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非粘性流の特異性に関するラグランジュ凍結仮説

京大数理研 大木谷耕司 (Koji Ohkitani)

Inviscid fluid motion is inherently Lagrangian in the sense that the vortex lines are

material (that is, they move with fluid) in three dimensions and so is the vorticity in two

dimensions. In most cases of inviscid motion, some physical space field can $tal\overline{\backslash }e$ extremely

large values due to the stretching effects by the nonlinear terms of the fluid equations.

Hereafter, we will call such regions with the high values of the stretched field singular

structures. The purpose of this paper is to provide a link between the two properties by

characterizing formation of singular structures in the Lagrangian marker space. We are

mainly concerned with the two-dimensional case here but the results are presented in a

form suitable for extension to three dimensions.

As an illustration of the central idea, we consider a simple case of inviscid Burgers

equation1

$\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}=0$ , (1)

which tells that the vorticity $w=-\partial u/\partial x$ is governed by $Dw/Dt=w^{2}$ , where $D/Dt$

denotes the Lagrangian derivative. This can be solved as $w(a,t)=w(a, 0)/(1-w(a, 0)t)$ ,

where $a$ denotes the Lagrangian maker variable. Thus, the solution blows up at a finite

time $t_{*}= \sup_{a}w(a, 0).tl^{\gamma}e$ find that the largest vorticity is associated with a particular fluid

particle a result of compression of the velocity field; $w(a_{*},\cdot t)>w(a,t)$ for $t_{*}<t$ where the

$a_{*}$ is associated with maximum $w(a, 0)$ . This mechanism makt $\neg$ a marked contrast to the
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situation in two(three)- dimensional incolnpressible motion, where the vorticity-gradient

(vorticity) is stretched in some direction. Nevertheless, we may expect that a similar

phenomenon can occur in higher dimension as well. We will show that this is indeed the

case in two dimensions by numerical simulations.

In two-dimensional inviscid motion all-time regularity is guaranteed essentially by the

conservation of vorticity, while thc vorticity gradient can become extremely large expo-

nentially in time2. By taking thc curl of thc two-dimensional vorticity equation

$\frac{\partial\omega}{\partial t}+(u\cdot\nabla)\omega=0$, (2)

we obtain for the governing equation for the di-vorticity3 $\chi=(\partial_{y}\omega, -\partial_{x}\omega)$

$\frac{D\chi}{Dt}=(\chi\cdot\nabla)u$ , (3)

where $\frac{D}{Dt}=\frac{\partial}{\partial t}+(u\cdot\nabla)$ denotes the Lagrangian derivative. Singular structures in two-

dimensions are characterized by the high value of vorticity gradient $|\chi|^{2}$ .

For the formation of di-vorticity sheets Weiss introduced a scale-separation

hypothesis4, that is, the strain is slowly varying with respect to the vorticity-gradient.

Then, the di-vorticity equation can be viewed as an linear ordinary equation for regions

with high vorticity gradient. If such a hypothesis is true from $t=0$ on for a particle $a$ ,

then the solution is expected to behave as

$\chi(a,t)=\chi(a, 0)\exp(\sqrt{Q(a)}t)$ . (4)

Here, $Q(a)$ is the eigenvalue of $\nabla u$ ,
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$Q(a)=S_{ij}^{2}-\omega^{2}/2$ , (5)

with $S_{ij}=1/2(\partial u_{i}/\partial x_{j}+\partial u_{j}/\partial x_{i})$ ; $i,j=1,2$ is the rate-of-strain tensor. More pre-

cisely, $l/Veiss’$ scale-separation hypotheses consist of following assulnptions at thc singular

$st_{lt1}ct_{tlI^{\backslash }}es$ .

i) The di-vorticity aligns with the strain.

ii) The quantity5 $Q(a)=(strain)^{2}-(vorticity)^{2}$ takes a positive constant value.

The fluid particle associated with the structure is linearly unstable by ii). It should

be noted that $Q$ is simply related to the pressure $p$ as $Q=-\triangle p$ . Therefore, the condition

that $p$ attains a local maximum at the singular structure is a sufficient but not a necessary

condition for ii). Remember that $p$ plays a role of potential energy; $Du/Dt=-\nabla p$.

The Weiss’ hypothesis has been used by several authors to separate out so-called

coherent vortices out of the viscous two-dimensional $turbulence^{6-9}$ . In particular, this was

supplemented by Brachet et al. to be valid after the formation of the sheets by a simple

asymptotic analysis7. They also showed that sheets are indeed parallel to the eigenvector

of $\nabla u$ in decaying turbulence. However, the validity of the scale-separation assumption

in the two-dimensional inviscid flow has not yet been justified. To’examine whether and

how the Weiss’ hypothesis is valid, we will employ the following numerics.

The Eulerian vorticity filed $\omega(x,t)$ is computed under the periodic boundary con-

dition in $[0,2\pi]^{2}$ by the standard Fourier pseudo-spectral method. $1$ The aliasing errors

are suppressed by the 2/3-rule so that the maximum wavenumber is $k_{\max}=[N/3]$ for

computation with $N^{2}$ collocation points. Here the bracket denotes the integer part. Time-
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marching was done by the fourth-order Runge-Kutta scheme. To obtain the information

in the Lagrangian maker space we trace the particles subject to the flow;

$\frac{dx(a,t)}{dt}=u(x(a,t))$ , (6)

by linear interpolation of the velocity. We initia.te the Lagrangian marker variables $a$ by

their spatial positions; $a=x$ at $t=0$ . The numerical method itself is hardly novel but the

number of the particles was taken as large as that of the collocation points. Thanks to the

tremendous number of particles we can retrieve various fileds in the Lagrangian marker

space to study their structure in detail.

The initial condition is such that its energy spectrum $E(k)$ satisfies $E(k)$ $=$

$0.1k^{4}\exp(-0.1k^{2})$ with the phases randomized. As a check of numerical accuracy we adopt

the following criteria. First, we fit the energy spectrum as $E(k,t)=ak^{-n}\exp(-\delta k)$ and

watch that $\delta$ , roughly the smallest excited scale11, is not smaller than the mesh size.

Second, we checked that the contours of vorticity in the Lagrangian marker space

$t\sim,(a,t)=\omega(x(a,t),t)$ , (7)

does not change in time due to vorticity conservation(figures are omitted). With these

criteria we decided that the computation is reliable at least in $t<0.7\sim$ .

We show in Figs.1 the contours of vorticity gradients $|\chi(x,t)|^{2}$ in the $x$ -space for

$t=0.2,0.4,0.6$. At each instant, the pressure generally satisfies $-6_{\sim}p_{\sim}4$ if its spatial

average is $0$ . In these figures the high pressure regions $p\geq 2$ are shaded. As time goes on,

the regions with high vorticity gradients form sheet structures with their width decreasing

in time. At the later time $t=0.6$ the high pressure regions, whose shapes are nearly circles,
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include several structures. The fact that these contours do not collapse between among

different times implies these singular structures are advected by the velocity around them.

Similar plots are made in the $a$ -space in Figs.2. The formation of singular structures

and their correlation with high pressure regions are observed in a different manner. More

precisely, the singular structures are formed around the same location in the $a$ -space. This

implies that the singular structures move with inviscid fluid, at least for some time interval.

Note that the shaded high pressure regions are equal in area to those in Figs.1 because

of incompressibility. Their heavily elongated shapes suggest intense particle dispersion

connected with instability around the structures.

. Now more quantitative analysis of frozen property is given. First, the normalized

correlation coefficient of $\chi$ between different times in the physical space is introduced as

$C_{E}(t,t’)= \frac{\{\chi(x,t)\cdot\chi(x,t’))}{\sqrt{\{\chi(x,t)^{2}\}(\chi(x,t’)^{2}\}}}$ , (8)

where {) denotes integration in the $x$ -space. The similar coefficient $C_{L}(t,t’)$ in the

$a$ -space is also defined. We fix $t’=0.6$ as the maximum reliable computation time. The

results are $C_{E}(t,t’=0.6)=0.09,0.12,0.15,0.18,0.24,0.41,1.0$ and $C_{L}(t,t’)=0.05,0.21$ ,

0.42, 0.64, 0.83, 0.95, 1.0 for $t=0$ , 0.1, ...0.6. The Lagrangian correlation increases more

rapidly in time and is larger than the Eulerian one.

Second, the correlation coefficients $C_{\chi,p}(t)$ between vorticity-gradient $\chi^{2}-\langle\chi^{2}\rangle$ and

the pressure $p$ is examined. It increases monotonically from the initial value $C(t=0)=$

$-0.31$ to $C_{\chi,p}(t=0.6)=0.05>0$ . This implies that nonlinear time evolution turns their

negative correlation into a positive one, consistent with the above observation that the
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high pressure zones include several singular structures.

Third, in order to see how valid eq.(4) is, we check the constancy of $Q$ in $a$ -space

where $|\chi|^{2}$ takes local maxima for each singular structure. For instance in the region I in

Fig. $2c$ , it satisfies $13.1\leq Q\leq 16.5$ with its mean 15.0 for $0.2\leq t\leq 0.6$ . Therefore $Q$ is

constant within about 10% of relative fluctuation. Moreover, the local maxima of vorticity

gradient in each rcgion shows an exponential growth with their own exponent(Fig.3). The

growth lasts for some $ti_{1}ne$ of order $Q^{-1/2}\approx 0.2$ and then abates. Note that the slowdown

of the growth is not due to deterioration of numerical accuracy, suggesting that the flow

is unstable in the Eulerian sense.12 The situation is the same in the regions II and III.

The above results demonstrate that the singular structures $1no1^{\vee}e$ with inviscid fluid

in two dimensions, at least for some time interval. However, the spectrum of enstrophy

roughly shows a power law $Q(k)\propto k^{-3}$ at $t=0.5,0.6$ and does not show any scale-

separation from that of palinstrophy $k^{2}Q(k)$ (figures are omitted). In this sense, eq.(4)

hold valid in wider situation than originally anticipated. Simultaneously, this fact suggests

a possibility of extension of the frozen hypothesis into three-dimensions. i3

Another topic in two-dimensional inviscid motion is concerned with inverse energy

transfer. It is also of interest to observe the vorticity in the $a$ -space, when small viscosity

is effected suddenly. These subjects will be reported in future.
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Figure Captions

Figure 1. Contours of di-vorticity $|\chi(x,t)|^{2}$ in $x$ -space for $t=0.2(a),$ $0.4(b)$ and 0.6

(c). The levels are $\max|\chi|^{2}/5\cross i,$ $i=1,2,$ $..,$
$5$ . The high pressure regions with $p\geq 8$ are

shaded. $h(c)$ , some structures are labled for the sake of Figs.2 and 3

Figure 2. Contours of di-vorticity $|\tilde{\chi}(a,t)|^{2}$ in $a-spa,ce$ depicted as in Figs.1.

Figure 3. Growth of vorticity gradient in the structure I (circles), II(squares) and

III(triangles). The straight line shows the evolution $\propto\exp(2\sqrt{Q}t)$ , with $Q$ averaged in

each interval where it is regarded as constant. The graph for II(III) is multiplied by

$10(10^{2})$ .
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