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弱電導性乱流のサブグリッドモデル

A subgrid model of electrically conducting

turbulent shear flows at low mgnetic Reynolds number
下村 裕 東大理

Yutaka Shimomura1 Faculty of Science, University of Tokyo

I. OBJECT

The objective of the present paper is to study by using LES technique

how the magnetic field influences the detailed structures of MHD turbulent

channel flows, such as each component of the turbulent energy. In this case,

it is natural to suppose that we should incorporate the effect of magnetic

fields into the SGS model as in the $k-\epsilon$ model. So, in the present paper,

we propose a new SGS model of weakly-conducting turbulent shear flows,

and demonstrate its superiority to the usual SGS model, or the Smagorinsky

model, by comparing their results with laboratory experiment.

In II, we formulate LES in MHD at low magnetic Reynolds number $R_{m}$

version, present a new SGS model for it, and apply it to a channel flow

configuration. In III, the resluts of the present SGS model are compared with

those of the Smagorinsky model, and the former are found to be closer to

the experimental observation than the latter. Finally in IV, our conclusions

are summarized.
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II. FORMULATION

A. Governing equations for the large-scale fields

A system of filtered equations for grid-scale (GS) components of incom-

pressible MHD flows at low magnetic Reynolds number1 is given by

$\frac{\partial}{\partial l}\overline{u};+\frac{\partial}{\partial x_{j}}(\overline{u}_{j}\overline{u}_{j})=-\nabla\overline{p}+\nu\nabla^{2}\overline{u};+\frac{\sigma}{\rho}((-\nabla\overline{\varphi}+\overline{u}\cross B_{0})\cross B_{O})_{i}+$

$\frac{\partial}{\partial x_{j}}(R_{\tau j}+L_{ij}+C_{ij})$ , (1)

$\nabla\cdot\overline{u}=0$ , (2)

$\nabla^{2}\overline{\varphi}=\nabla\cdot(\overline{u}\cross E_{0})=E_{0}\cdot\varpi$ , (3)

where the SGS Reynolds stress $R_{\neg j}$ , the Leonard stress $L_{ij}$ , and the cross cor-

relation $C_{ij}$ are given by the same definitions as in the usual non-conducting

case since Lorentz force is linear at low $R_{m}$ with regard to the velocity $u\cdot$,

namely,

$R_{ij}=-\overline{u_{1}^{u}u_{j}^{u}}$ , (4)

$L_{ij}=\overline{u};\overline{u}_{j}-\overline{\overline{u}_{i}\overline{u}_{j}}$ , (5)

$C_{ij}=-(\overline{\overline{u}_{i}u_{j}’’}+\overline{u_{1}’’\overline{u}_{j}})$ . (6)

We shouid keep in mind that in (1) and in the following, the repeated sub-

scripts are summed from 1 to 3 unless an exception is mentioned.

B. Subgrid-scale modeling

2
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In order to close the filtered equations $(l)-(3)$ , we need SGS modelings for

$R_{ij},$ $L_{ij},$ $C_{ij}$ . For non-conducting flows, the Smagorinsky model2 is usually

adopted for $R_{1j)}$ while both $L_{ij}$ and $C_{ij}$ are often neglected. This modeling

is shown to work well, and conserves Galilean invariance as pointed out by

Speziale.3 In MHD case, however, the validity of this modeling is question-

able since no effects of magnetic fields are explicitly incorporated into it.

Especially, it is obvious that we can not keep the Smagorinsky model valid

in the laminar state appearing under the strong magnetic field: even in the

laminar state, the SGS eddy viscosity does not diminish where the GS flow

has large spacial variation.

Here, let us construct a SGS model of MHD turbulent shear flows at low
$R_{m}$ in the light of the author’s previous study.

The $author^{4,5}$ showed theoretically that at the level of ensemble average,

the usual eddy-viscosity representation of the Reynolds stress should be mod-

ified by the effect of magnetic field. Based on the modified representation

of the Reynolds stress, a new $k-\epsilon$ (two-equation) model including this ef-

fect was proposed, and it was demonstrated by comparing the numerical and

experimental data that the new $k-\epsilon$ model is better than the existing one

in explaining the laminarization by the strong magnetic field. In this work,

it was noticed that the most crucial effect of magnetic fields on turbulence

appears as the negative contribution to the eddy viscosity. So, we modify by

analogy the representation of the SGS Reynolds stress in the form of negative

eddy viscosity as follows:

$R_{:j}=- \frac{1}{3}\overline{u_{a}’’u_{a}^{n}}\delta_{1j}+\nu_{SGS}\overline{e}_{ij}$ , $\overline{e}_{ij}=(\frac{\partial\overline{u}_{i}}{\partial x_{j}}+\frac{\partial\overline{u}_{j}}{\partial x_{i}})$ , (7)

3
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$\nu_{SGS}=\nu_{e}+\nu_{m}$ , (8)

$\nu_{e}=C_{0}\epsilon_{SG^{3}S}^{1/}\Delta^{4/3}$ , $\nu_{m}=-\frac{\sigma}{\rho}C_{1}\Delta^{2}|B_{0}|^{2}$ . (9)

In (7), $\delta_{jj}$ is the Kronecker delta symbol, and $\nu_{SGS}$ is the total SGS eddy

viscosity which is composed of the two parts $\nu_{e}$ and $\nu_{m}$ in (8): $\nu_{e}$ is the

familiar positive SGS eddy viscosity involved in turbulence, and $\nu_{m}$ is the

negative one caused by magnetic fields. In (9), $C_{0}$ and $C_{1}$ are model constants

theoretically evaluated as

$C_{0}\sim 0.04$ , $C_{1}\sim 0.03$ , (10)

$\epsilon_{SGS}$ is the SGS energy dissipation rate defined by

$\epsilon$ SGS
$= \nu\frac{\partial u_{a}^{n}}{\partial x_{b}}\frac{\overline\partial u_{a}^{u}}{\partial x_{b}}$

) (11)

and $\Delta$ is the representative length scale of the form

$\Delta(x, y, z)=(\triangle x\Delta y\Delta z)^{1/3}$ , (12)

where $\triangle x,$ $\Delta y$ , and $\Delta z$ denote the computational mesh sizes in the $x,$ $y$ , and

$z$ directions, respectively.

Next, following the way6 of deriving the Smagorinsky model of non-

conducting turbulence, we assume the balance of SGS energy production

and dissipation rate; namely,

$R_{1j} \frac{\partial\overline{u}}{\partial x_{j}}=\epsilon_{SGS}+\frac{\sigma}{\rho}C_{2}\epsilon_{SG^{3}S}^{2/}\Delta^{2/3}|B_{O}|^{2}$ . (13)

The second term on the right-hand side of (13) shows the additional SGS

energy dissipation of conducting turbulence due to Lorentz force, and the

4
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model constant $C_{2}$ is theoretically estimated as

$C_{2}\sim 0.4$ . (14)

Now, we are ready to express the total SGS eddy viscosity $\nu_{SGS}$ in terms

of GS variables. The substitution of (7)$-(9)$ into (13) leads to the equation

for $\epsilon_{SGS)}$ which is solved in a perturbational manner on the assumption that

the terms including $|B_{0}|^{2}$ are small. As a result of this procedure, we get the

expression of $\nu_{SGS}$ as

$\nu_{SGS}=\nu_{s}-\frac{\sigma}{\rho}(C_{m}\triangle)^{2}|B_{0}|^{2}$ , (15)

$\nu_{s}=(C_{s}\Delta)^{2}(\frac{1}{2}\overline{e}_{ab}\overline{e}_{ab})^{1/2}$ , (16)

where

$C_{s}=C_{0}^{3/4}\sim 0.09$ , $C_{m}= \frac{1}{\sqrt{2}}(3C_{1}+C_{0}C_{2})^{1/2}\sim 0.2$. (17)

Here we should note, as is clear from the derivation, this expression is valid

only for weak magnetic fields. So, we extend (15) to the following formula

available for strong magnetic fields:

$\nu_{SGS}=\nu_{S}\exp(-\frac{\sigma}{\rho}(C_{m}\triangle)^{2}|B_{0}|^{2}/\nu_{s})$ . (18)

This expression asymptotically agrees with (15) when the magnetic field is

weak, and further guarantee the positiveness of total SGS eddy viscosity in

its diminishing process under the strong magnetic field. Of course, the SGS

model (18) reduces to the familiar Smagorinsky model $\nu_{s}$ when the electrical

conductivity $\sigma=0$ . In (18), the effect of magnetic field on turbulence is

introduced in the form of damping factor which is locally determined.
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As is usually done for the LES of non-conducting turbulence, we also

introduce the wall damping function to explain low-Reynolds-number effects

on the SGS Reynolds stress near the wall; $\triangle$ is multiplied by the wall damping

function $f$ of Van Driest type,7 which is given in case that the wall is located

on the $z=0$ plane by

$f(z^{+})=1- \exp(-\frac{z^{+}}{A^{+}}I,$ $A^{+}=25$ , (19)

In (19) $z^{+}$ is the distance to the nearest wall in the wall units, and it is

defined by the friction velocity $u_{\tau}$ as

$z^{+}= \frac{zu_{\tau}}{\nu}$ , $u_{\tau}=( \nu\frac{\partial\langle\overline{u}_{1}\}}{\partial z}|_{z=0})^{1/2}$ , (20)

where { $\overline{u}_{1}\rangle$ denotes the ensemble mean of the streamwise GS velocity.

We complete the SGS modeling (7), (16), (18), and (12) multiplied by

the wall damping function (19) with the assumption

$L_{ij}=0$ , $C_{ij}=0$ . (21)

In the present simulation, the model constants are chosen as

$C_{s}=0.1$ , $C_{m}=1.4$ . (22)

The value 0.1 of the Smagorinsky constant $C_{s}$ is usually used for non-conducting

turbulence, and close to the predicted value 0.09 in (17) as shown by Yoshizawa.6

On the other hand, the optimized value 1.4 of $C_{m}$ does not agree with the

theoretically estimated value 0.2 in (17). The reason of this disagreement is

not clear now$\cdot$. For weak magnetic fields, the damping factor due to magnetic

field in (18) might not make a major conribution to $\nu_{SGS}$ : the SGS eddy
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viscosity (18) might work only for stronger magnetic fields. In this sense,

the derivation of SGS model is never perfect, but in the present paper, we

report favorable features of the present SGS model in comparison with the

Smagorinsky model $\nu_{SGS}=\nu_{s}$ .

The equations (1)$-(3)$ for the GS fields with the SGS modeling described

above constitute the basic system of equations to be solved in the present nu-

merical simulation of MHD turbulent shear flows at low $R_{m}$ under a uniform

magnetic field.

C. Magnetohydrodynamic channel flows under a
uniform magnetic field

We study MHD turbulent plane channel flows at low $R_{m}$ under a uniform

magnetic field which is normal to the walls.

The flow configuration and the coordinate system used in this paper are

shown in Fig. 1. Here, $x,$ $y$ ) and $z$ denote the streamwise, spanwise, and

normal (to the wall) directions, respectively; $u_{1}$ ) $u_{2}$ , and $u_{3}$ are the veloc-

ity components along $x,$ $y$ , and $z$ , respectively. The origin $O$ of the normal

coordinate, $z=0$ , is located on the bottom wall. A magnetic field of magni-

tude $B_{0}$ is uniformly applied in the direction of positive $z$ to the conducting

fluid between two horizontal walls, which are separated each other at the dis-

tance of $L$ . We suppose that the walls are insulated and its streamwise and

spanwise dimensi\‘ons ( $L_{x}$ and $L_{y}$ , respectively) are supposed to be infinite

compared with the channel whole width $L$ .

III. RESULTS

7
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In this section, we show the results of the present SGS model. They are

compared with those of the Smagoinsky model and the experimental data of

Brouillette and Lykoudis.8 All simulations for various Hartmann numbers are

done with the same fixed $R_{\epsilon}=29000$ . For each case, the governing equations

are integrated forward in time until the solutions reach the statistically steady

state. This steady state is identified by an approximate time-independence

of the horizontally averaged GS component of streamwise velocity. After the

statistically steady state is attained, horizontal averages of various quantities

are moreover averaged in time period $t=64$ for which the equations are

further integrated. In the following, \langle } means the time and horizontal

$(x-y)$ average.

A. Comparison with the Smagorinky model

Figure 2 shows the skin friction coefficients

$C_{f}= \frac{u_{\tau}^{2}}{U_{0^{2}}/2}=-L\frac{\partial\{\overline{P}\}}{\partial x}/U_{0}^{2}$ , (23)

as a function of $H_{a}/R_{e}$ . The solid line indicates the laminar result deduced

from Hartmann’s analytical solution; namely

$C_{f}=2 \frac{H_{a}}{R_{\epsilon}}\{\coth(H_{a}/2)-2/H_{a}\}^{-1}$

$\sim 2\frac{H_{a}}{R_{e}}$ $(H_{a}\gg 1)$ . (24)

The symbolds $\bullet$ , $0,$ $\cross$ mean the the experimental data of Brouillette and

Lykoudis8, the calculation based on the Smagorinsky model, and the cal-

culation based on the present model. The experimental data approach the
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laminar solution as $H./R$. increases. Compared with the experimental data,

the Smagorinsky model gives too small $C_{f}$ at $H_{a}/Re\sim 1.8\cross 10^{-3}$ , and too

large at at $H_{a}/Re\geq 4.3\cross 10^{-3}$ . Both deficiencies come from the same rea-

son that the SGS eddy viscosity under a magnetic field is too large in the

Smagorinsky model. At $H_{a}/Re\sim 1.8\cross 10^{-3}$ , the large SGS eddy viscos-

ity supresses GS turbulence and the momentum in the muiddle of the chan-

nel can not diffuse so much to the wall, which leads to the small $C_{f}$ . At

$H_{a}/Re\geq 4.3\cross 10^{-3}$ , the fluctuation is almost diminished by the GS Lorentz

force so that $C_{f}$ is roughly determined by the formula $C_{f}\sim 2H_{a}/Re^{*}$ , where

$R_{e}^{*}=U_{0}L/(\nu+\nu_{SGS})$ . Consequently, too large $\nu_{SGS}$ results in too large
$C_{f}$ . The present model saves these deficiencies by introducing the damping

effect of magnetic fields in the SGS eddy viscosity, and gives $C_{f}$ closer to the

experimental data both at $H_{a}/R_{e}\sim 1.8\cross 10^{-3}$ and at $4.3\cross 10^{-3}$ .

In the following Figs. 3 and 4, couples of figures (a) and (b) are compared

with each other: the results of the Smagorinsly model are shown in (a), and

those of the present model in (b).

Figure 3 shows the mean streamwise velocity profiles $\{\overline{u}_{1}^{+}\}$ at $H_{a}=$

$0,52.5$ , and 125. At $H_{a}=0$ , the calculated profiles in both figures are

the same, and approximately satisfy in the logarithmuic region

$\langle\overline{u}_{1}^{+}\}=(1/0.41)\ln z^{+}+5.5$ , (25)

where $z^{+}$ is given $\backslash by(20)$ and $\overline{u}_{1}^{+}\equiv\overline{u}_{1}/u_{\tau}$ . The predicted constants 0.41

(von K\’arm\’an) and 5.5 are very close to the generally accepted value 0.4 and

5.0 for non-conducting wall turbulence. At $H_{a}=52.5$ and $H_{a}=125$ , the

calculated profiles are compared with the corresponding experimental data

9
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of Brouillette and Lykoudis8 shown by the symbol

reason described in Fig. 2, the profiles predicted by the Smagorinsky model

are far from the experimental data while the present model shows fairly good

agreements. So, the present model properly predicts local quantities as well

as the global one such as $C_{f}$ in Fig. 2.

Figure 4 plots the profiles of GS turbulence intensities of velocity fluctu-

ations $\overline{u}_{1}’,\overline{u}_{2}$ , and $\overline{u}_{3}$ at $H_{a}=0,40$ , and 52.5. They are normalized by $u_{\tau}$

and contrasted with the$\cdot$ experimental data of Kreplin and Ecklemannll at

$H_{a}=0$ . At $H_{a}=0$ , the computational peak value of { $\overline{u}_{1}^{\Omega}\rangle^{1/2}$ is slightly larger

and that of \langle $\overline{u}_{3}^{2}\}^{1/2}$ is just lower than the experimental data. Similar defect is

also reported in the computation of Horiuti.12 However, the agreements are

fairly well with regard to $\langle\overline{u}_{2}^{2}\rangle^{1/2}$ Comparing (a) with (b), we notice that

the magnetic field laminarizes the GS turbulence faster in the Smagorinsky

model than in the present model. The difference is most outstanding at

$H_{a}=52.5$ : near the wall, the GS turbulence intensities of velocity fluctua-

tions almost vanish in (a), but survive in (b). As was explained in Fig. 2,

this difference gives rise to the drastic change of skin friction coefficient at

$H_{a}/Re\sim 1.8\cross 10^{-3}$ . Judging from better agreements of the present model

with the experiment on the skin friction coefficients and the mean streamwise

velocity profiles in Figs. 2 and 3, the data in Fig. 4 (b) is more reliable than

in Fig. 4 (a). In Fig. 4 (b), we should notice the anisotropy in the laminar-

ization process around $z=0.03(z^{+}\sim 40)$ where the intensity $\{\overline{u}_{1}^{\prime 2}\}^{1/2}$ takes

its peak value: the difference of $\langle\overline{u}_{1^{2}}’\rangle^{1/2}$ between three cases is very small

compared with those of $\langle\overline{u}_{2}^{2}\rangle^{1/2}$ and $\langle\overline{u}_{3}^{2}\}^{1/2}$

10
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IV. CONCLUSIONS

LES technique is used to study the effects of a uniform magnetic field on

MHD turbulent channel flows. We propose a new SGS model into which the

effect of magnetic field is incorporated in the form of local damping factor for

SGS eddy viscosity. It is assured that the new model shows better agreement

than the Smagorinsky model with the available experimental data of the skin

friction coefficients and the mean streamwise velocity prohles.

The new model predicts the detailed structures of magnetohydrodynamic

turbulent channel flows, which is beyond the power of the approach based

on such one-point global turbulence models as $k-\epsilon$ model. Especially, the

anisotropic laminarization of turbulence by the magnetic field is quantita-

tively clarified: near the wall, $\{\overline{u}_{1^{2}}’\}^{1/2},$ \langle $\overline{e}_{2^{2}}’\}^{1/2}$ , and $\langle\overline{e}_{3}^{2}\rangle^{1/2}$ are not so influ-

enced by the magnetic field as the other components of the intensities $\{\overline{u}_{2}^{2}\}^{1/2}$ ,

{ $\overline{u}_{3}^{2}\rangle^{1/2}$ , and $\{\overline{e}_{1}^{2}\rangle^{1/2}$
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FIG. 1. Flow configuration

and coordinate system.

FIG. 2. Skin friction coefficients $C_{f}$ :

$0$ , Smagorinsky model; $\cdot$ , experimental

data of Brouillette and Lykoudis ;
$x$ , present model;– , laminar

line $(C_{f}=2H_{a}/R_{e})$ .

$H_{a}/R_{e}$
$\cross 10^{-3}$
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$+_{I\delta^{\tau\neg}}\wedge$

$(\alpha)$

$+_{1\mathfrak{J},\vee^{1-}}\wedge$

(b)

FIG. 3. Mean streamwise velocity profiles $\{\overline{u}_{1}^{+}\}:O,$ $H_{a}=0;\square ,$ $If_{a}=52.5$ ;
$\triangle,$ $H_{a}=125;\blacksquare$ , experimenta data of Brouillette and Lykoudis at

$H_{a}=52.5;A$ , experimenta data of Brouillette and Lykoudis at $H_{a}=l25$ ;

– , $\langle\overline{u}_{1}^{+}\rangle=z^{+}$ $(z^{+}\leq 10)$ and $\langle\overline{u}_{1}^{+}\rangle=(1/0.41)\ln z^{+}+5.5$

$(z^{+}\geq 10)$ .
(a) Smagorinsky model; (b) present model.
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FIG. 4. $GS$ -intensities of the velocity fluctuations: $OH_{a}=0;\square ,$ $H_{a}=40$ ;

$\triangle,$ $H_{a}=52.5$ ;– , experimental data of Kreplin and Ecklemann at

$H_{a}=0$ .
(a) Smagorinsky model; (b) present model.
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