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1. Introduction
As is $well- kno\backslash vn$ , agraph is bipartite if and only if it contains no odd $C\}^{\prime cle}$ . So if $\backslash ve$

embed abipartite graph $G$ on aclosed surface $F^{2}$ , then the boundary walk of each face
has $e\backslash \prime en$ length. $W\dagger e$ cdl such aface simply an even face. In this case, the dual of $G$

elnbedded in $F^{2}$ is even, that is, each $\backslash ertex$ of the dual has even degree.
Also it is well-known that aplanar graph has an embedding with only $e1’\cdot en$ faces in

the sphere or the plane if and only if it is bipa.rtite. For any eulerian ma.$p$ on the sphere or
the plane is 2-colorable. $Ho\backslash vever$ , the necessity does not hold for other surfaces in general
$s$ince an odd cycle might be hidden as one that is not null-holnot.opic in the surface. In
this paper, we discuss those graphs $\backslash vhichha\backslash ree\backslash r$ en duals in closed surfa.ces in Section 2
and characterize such projective-planar graphs in Section 3.

To discribe our main $theoreln$ , we define the canonical bipartite covering, denoted by
$B(G)$ , for any $gra$.ph $G$ as follows: $1\lambda^{l}henG$ is not bipartite, we prepare two vertices $v_{1}$

and $v_{2}$ for each vertex $v\in V(G)$ and add two edges $v_{1}u_{2}$ and $v_{2}u_{1}$ if there is an edge
$vu\in E(G)$ . The resnlting $gra$ph is $B(G)$ in $t$,his $ca_{\sim^{i}}e$ and it is $a\dagger\supset ipa\cdot rtite$ graph $\backslash \backslash r$ ith
partite sets $\{v_{1} : v\in V(G)\}$ and $\{v_{2} : v\in V(G)\}$ . W’hen $G$ is bipartite, $\backslash ve$ set $B(G)=G$.

THEOREM 1. Let $G$ be a connected projective-planar graph but nonplanar. Then $G$

has a projective-planar embedding with only even faces if and only if either $G$ is bipartite
or $B(G)$ is planar.

For example, consider the \mbox{\boldmath $\lambda$}f\"obius ladder $O_{n}\backslash vhich$ is defined as a $C\}^{\prime clev_{1}v_{2}\cdots v_{2n}}$ of
length $2n$ rvith $?$?diagonals $v;v_{\mathfrak{i}+n}$ . It is easy to see that $O_{n}$ is bipartite if and only if $n$ is
odd. $V\backslash \prime hen\uparrow\tau$ is even, that is, when $O_{\iota}$ is not bipartite, $B(O_{n})$ is isomorphic to $c_{r_{n},\sim},\cross Ii_{\sim^{)}}^{\prime,}$

and is planar. Thus, $O_{n}$ can be elnbeddable in the $projecti\backslash \prime e$ plane so that it has $on1\}^{\gamma}$

$e\backslash$’en faces by Theorem 1.
Actually $O_{n}$ has two $inequi\backslash$’alent $projecti\backslash \prime e$-planar $ellubeddingsgi_{1^{f}}en$ in $\Gamma^{\tau}$igure 1.

( $D^{\prec}ach$ pa.ir of antipodaJ points on the bonndary circle $sllould$ be identified to get the
$projecti\backslash e$ plane.) The left one has an $e\backslash$’en $dual\backslash vhile$ the right one does not if $n$ is $e\backslash \prime en$ .
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Figure 1: Mobius ladders

As this example shows, a graph might have a projecrive-planar embedding without an
even dual even if $B(G)$ is planar. We can however show the uniqueness of even duals, as
follows:

THEOREM 2. A 3-connected projective-planar graph $G$ , not planar, has a unique even
dual in the projective plane if $B(G)$ is planar.

This can be said to correspond to the $weU- kno\backslash vn$ fact that $e\backslash \prime ery3$-connected planar
graph has aunique dud in the sphere, proved by Whitney [6]. As is pointed out in [1],
$1_{1}is$ result is $equi\backslash rdent$ to that every 3-connected planar graph is uniquely and $faithfu1$]

$)^{\gamma}$

embeddable in the sphere. The uniqueness and the faithfulness of planar elnbeddings\vill
play an importa.$nt$ role to $pro\backslash re$ our theorelns\ria the notion of $co\backslash \prime ering$ spaces as $\backslash vell$ as
in proofs of the results given in [2] and [4].

2. General Observations
Aconnected graph $\tilde{G}$ is called an ( $n$-fold)covering of aconnected graph $G$ if there is

an (n-to-one) suljection $p:V(\tilde{G})arrow V(G),$ $c_{c}dled$ its $projectio\uparrow\iota,$ $\backslash \prime 1_{1}ich$ indnces $1\supset ijections$

between neighborhoods of corresponding $\backslash ;ertices$ . Such aprojection $p$ : $V(\tilde{G})arrow$ ]$/^{7}(G)$

extends naturally to amap between edge sets by $p(uv)=p(u)p(v)$ . $l\prime Ve$ denote $simp1\}’$

$p:\tilde{G}arrow G$ to express these $t\backslash vo$ projections and often regard it as alocal $homeoInorphis\ln$

from $\tilde{G}$ to $G$ in the topological sense. Although the $co\backslash ering$ spaces of graphs can be
defined colnbinatorially as $ab_{01’}e$ , we shall attempt here to discuss $CO1’ering$ spaces of
graphs in terms of algebraic $topo\log\}^{r}$ . (See standard text books of algebraic topology, for
exalnple [5], if you $\backslash vant$ to know the general $\arg_{U1}nents$ on $co\backslash \prime ering$ spaces.)

By the classification of $co\backslash \prime ering$ spaces, there is aone-to-one correspondence $bet\backslash \backslash een$

the $equi\backslash \prime alencecla\sim sses$ of $co\}^{f}$erings of $G$ and the conjugacy classes of subgroups of its
fundamental group $\pi_{1}(G)$ . If a $co\backslash$’ering $p:\tilde{G}arrow G$ is associated $\backslash \^{r}ith$ a $sul$)$groupH$ , then
the fold nulnber of $p$ is equal to the number of cosets of $H$ in $\pi_{1}(G)$ . In $pa$.rticular, if $H$ is
normal in $\pi_{1}(G)$ , t.hen the quotient group $\tau_{1}1(G)/N$ acts on $\tilde{G}$ so that any $t\backslash \backslash \dagger 0\backslash \prime ertices$ in
$\tilde{G}\backslash \backslash hich$ project to the same vertex belong to the same orbit. Such a $co\backslash \prime e1^{\cdot}i_{11}g$ is called a
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regular covering and the group $\pi_{1}(G)/N$ acting on $\tilde{G}$ is called the covering transformation
group of $p:\tilde{G}arrow G$ .

The canonical bipartite covering $B(G)$ can be defined topologically as the one asso-
ciated $\backslash vith$ the subgroup $N$ in $7\ulcorner_{1}(G)$ which consists of all the $closed\backslash valks$ in $G$ of $e\backslash \prime en$

length. Such asubgroup $N$ is normal and has index 2in $\pi_{1}(G)$ if $G$ is not $bi_{1}\supset artite$ while
$N=\pi_{1}(G)$ if $G$ is bipartite. Thus, $B(G)$ is a1- or 2-fold $co\backslash ;ering$ of G. In general, a
closed $\backslash valkW$ in $G$ can be lifted to aclosed walk in $\tilde{G}$ if and only if the homotopy class
of $W$ belongs to the subgroup $H\backslash vhich\tilde{G}$ is associated $\backslash vith;other\backslash vise$ , we would obtain
awalk in $\tilde{G}$ with distinct ends, tracing edges of $W\backslash riap$ . This {act implies that $B(G)$

contains no odd cycle and hence $B(G)$ is bipartite.
The $follo\backslash ving$ lemma shows the lnost important property of $B(G)$ and has been $pro\backslash ed$

in [3] by two methods, combinatorial or topological.

LEMMA 3. Every bipartite covering $p:\tilde{G}arrow G$ factors through the canonical bipartite
covering $B(G)$ of G. That is, there is a covering projection $q$ : $\tilde{G}arrow B(G)$ with $p=bq_{\rangle}$

where $b:B(G)arrow G$ is the covering projection from $B(G)$ to G. $\blacksquare$

Notice that $G$ has a unique 2-fold bipartite covering, which is nothing but $B(G)$ , when
$G$ is not bipartite; if $p:\tilde{G}arrow G$ is a 2-fold bipartite covering, then $q:\tilde{G}arrow B(G)$ has to
be an isomorphism $bet\backslash veen$ them.

The following theorem generalizes Theorem 1 but shows only the necessity:

THEOREM 4. Let $G$ be a connected graph 2-cell embedded in a closed surface $F^{2}$ . If
the dual of $G$ in $F^{2}$ is even, then either $G$ is bipartite or $B(G)$ is embeddoble in a 2-fold
covering space of $F^{2}$ .

Proof. Let $f$ : $Garrow F^{2}$ be the embedding of $G$ into $F^{2}$ . Then we have the following
short exact sequence induced by the surjective $h_{01}nomorp1_{1}ismf_{*}:$ $\pi_{1}(G)arrow\pi_{1}(F^{2})$ :

$1arrow kerf_{*}arrow\pi_{1}(G)-\pi_{1}(F’\sim^{)})arrow 1$

The kernel $kerf$ can be regared to be generated $1\supset\}^{\gamma}$ the boundary walks of faces of $f(G)$ .
(More precisely, they need headers and tails which connect them to the base point of
$\pi_{1}(G).)$

Let $N$ be the normal subgroup of $\pi_{1}(G)$ consising of only closed $\backslash \backslash alks$ of even length.
Then the dual of this embedding is even if and only if

$kerf_{r}\subset N$ .

Suppose that $G$ is not bipartite. Then the norlnal $sub_{o}\sigma roupNhas^{\wedge}inde\lambda 2$ in $\pi_{1}(G)$ .
If $f_{x}(N)=\pi_{1}(F^{2})$ , then any odd $C\}^{\prime clef(C)}$ of $f(G)$ is $h_{01}notopic$ to aclosed walk $f(T/V)$

of $eY^{\dagger}en$ length on $F^{2}$ and hence $f(C)f(T/V)^{-1}$ is null-homot.opic $\backslash \backslash \prime alk$ of odd length. This
implies that $CI/V^{-1}$ belongs to $kerf$ and hence it call be decomposed int. $0$ aproduct of
face boundary $\backslash \backslash alks$ , at least one of $\backslash v1_{1}ichsll0\iota ldha\backslash e$ odd lengt. $h$ .

Therefore, if the $d\iota a1$ of $f(G)$ is $e\backslash en$ , then $f_{x}(1\backslash ’)$ does not coincide with $\pi_{1}(F’\sim^{)})$ and
has index 2in $\pi_{1}(F^{2})$ . So $\backslash \backslash e$ can take $tl\iota e2$-fold $co\backslash \prime el\cdot ingp:\tilde{F}^{2}arrow\Gamma$; associated $\backslash \backslash \prime itl\iota$

$f.(N)$ . Then the lift $\tilde{G}=p^{-1}(f(G))$ of $f(G)co\backslash ersf(G)$ and also $Gdou1\supset 1\}’$ . By the
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definition of $N$ , only closed walks of even length can be lifted to $\tilde{G}$ . This implies that the
2-fold covering $\tilde{G}$ is bipartite and hence it has to be isomorphic to $B(G)$ by Lemma 3.
Thus, $B(G)$ is embeddable in $\tilde{F}^{2}$ . $\blacksquare$

If $\tilde{F}^{2}$ covers $F^{2}n$-fold, then $\chi(\tilde{F}^{2})=n\chi(F^{2}),$ $\backslash vhere\chi(*)$ denotes the Euler number
and any nonorientable snrface cannot $co\backslash rer$ an orientable one. Thus, any $t\backslash vo$ 2-fold
$co\backslash \prime ering$ spaces of an orientable closed surface are hoemomorphic to each other. For
example, any 2-fold $co\backslash \prime ering$ of atorus is also atorus. So the above theorem can read for
atoroidal graph $G$ that if $G$ has an $e1^{r}en$ dual in the torus, then either $G$ is bipartite or
$B(G)$ is toroidal. On the other hand, anonorientable closed surface has exactly two 2-fold
covering spaces, orientable or $nonoriental\supset le$ , udess it is the $projecti\backslash \prime e$ plane. For example,
the torus and the $I\langle lein$ bottle $co\backslash \prime er$ the $I\langle lein$ bottle doubly $\backslash vhile$ the ody sphere $CO1^{\gamma}ers$

the projective plane. These facts imply that the condition of $B(G)$ in Theorem 4is not
so ambiguous.

Examples: The canonical bipa.rtite $co\backslash \prime eringB(K_{n})$ of the complete graph $K_{n}$ is isolnor-
phic to the coInplete bipartite gra.$phK_{n,n}$ with aperfect matching deleted. For example,
$B(K_{4})$ is planar and $K_{4}$ have aprojective-planar embedding $\backslash vith$ three rectangular faces,
and hence $\backslash vith$ an $e\backslash \prime en$ dual but not simple. The colllplete graph $K_{5}$ is $projecti\backslash re$-planar
but $B(K_{5})$ is nonplanar since it conta.$insI_{1^{\nearrow}3,3}\backslash vith$ one edge $subdi\backslash \prime ided$ by two $\backslash !ertices$ .
Thus, $K_{5}$ does not $ha\backslash \prime e$ any $e\backslash \prime en$ dual in the projective plane $\backslash vhde$ it has an $e\backslash ren$ dual in
the torus, isomorphic to $K_{5}$ itself, and hence $B(K_{5})$ is toroidal. For $n\geq 6,$ $B(K_{n})$ is not
toroidal since it contains two disjoint $K_{3,3}’ s$ . Thus, neither $I\iota_{6}^{\nearrow}$ nor $K_{7}ha\backslash \prime e$ even duals in
the torus although they are $embeddal\supset le$ there.

3. Projective-Planar Case

There are two important notions to discuss on $projecti\backslash \prime e$ -planar graphs, as the ar-
guments in $[\underline{9}]$ and [4] suggest; the first is to connect projective-planar elnbeddings and
planar coverings and the second is the uniqueness and faithfulness of 3-connected pla-
nar graphs, defined first in [1], as follows. Two embeddings $f,$ $g$ : $Garrow F^{2}$ are said to
be equivaleni here if there $e_{-}xist$ an $automorp1_{1}ism\sigma$ : $Garrow G$ and ahomeomorphism
$h$ : $F^{2}\neg- F^{2}\backslash vithhf=g\sigma$ . Agraph $G$ is said to be uniquely embeddable in $F^{2}$ if $G$

$1_{1}as$ only one $equi\backslash alence$ class of embeddings into $F^{2}$ . On the other hand, Afaithful
$e\uparrow nbeddingf$ : $Garrow F^{2}$ is such aone that for a.ny $aut_{o1}norphism\sigma$ : $Garrow G$ , there is a
$homeomor_{1}\supset hismh:F^{2}arrow F^{2}\backslash vithhf=f\sigma$ , and $G$ is said to be faithfully embeddable in
$F^{2}$ if $G$ has such an elnbedding.

As is $well- kno\backslash vn,$ $e1^{r}ey3$ -connected planar graph has aunique dual in the sphere and
it can be said in our $ter\iota ninology$ that it is uniquely and faithfully elnbeddable in the
sphere. Suppose that a $gi\backslash \prime en$ planar $CO1’ering\tilde{G}$ is regular and 3-connected. Then we can
embed $\tilde{G}$ in the sphere $S^{2}$ so that its covering lransformation group $\Gamma$ extends to agroup
of auto-homeolnorphislns on $S^{2}$ since it is {aithfully elnbeddable, and the orbit space $S^{2}/\Gamma$

should $1\supset e$ the $projecti\backslash e$ plane, $\backslash \backslash ;$]$lereG$ is embedded.
By the $sa.\iota ne\backslash \backslash \dagger a\}^{\gamma}$ , we can get an even dual of $G$ in the $projecti_{Y^{\gamma}}e$ plane if $B(G)$ is $pla$.nar

and 3-connected. The $aSSnlnption$ of $B(G)$ being 3-connected is $howe\backslash er$ t.oo strong to be
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valid in general. We need only that its covering transformations extend, but not all the
automorphisms of $B(G)$ .

The following three lermnas will be used to prove the extendability of covering trans-
formations.

LEMMA 5. Let $G$ be a 2-connected graph and $\tilde{G}$ a 2-fold planar covering of G. Then $\tilde{G}$

can be embedded in the sphere $S^{2}$ so that its covering transformation of order 2 extends
to an involution on $S^{2}$ .

Proof. We use induction on the number of $\backslash \gamma ertices$ of G. Let $p:\tilde{G}arrow G$ be the $co\backslash \prime ering$

projection and $\tau$ : $\tilde{G}arrow\tilde{G}$ the covering transformation. It is easy to see that $\tau$ extends to
the antipodal map or the rotation around some $a\lambda is$ through $\pi$ when $G$ has afew $\backslash \gamma ertices$ .

Suppose that $G$ has more vertices. When $\tilde{G}$ is 3-connected, $\tilde{G}$ is uniquely and faithfully
embeddable in the sphere and hence $\tau$ extends automatically for any spherical embedding
of $\tilde{G}$ . On the other hand, when $\tilde{G}$ is not 3-connected, $\backslash ve$ can reduce it to the case that $G$

has fewer vertices, as follows.
Let $U\subset V(\tilde{G})$ be al-or 2-cut which $\tilde{G}$ has to have. First suppose that $p(U)$ consists

of only one $1^{\gamma}ertex$ of G. Since $G$ is 2-connected, any $t\backslash vo\backslash \prime ertices$ in $V(G)-p(U)$ ca.n
be joined by apath $\backslash vhich$ does not meet $p(U)$ . $T1_{1}is$ implies that $\tilde{G}-U$ consists of
precisely $t\backslash vo$ components and hence that $\tilde{G}$ decolnposes to two subgrahps $H$ and $\tau(H)$

with $H\cap\tau(H)=U=\tau(U)$ . If $U$ were a1-cut, then the cut vertex in $U$ would be a
ffxed point of $\tau$ , contrary to $\tau$ being afree involution. Thus, $U$ consists of two $\backslash \prime ertices$

which $\tau$ exchanges. In this case, $\tau$ extends to an $in\backslash rolution$ on $S^{2}equi_{1’}alent$ to either the
antipodal map or the rotation around $a^{\tau}\dot{u}s$ through $\pi$ , depending on the elnbeddings of
$H$ and $\tau(H)$ .

Now suppose that $p(U)$ consists of two $\backslash \prime ertices$ of G. Since $G$ has no cut $\backslash \prime ertex$ by
the $abo\backslash \prime e$ arguments, $U$ has to contains $t\backslash vo$ vetices $u,$ $v$ and $\tau(U)\cap U=\emptyset$ . Then $G$

decomposes into three subgraphs $K,$ $H$ and $\tau(H)$ such that $\tau(K)=K,$ $K\cap H=U$ and
$H\cap\tau(H)=\emptyset$ if $\backslash \backslash e$ choose $U$ so that one of cornponents of $\tilde{G}-U$ is minimal with respect
to inclusion among all the 2-cuts of $\tilde{G}$ .

Add new edges $uv$ and $\tau(u)\cdot r(v)$ to $K$ if they do not exist in K. Then $\tau$ induces afree
$in\backslash \prime olution\tau_{K}0\backslash \prime er$ the resdting graph $K’(=K+\{uv, \tau(u)\tau(v)\})$ . Now $G$ decomposes
into $t\backslash vosul\supset graphsp(K)$ and $p(H)$ n’hich meet in $p(U)$ and $G’=p(K)+p(u)p(v)$ is
2-connected. Since $K’co\backslash \prime ersG’doub1_{J^{\gamma_{)}}}K’$ can be eInbedded in $S^{2}$ so $t$ hat $\tau_{K}$ extends
to an involution $h:S^{2}arrow S^{2}$ . If $\backslash ve$ embed $H$ along the arc $uv$ and $\tau(H)$ along $\tau(u)\tau(v)$ ,
then $h$ will be an extension of $\tau$ .

In either case, $\backslash \backslash \prime e$ have got an spherical enlbedding of $\tilde{G}\backslash vith\tau$ extendable and hence
our induction completes. $\bullet$

LEMMA 6. Let $G$ be a connected nonplanar graph and let $\tilde{G}$ be a 2-fold planar covering
of $G$ embedded in the sphere. Then no two vertices of $\tilde{G}$ which project to the same vertex
are incident to a common face.

Proof. Let $p$ : $\tilde{G}arrow G$ be the covering projection and $\tau$ : $\tilde{G}$

–
$\tilde{G}$ the covering

transformation of order 2. Since $G$ is nonplanar, $G$ contains a subdivision $K$ of either K5
or $K_{3,3}$ and $\tilde{K}=p^{-1}(K)$ is a 2-fold planar covering of $K$ rvith transforination $\tau|_{\overline{\Lambda}}$ .
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By Lelnma 4 in [2], $\tilde{\Lambda}’$ is a $subdil\supset ision$ of a3-connected planar $gra_{1\supset h}$ . Since $e\backslash ;er\}’$

$3$-connect.ed planar $gra$ ]$\supset h$ is fait.hfully elnl\supset eddal\supset le in the $s_{1\supset here}S^{2},$ $\tau|_{l_{t}^{-}}$. ext.ends $t,0$ an
$in\backslash$’olution $h$ : $S^{2}arrow S^{2},$ whicl] is $equi\backslash alent$ t.o the $anti_{1}$) $oda.1ma_{1}\supset$ . It is not. $ho\backslash \backslash e\backslash er$

assured $\backslash hether$ the $11^{\prime hole}$ of $\tau$ extends or not.
Suppose that for $some\backslash ’ertexv\in\uparrow/^{r}(\tilde{G})$ , both $v$ a.nd $\tau(v)$ a.re incident. to acommon

face. Then thery are contained in one face $A$ of $\tilde{A}’$ . This implies $t$.hat either $\tau(A)=A$

or $\tau(A)\cap A=\{v, \tau(v)\}$ . In the former case, the $fa$.ce $A$ would cont.ain afixed point. of
$h$ , contrary to $hbein_{1\supset}\sigma$ a free $in\backslash olution$ . In the latter case, $\tilde{A}^{-}$ splits at $\{v, \tau(v)\},$ $\backslash hich$

contradicts that $K$ is a $s\iota 1\supset di\backslash rision$ of a3-connect.ed graph. Therefore, $v$ and $\tau(v)$ lie on
the bounda.ries of distinct $fa$.ces. $\bullet$

LEMMA 7. Let $G$ be a connected graph wiih blocks $B_{0},$ $B_{1)}\cdots,$ $B_{n}$ and let $I^{j}\neg$ : $\tilde{G}-G$ be
a 2-fold planar covering of G. If $G$ is projective-planar but nonplan or, then precisely one
of bloclcs, say $B_{0}$ is nonplanar and the others can be.li.fted to $\tilde{G}$ isomorphicolly.

Proof. It is clea.$r$ that $a.t$ least one of $B_{2}\cdot s$ , say $B_{0}$ , is nonplanar. If we embed $G=$

$B_{0}\cup B_{1}\cup\cdots\cup B_{\eta}$ in the $projecti\backslash \cdot,e$ plane, then the other $1\supset locksB_{i}(i\geq 1)$ is $eml\supset edded$

within faces of $B_{0}$ , which are $homeomor_{1\supset hi_{C}}$ to 2-cells. Thus, they are planar.
Suppose tha.t $B_{1}$ could not $1\supset e$ lifted $isomorphicaU)’$ . Then $p^{-1}(B_{1})$ is a2-fold $CO1^{r}ering$

of $B_{1},$ $\backslash \backslash hich$ is connceted. Let $P$ be ashort.est path connect.ing $B_{0}$ to $B_{1}\backslash vith$ ends
$u\in l^{\gamma}(B_{0})$ and $v\in l^{f}(B_{1})$ and let $P’$ and $P”$ be $t\backslash 0$ distinct lifts of $P$ in $\tilde{G}$ . Then $t$.he
connected subgraph $P’\cup p^{-1}(B_{1})\cup P’’$ ha.s to $1\supset e$ contained in aface of the 2-fold $1\supset lanar$

$co\backslash \prime eringp^{-1}(B_{0})$ and hellce the $t.\backslash \backslash 0$ lifts of $u$ are incident to the face together, contrar;
to Lelxuna 6. $\blacksquare$

The $follo\backslash \^{r}ing$ theorem is $j$ ust $\backslash \backslash hat\backslash \backslash e$ need to prove Theorem 1:

THEOREM 8. Let $G$ be $a$. conn ected graph $u\prime hich$ is prcjective-planar but nonpla $\uparrow\dot{l}ar$ an $d$

let $p:\tilde{G}arrow G$ be a $2-.[old$ plonar covering of $G$ with $t\uparrow ansfo\uparrow^{\sim}\uparrow\gamma$ )ation $\tau$ : $\tilde{G}arrow\tilde{G}$ of order 2.
Then $\tilde{G}$ can be embedded in the sphere $S^{2}$ so that $\tau$ exten $ds$ to an involution $cnS^{2}$ .

$P\uparrow 0of$. $\Lambda fteruIlif_{J^{r}}ing$ some )) $1oc1\backslash \cdot\backslash \neg,$ $\backslash ve$ can $a.ss\iota llleth(\urcorner tGdccom])ose\backslash \neg$ into a2-
connected $llonplanarsu1_{2_{t\supset}^{\sigma}}raphB_{0}$ (

$\urcorner 11d$ se $\backslash ’er_{\iota}’\iota 1lnutu_{c}\urcorner]1ydi\backslash \backslash joi_{11}tconI\rceil ectedp^{]_{\urcorner}nar}csul$ )$-$

graphs $B_{1},$
$\cdots,$

$B_{71}$ each of $\backslash \mathfrak{j}^{\prime hich}$ meet.s $B_{0}i_{1}\iota$ acut $\backslash ^{r}ert.exv_{i}$ . By $Lemllla7,\tilde{G}$ can $|$) $e$

$oI\supset tained$ as $t$.he union $\tilde{B}_{0}\cup B_{1}’\cup B_{1}’’\cup\cdots\cup B_{t}’\cup B_{;}’’,$ $\backslash v1\tau el\cdot e\tilde{B}_{0}$ is a2-fold planar $co\backslash e\iota\cdot ing$

of $B_{0}\partial 11dB_{t}’$ and $B_{l}’’$ are disjoint $co_{1}\supset ies$ of $B,\cdot(i\geq 1)$ .
By Lenlrna 5, $\tilde{B}_{0}$ can $1\supset eenll\supset edded$ in $S^{2}$ so $t.1lat\tau|_{B_{0}}$ exl.ends 1.0 $aI1i_{lt\backslash }\prime olutionh$ :

$S^{2}-S^{2}\backslash ^{\backslash }inceB_{0}$ is $2- conl$) $ected$ . By $Lelnllla6,$ the $t.\backslash \backslash 01ift\backslash arrow v’$. and $v_{1’}’$ of $v_{t}\cdot aI^{\cdot}ei_{11}cident$

to distinct faces $A$ and $h(A)$ . $Fi_{1}\cdot stolnl$) $edB_{l}’i_{1}\iota 1$ (
$\urcorner l\tau d$ next $eml$) $edB_{;’}’$ onto $h(B’)$ for

$eacl\iota i,$ $\epsilon;0$ that $h|_{\overline{G}}$ realizes $\tau$ . $\bullet$

Note that $tlleasStll7$ ]$\supset t.ion$ of $G$ bcing nonplanar cannot bc onii $t$ ted frorn $Theol\cdot elll$ S.
For cxample, let $H_{71}$ be the $g\iota_{c}\urcorner 1$) $1\iota ol\supset tai_{11}ed$ as a connectecl planar graph $H\backslash vi1$ ] $\iota\uparrow\tau\overline{c}1i=^{\neg}joi_{11}t$.
( $.ria11_{\circ}^{\circ]cs}$ added to a face $1\supset ou1$) $c1_{c}’\iota\iota\cdot$

} at one $\backslash G1^{\cdot}\{.CX$ each. $T1$ ) $C11H_{?1}1\iota$ as a 2-fold planar
covering H. $\backslash v1\iota icll$ can be obt ained as $1\backslash \iota oco$ ] $\dot{)}ics$ of II joined by ?7 hexagons. Its covering
$(1_{(}711\underline{\grave{\backslash }}fo1^{\cdot}1)1_{(}\urcorner tiot1\tau$ : $I\tilde{]}_{?t}$

– $If_{7t}$ fixes each hexagon ($iet\backslash \prime i\backslash G$ . To $1^{\cdot}e_{c}\urcorner 1i_{1}^{r}.e$ this action on thc ?1
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$he\lambda a.gons$ , we $ha\backslash e$ to pla.ce them $a\backslash \neg$ concentric circles on the sphere, so that the rotation
around $t$.he cent.er through $\tau_{t}$ acts on them. If $\gamma\gamma\geq 3,$

$t\cdot 1$) $en\backslash \backslash e$ cannot add $t\backslash \backslash oH^{\backslash }s$ to get.
a $1\supset lanar$ embedding of $\tilde{H}$ . Since $H_{n}$ is not 2-connected. this example also $sho\backslash \backslash s$ t.haf $G$

has to $1\supset e2$-connected in $Le\iota nma5$ .
Suppose that $H_{??}$ had a $projecti\iota^{r}e$-planar $eml\supset edding\backslash \backslash ith$ an $e\backslash ’ en$ dual. Then the $?$?

triangles $\backslash vould$ be essentid cycles, but any two essentail $c_{J^{\prime\cdot clesha1’e}}$ to meet ea.ch other in
the $p^{roj\backslash \prime e_{1}}ecti\supset 1ane$ . Thus, $H_{n}\backslash \iota ithn\geq 2$ has no $e\backslash en$ dual in the $1\supset rojecti\backslash \cdot e$ plane $e\backslash \cdot en$

if $B(H_{n})=\tilde{H}_{n}$ is plana.$r\backslash \backslash r$hen $H$ is bipartite. That is $\tau$ such an $H_{\mathfrak{n}}$ is acounterexample
to Theorem 1 $\backslash \backslash rith$ the nonplanarity of $G_{01}nitted$ .

Proof of $Theore\uparrow n1$ . The $necessityfollo\backslash vs$ from Theorem 4since the $on1\backslash 2$-fold $co\backslash rering$

space of the projective plane is the $s_{1\supset here}$ .
To show the sufficiency, $\backslash \backslash e$ suppose $t$.ha.t $G$ is $11ot1\supset ipartite$ and tha.t $B(G)$ is planar.

Then $B(G)$ is a2-fold $co\backslash \prime ering$ of $c_{a11}dha_{\backslash }i$ the $co\backslash \prime ering$ translation $\tau$ : $B(G)arrow B(G)$

of order 2. By Theorem $S,$ $B(G)$ can $1\supset e$ embedded in the sphere $S^{2}$ so that $\tau$ extends to
afree $in\}’olutionh:S^{2}arrow S^{2},$ $equi\backslash \prime alent$ to the antipotal ma.$p$ of $S^{2},$ $other\backslash \backslash ise,$ $G\backslash \backslash \prime 0\iota 1d$

$1\supset e$ planar.
The orbit $s_{1\supset ace}S^{2}/h$ is homeolnorphic to the $1\supset rojectiveI\supset laneP^{2}$ and contains a

$projecti\backslash \cdot\prime e$ planar embedding of G. If $h$ fixed aface $set\backslash vi\backslash \neg e$ , {.here $\backslash \backslash ould1_{\dot{J}}e_{c}\backslash$ fixed point.
$1\backslash ithin$ the face by Brawer’s $f_{L}xed$ point theorem, contrary to $h1\supset ein_{o}\sigma$ free. Thus, $h$ ca.rries
ea.ch face of $B(G)$ ont.o $a$.nother different one and the $co\backslash !erin_{o}\sigma$ projection $p:S^{2}arrow P^{2}(=$

$S^{2}/h)$ sends it onto aface of $GhomeollLorphicaJly$. Since $B(G)$ is $bi_{I}\supset artite,$ $B(G)$ has
only $e\backslash \cdot,eIl$ faces and hence so does G. $\bullet$

$P\uparrow^{\backslash }0of$ of $Theo\uparrow e\uparrow n2$ . Let $f$ : $G-P^{2}$ ]) $e$ a.ny projective-plallar $eml\supset edding\backslash \iota:ilh$ an $e\backslash /\cdot en$

daul and let $p:S^{2}arrow P^{2}1\supset e$ the $2-\{oldrg$ e $proj\backslash \prime e$ ] . Then $p^{-1}(f(G))$

is a2-fold $CO1^{r}erin_{i\supset}\sigma ofG$ and $a1\epsilon_{ioi\backslash elnbedded}\neg$ in the $spllereS^{2}\tau\backslash ith$ an even danl. $T1_{1}iarrow\neg$

$i_{1}nplies$ tha.t $p^{-1}(f(G))$ is bipartite and has to $1\supset eisomorpl\iota ic$ t.o $B(G)1\supset yLemnla3$ .
Negami has $sho\backslash vn$ in [2] that there.is a $1\supset ijection1\supset et.\backslash \backslash een$ t.he $equi\backslash \cdot alenceclasse\backslash \neg$ of

$projecti\backslash e$ -planar $embeddi_{1}\iota gs$ and the $isomorp1_{1}i\backslash \neg\ln clas\backslash \neg es$ of 2-fold planar $co\backslash \cdot erin_{i\supset}\sigma s$ of
G. Thus, $f$ is $eq\iota i\backslash alent$ to the one $deri_{\lambda’}ed$ from a $1\supset lalla.reln1\supset edclin_{o}\sigma$ of $B(G)i_{11}t1_{1}e$

$]\dot{J}1^{\cdot}oof$ of $T11CO1^{\cdot}Cl111,$ $\iota v1_{1}ic11i_{111]}\supset 1iest1_{1_{t}’1}C$ a $\iota 1y\{r’.d\iota a$ [ $\epsilon_{i}al\cdot eis^{\neg}ol110\iota\cdot 1^{\dot{J}}1_{1}ict.0$ cacl] $011_{1}cr$

$\iota^{r}i^{r}(\iota B(G)$ . $\bullet$
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