Kummer Surface with D_4-Symmetry

Isao Naruki

For the simple root system D_4 there are exactly three linearly independent Weyl-group-invariant homogeneous polynomials of degree 4 on the Cartan subalgebra V. Since V is 4-dimensional, the null locus S of such an polynomial $\neq 0$ is a quartic surface in the associated projective space $\mathbb{P}(V) \cong \mathbb{P}_3(\mathbb{C})$. ($S$ has two parameters.) S is smooth in general. In this note however we will only discuss a special case where S is a Kummer quartic i.e. quartic surface with 16 nodes (ordinary double points). This case is introduced by imposing the following condition on S:

(A) Some (hence any by invariance) root-section of S decomposes into two conics intersecting transversally.

For any root r the section of S by r is the intersection of S and the null plane $H_r := \{(x) \in \mathbb{P}(V) : r(x) = 0\}$. (This plane curve is in general irreducible.) From now on we assume that S satisfies (A), so S is now a Kummer surface.

S has still one parameter. Explicitly S is given by the equation

$$I_1(x) - (s^2 + 1)I_2(x) + 2s(s^2 + 3)I_3(x) = 0$$

where s ($s^2 + 3 \neq 0, s = \pm 1$) is the parameter, $I_1(x) := \sum_{i=1}^{4} x_i^4$, $I_2(x) := \sum_{1 \leq i < j \leq 4} x_i^2 x_j^2$, $I_3(x) := x_1 x_2 x_3 x_4$ and the coordinates (x_1, x_2, x_3, x_4) are so chosen that the roots are $\pm(x_i \pm x_j)$. The Weyl group is generated by the even sign changes and permutations of x_1, x_2, x_3, x_4. The 16 nodes are the orbit of $(s, 1, 1, 1)$. We see that the 16 nodes lie four by four on the 12 root-sections to be the inter-section points of the conics in (A). Each node is on exactly three root-sections.

For the definiteness of argument we fix a root r and let C_1, C_2 be the conics such that $C_1 \cup C_2 = H_r \cap S$. Let $\{q_0, q_1, q_2, q_3\} = C_1 \cup C_2$. Recall now that the abelian surface
\(\mathcal{A} \) associated with \(S \) is the double cover of \(S \) branched over the 16 nodes; so the nodes are naturally imbedded into \(\mathcal{A} \); in particular \(\{q_0, q_1, q_2, q_3\} \subseteq \mathcal{A} \). We regard \(q_0 \) as the zero of \(\mathcal{A} \).

We remark that the inverse images \(E_1, E_2 \) of \(C_1, C_2 \) by \(\mathcal{A} \rightarrow S \) are elliptic curves. They are thus two subgroups of \(\mathcal{A} \) such that \(E_1 \cup E_2 = \{q_0, q_1, q_2, q_3\} \). We set \(G_0 := E_1 \cap E_2 \). This is a subgroup of the 2-torsion \(\mathcal{A}(2) \) of \(\mathcal{A} \). We also form the diagonal group \(\Delta_0 := \{(q_i, q_i)\}_{i=0,1,2,3} \) in the product group \(\mathcal{E} := E_1 \times E_2 \).

Proposition 1. The product mapping \(\mathcal{E} = E_1 \times E_2 \ni (x, y) \mapsto xy \in \mathcal{A} \) induces the isomorphism

\[
(1) \quad \mathcal{E}/\Delta_0 \cong \mathcal{A}.
\]

It follows also

\[
(2) \quad \mathcal{A}/G_0 \cong \mathcal{E}.
\]

Remark. So far we have only used the existence of a plane which cuts from a quartic two conics in a transversal position. This property is therefore a characterization of elliptic Kummer surfaces of degree 2.

We call such an isomorphism as (1) an *almost product structure* on \(\mathcal{A} \); (1) depends on the root \(r \) fixed above. Since there are 12 roots of \(D_4 \) up to sign, we have 12 almost product structures for \(\mathcal{A} \). But not all of them are different.

Proposition 2. The almost product structures associated with two roots are identical if and only if they are orthogonal (with respect to the Killing form \(\sum_{i=1}^{4} x_i^2 \)).

The existence of different almost product structures suggests that the original \(D_4 \)-symmetry should be explained by the symmetry of \(\mathcal{A} \) i.e. its non-trivial endomorphisms. This leads further to the natural question: what is the relation between the moduli of two elliptic curves \(E_1 \) and \(E_2 \) which should exist since we have only one parameter \(s \). The stabilizer of the Weyl symmetry at \(q_0 \) is isomorphic to \(S_3 \), so it contains an element of order 3. This fact proves
Proposition 3. There is an isogeny of degree 3 between E_1 and E_2.

By this result we can describe E_1 and E_2 by two lattices L_1, L_2 in C in the following way:

(3) $3L_2 \subset L_1 \subset L_2, \quad [L_2 : L_1] = 3.$

(4) $E_1 = C/L_1, \quad E_2 = C/L_2.$

Then, by (1), we have also the isomorphism

(5) $(C \times C)/L \cong \mathcal{A}$

where L is a lattice in $C \times C$ such that $2L \subset L_1 \times L_2 \subset L, \quad [L : L_1 \times L_2] = 4.$

Proposition 4. The lattice in (5) is given by

$L = \{(a, b) \in C \times C : 2a \in L_1, 2b \in L_2, a - b \in L_2\}.$

The stabilizer at q_0 is lifted to a subgroup of $\text{Aut}(\mathcal{A})$ generated by the elements which are induced by the matrices

$$M := \begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad N := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Check that $ML = L, NL = L$ and that $M^3 = -1, N^2 = (MN)^2 = 1$. We close this note by remarking that the entire D_4-symmetry is generated by the stabilizer described above and the (translation) action of $\mathcal{A}(2)$ over $S = \mathcal{A}/\{\pm 1\}$.

The analytic counterpart of this story contains the parametric representation of S by the Weierstrass σ-functions associated with E_1 and E_2; it also contains the explanation of the parameter s and the isogeny between the elliptic curves by some modular models. This interesting topic will however be published elsewhere in a more general form.