z) be a germ of real analytic function at the origin
0 € R* and let X = grad f(z) be the gradient vector field of f(z) with
respect to the ordinary Riemannian metric on R™. If an integral curve ¢(t)
of X tends to the origin 0 € R™, then there exists a unique tangential

direction lim:_,4 g(t)/]g(t)]-

Thom proved the case where f(z) is a homogeneous polynomial and
for the general case he gave an outline of a proof. In this paper, we give a
partial answer to the above problem. The essential idea of our proof is the
same as Thom’s one (see [3]).

Let f(z):(R™0) — (R,0) be a germ of analytic function. And we
express f(z) in the form :

f(z) = Pr(z) + Prga(z) + - + Py(z) + -

where Pp,(z) is a homogeneous polynomial of degree m.
We define the cone spectrum Sp(P,,) as follows:

0P, 0Py . .
So(Pm) = {3 = (or,0o0 1 2a) €R" ) i = G fj =1, ).

Obviously, Sp(Pp) is a cone algebraic set and it contains 0 € R™.
In this paper, we prove the following theorem.
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Theorem. Let f(z)= Pi(z)+ Pr41(z)+--- be a real analytic function
germat 0 € R*. If dim Sp(P;) <1, then any integral curve of grad f(z)
which tends to 0 € R™ has a unique tangential direction at the origin.

Remark. We see later on that the condition dim Sp(Pr) <1 isequiva-
lent to that the restricted function Pg|gn-1 of Pg(z) to the unit sphere
S™=1 has only isolated singularities. Thus, the above condition is a generic
property on the initial term of f(z).

Corollary. In the two dimensional case, Thom’s conjecture holds.

2. Lojasiewicz’s Theorem and Blowing up of vector field.

The proof of our theorem is based on two important theorems. One is
Lojasiewicz’s theorem on analytic gradient vector fields and the other is
Takens’s blowing up construction of singularities of vector fields.

Now, for its importance we start with recalling them.

Lemma 2.1. Let f(z) be a real analytic function defined on a neigh-
bourhood U of a € R® and f(a) = 0. Then, there exists 0 < § < 1

such that
| grad f(z)| > | f(=)|°

in some neibourhood of a € R™.
The proof can be found in Lojasiewicz [1] pp92.

Theorem 2.2. (Lojasiewicz) Let f(z) be areal analytic function defined
on a neibourhood U of R™ andlet A denote the set f~Y(0)NU. If an
integral curve ¢(t) of grad f(z) tends toward A, then ¢(t) tends to a
unique point of A.

Proof. Let g(t) = (91(t),92(t), - ,gn(t)) denote the integral curve of
grad f(z) with ¢(0) ==z, z € U i.e.

D) = (-(o(t) 5 (o) and g(0) =

Now, easily we have

SH0) = oL Ty 2L
= |grad fle@)I® 2 0. (1)
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On the other hand, if ¢(¢) tends to a point a € A , then from Lemma,
2.1, there exists 0 < 8 <1 such that

| grad f(z)| > |f(2)|°

in some neibourhood of a € U.
Then, the length of integral curve g¢(t) from ¢t =0 to t=m is
estimated as follows: '

/om lgrad f{g(t))ldt = fom lgrfdf (J‘Q(S()t)))l @

m 4 £(g(t)
< [ @Y,
<) P

A GO
- Til."é[(_ FE@)' ™ = (= fg(m)) ™

< =5 (— @) < oo

Here, from (1) we note that f(g(t)) is an increasing function and
limi— 400 f(9(2)) = f(a) = 0 , thus f(g(¢t)) < 0. If the w -limit set
of g(t) contains two or more points, then the length of integral curve g(2)
must be oco. This contradicts the above estimation. (1

From Theorem2.2, we can easily obtain the following.

Proposition 2.3. Let M"™ be a real analytic Riemannian manifold of
dimension n and f : M™ — R be a real analytic function on M™
Then, every integral curve ¢(t) of grad f(z) has unique «-limit and
w-limit points. Moreover, the points lim; 4o g(t) and lims o g(2)
are singular points of f(z).

Next, we recall the blowing-up construction of vector field. For more
details see Takens [2].
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Theorem 2.4. (Takens[2]) Let X be a C®-vector field on R™ with
X(0) = 0. Let ® : S™!' x R — R"™ be a C°°-mapping defined by
®(Z1,+ yZn,7) = (rZ1,++ ,7Ty) where (Zy, -+ ,%,) with > ., %=1
is the coordinate system of S™ 1. Then there exists a C®-vector field X
such that Q*(X) = X.

For the purpose of our proof, we repeat shortly the outline of Takens’s
proof.

Proof. From a direct calculation we have
(Zm%)X::(R,X)R-i—Z Z(Vzﬁx)VlJ (2)
i=1 1,7=1
where R, V;; are the vector fields on R™ given by

S, 1, 8 9
R=2 oy o Vi =5(g,, ~oig)

and (, ) denotes the inner product of R™.
We define the vector fields R and V;; on S™!x R by

~ 1, 0 _ O
R =r — y V;J——i(mlé;ﬁ—)—m]-é?_g;)

Then, we have

&, (R)=R and &.(Vy;) =V
Now, it is clear that the vector field

& 1 e R - 4 %
X=S[(BX) 0 ®)R+2 Y (Vi X) 0 2)Vi]
i,5=1

satisfies the required condition @,(X)=X. O

Remark. If the (k-1)-jet of X at the origin equals 0 ‘in other words
the degree of initial term of X is k , then we set

_ 1 - 75 - < 1/
X =57 (BRX) o ®R+2 3 (Vi X) 0 B)V).
i,j=1
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Then X isalso C-vector field on $™ ! x R and the integral curves of
X and X coincide as sets. Thus the w-limit sets of X and X coincide.
We say that X is the blowing-up of X at 0 € R™.

3. The proof of theorem.

Now, let f(z) = Py + Pr41+---: (R",0) — (R,0) be a real analytic
function germ. Then the blowing-up vector field X of grad f(z) is given
by:

X = S [(R,grad f(2)) 0 B)R+2 Y ((Vig,arad f(2)) 0 @)Trs].

3,5=1
Then the restriction of vector field X to S™ ! x {0} is given by

2 Z (Vij, grad Pk)vij' (3)

1,)=1
We denote the above vector field (3) by Xo.

Lemma 3.1. Let f(2)=Py+Pry1+--+ and X and X, be as above.
Then

.Xr() = grad (Plen—l)
where S™™! has the ordinary Riemannian metric.

Remark. The coordinate systems of the both sides of above equation are
different, but there will be no confusion.

Proof. Let TS™ ! denote the tangent space of S™~1. From (2) we easily

see that the T'S™ ! component of (grad Py)|gn-: is given by (3).
Let 8/0t denote the unit vector on R . Then for any vector v € T'S™~!

, we have

' 4 — n—1 a
{ Xo, v) Frie (TS™ " component of (grad Pg)|gn-1 , v ) en
0
= (gred (Pelons) ) o
= (Pg)s v
= (Plen—l)* v.
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Therefore, we have
Xo = grad (Pg|gn-1). O

Proof of Theorem. Let g(t) be an integral curve of grad f(z) such that
lim¢— 400 g(t) =0 andlet L denote thew-limit set of lims 400 g(t)/[g(2)|:
Let §(t) be the integral curve of the blowing-up vector field X with -
§(0) = ®71(g(0)) . Then we easily see that

L x {0} = the w — limit set of §(t) and L x {0} C $™* x {0}.

From the elementary general theory of dynamical systems, we easily see
that L x {0} is a connected closed set and an invariant set by the flow of
Xo.
Now, at the point z € Sp(P)N S™ ! the following holds:

l@mj 7 9g;

forany :,3=12,---,n.

Thus, the position vector £ and grad Py(z) are parallel i.e. grad Py(z)
has no T'S™ ! components. Therefore z is a singular point of Pj|gn-1
and the condition dim Sp(P;) <1 means that the singularities of Py|gn-1
(or equivalently the singularities of Xo = grad (Pi|sn-1) are finite and
isolated. Since L x {0} is a connected set, it is enough to prove that
L x {0} does not contain regular points of X, . Then L x {0} is a one
point set and L will give the tangential direction lim; oo 9(%)/|g(2)|-

Now, we suppose that L x {0} contains a regular point p; of X,
Let §p, (t) be the integral curve of Xy with §,,(0) = p;. Since L x {0}
is invariant by the flow of X , we have

p,((—00,+00)) C L x {0}.

From Proposition 2.3 there exist unique points lim;,_o §p,(t) and
lirnt-—*+oo §p1 (t) y We set N = gpl(_oo) and Q2 = gpl (—I—OO) . Then 01, 492
are singular points of Pg|gn-1. Since L x {0} is a closed set, we have

¢, q2 € L x {0}.
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Now, we take small upper half n-disks D;‘l and D;; centered ¢; and
g2 on S™!' x R* such that Df NS*' x {0} and D} nS™ x {0}
contain no singular points of X, except ¢; , g2 , here Rt denotes the
set of non-negative real numbers. Next we take a flow box W; of X on
S™~1 x R* which contains §p,(t) and joins D} to DJ, (see Fig1.).

Since p; € L x {0} , there exist t; <ty <--- <t; <--- such that

lim #; = 400 , _li_*rp §git;)=p1 and §G(t;) €Wy forany 1=1,2,--- .
1—+-1+0O0 ’

t— 400

Let u; be the point of the boundary aD;? at which the integral curve §(¢)
started from §(%;) leaves D;’; for the first time. Since 8D;’2 is compact,
the set {u;} has the accumulation points. Let p; be one of them. Then
p2 € 5" x {0} and p; € L x {0} , because if p; ¢ S™! x {0} then the
integral curve g¢(¢) arrives at two different points 0 and &®(p;) but this
contradicts Lojasiewicz’s theorem. .

( Figure 1. is inserted here. )
Obviously

P €Lx {0} , Xo(p2)#£0 and Gy((~o0,+00)) C L x {0},

We set ¢ = limy,_oo §p,(t) and ¢s = limy—yoo Gp,(t) , then we see that
q = q2. Because if ¢ # ¢2 , we take the upper small half n-disks D;I*' , D;;
and the flow box W in the same way as D;’l , D;}; and Wy with D;’ﬂD;’; =
, p2 € Wy and WinNW, = 0 (see Fig 2.). Since u; € Wa, the integral curve
§(t) which starts from §(¢;) must pass through a point of 0D}, different
from wu; and must go into D;’ and Wy before it arrives at w;. But this
contradicts the definition of u;.

Now, we have the arc qig2qs which consists of integral curves Gp, (1)
and §,,(t) of Xo. If q192qs does not contain a loop, then we repeat the

above argument for Df and costruct the arc q19293qs and so on. Since
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the singular points set of X, is finite, by the above finite constructions
we have the arc ¢iqz---¢s which contain a loop 4. However, X, is
the gradient vector field of Pp|gn-1 , thus the function Pj|gn-1 increases
along the integral curve of X,. This contradics the existance of loop 7.
This completes the proof of Theorem. O

( Figure 2. is inserted here. )

Lemma 3.2. Let P(z) be a non-zero homogeneous polynomial of degree
k on R™. If dim S,(Px)=n ,then k is even and P(z) = ar* where

o« €R and r = /23 + -+ +22.

Proof. In the proof of theorem we see that S,(Px)N.S™™! is the singular
point set of Pi|gn-1. Since dim S,(Px) =n , we have dim S,(Px) N
S 1 =n—1 ie. Prlsn—1 1s a constant function. If k is odd then
Py(—z) = —P(z) . Thus Pg|gn-1 =0 but this contradicts that Py(z) is
non-zero. Hence k is even. We set a = Pj|gn-1 . Then we have that for
any z € R" ’

Py(z) = P '(mf—) = |z|* P, (—"’—) —art O

] ]

Proposition 3.3. Let f(z) = Pi(z)+ Pry1(z) +--- be a real analytic
function germ at 0 € R™ . If dim S,(Py) = n , then any integral curve
g(t) of grad f(z) which tends to 0 € R™ has a unique tangential direction
at the origin.

Proof Let X and X, be as above. Then, X, is given by (3). From

Lemma 3.2 we see that gradPy = kar*~2Y""  ;8/0z; and we have
Xy = 0. Set —)f_——- (1/r)X . Then X is also a C vector field on

S*~ 1 x R and X no singular points on S™~1 x {0}. For z = ¢(0)
the integral curve of X started from &7!(z) meets S™! x {0} at
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a unique point of $™~1 x {0}. This point gives the tangential direction
lime—too 9(8)/lg(H)l. D

From Theorem and Proposition 3.3 we obtain Corollary.
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