Bounding the Number of Columns (1, k-2, 1) in the Intersection Array of a Distance-Regular Graph

東谷直美 (Naomi Higashitani)

Department of Mathematics,
Osaka Kyoiku University

1. Introduction.

Let Γ = (X,R) be an undirected connected finite graph without loops and multiple edges, where X and R are the vertex and edge sets. For a vertex x, Γ_{i} (x) denotes the set of vertices having distance i from x. Γ is said to be distance-regular if the numbers (which are called intersection numbers)

$$c_{i} = | \Gamma_{i-1}(x) \cap \Gamma_{1}(y) |$$

$$a_{i} = | \Gamma_{i}(x) \cap \Gamma_{1}(y) |$$

$$b_{i} = | \Gamma_{i+1}(x) \cap \Gamma_{1}(y) |$$

are independent of the choices of $x \in X$ and $y \in \Gamma_i(x)$. In what follows, we always assume that Γ is a distance-regular graph. The valency and diameter are denoted by k and d:

$$k = | \Gamma_1(x) |,$$

$$d = Max \{ i | \Gamma_i(x) \neq \emptyset \}.$$

The intersection array is denoted by

Let

$$\ell = \ell (c, a, b) = \# \{i | (c_i, a_i, b_i) = (c, a, b) \}.$$

Then by the relation [1, page 195]

$$1 = c_1 \le c_2 \le \cdots \le c_d$$
, $k = b_0 \ge b_1 \ge \cdots \ge b_{d-1}$,

these ℓ columns appear in the intersection array consecutively.

In [2], it is conjectured that $\ell(c, a, b)$ is bounded by a function of the valency k and it is shown that if c = b,

$$\ell$$
 (c, a, b) $\leq 10k2^{k}$.

We shall improve the above bound when c = b = 1.

Theorem.

If
$$k \ge 5$$
, $\ell(1, k-2, 1) < 46\sqrt{k-3}$.

Notice that distance-regular graphs of valency 3 or 4 are classified by [3], [4]. Our result is useful for the classification of distance-regular graphs with small valencies, for example $k=5,\ 6$.

2. Preliminaries.

In what follows, let the intersection array be

The i-th adjacency matrix of Γ is denoted by A_i ($0 \le i \le d$) and

we set $A = A_1$.

Proposition 1. ([2, Proposition 1])

Let $\ell = \ell(c, a, b)$. Then there exists an eigenvalue θ of A such that

 $k - b - c + 2\sqrt{bc} \cos \frac{v + 2}{\ell} \pi < 0 < k - b - c + 2\sqrt{bc} \cos \frac{v}{\ell} \pi$ for each $v = 1, 2, \dots, \ell-3$.

There exists a polynomial $v_i(x)$ of degree i such that $v_i(A) = A_i$, and we have $v_i(K) = K_i$. See [1].

Proposition 2. ([2, Proposition 2])

 $v_s(x)$ has roots all less than $k - b_s - c_s + 2\sqrt{b_s c_s}$.

Proposition 3. ([5])

Let $\alpha = \ell(c_1, a_1, b_1)$ and $\theta \neq \pm k$ an eigenvalue of A. If $a_1 = 0$, then the multiplicity $m(\theta)$ of θ in A satisfies $m(\theta) \geq k(k-1)^{r-1}$ with $r = \lfloor (\alpha + 1)/2 \rfloor$, the integer part of $(\alpha + 1)/2$.

Proposition 4. ([6])

Let $\alpha=\ell$ (c_1 , a_1 , b_1) and $\alpha'\leq \ell$ (c_u , a_u , b_u). Suppose $c_{u+\alpha'}=1$ and $a_1\neq a_u$. Then the following hold (1) $\alpha'\leq \alpha$

(2)
$$\alpha' \leq \alpha - 1$$
 if $\alpha \geq 3$

(3)
$$\alpha' \leq \alpha - 2$$
 if $\alpha \geq 5$.

The results in Proposition 4 are also obtained by A.V.Ivanov (personal communication).

Proposition 5. ([7])

Let $\alpha = \ell(1, 0, k-1)$ and $\alpha_1 \leq \ell(1, 1, k-2)$.

Suppose $c_{\alpha+\alpha_1+1}=1$, $k \geq 4$ and $\alpha \geq 1$. Then $\alpha_1 \leq 2$.

Lemma 6. If $\ell(1, k-2, 1) \ge 2$, then $a_1 = 0$.

Proof. Suppose $a_1 \neq 0$. Then for an edge { y, z } with $y \in \Gamma_{s+1}(x)$, $z \in \Gamma_{s+2}(x)$, there exists a triangle yzw, and so we have $b_{s+1} > 1$ or $c_{s+2} > 1$, which is a contradiction. \square

3. Proof of Theorem.

Let Γ be a distance regular graph with valency k and diameter d. Let $\ell = \ell$ (1, k-2, 1) > 0, and

$$(c_{s+1}, a_{s+1}, b_{s+1}) = \cdots = (c_{s+\ell}, a_{s+\ell}, b_{s+\ell})$$

$$= (1, k-2, 1).$$

Let $\alpha = \ell(c_1, a_1, b_1)$ and $r = [(\alpha + 1)/2]$.

By the relation $c_i \le c_{i+1}$, $b_i \ge b_{i+1}$, we have the following intersection array :

Firstly we need two lemmas to estimate the number of vertices $\ n$ and the number $\ s$ above.

Lemma 7. Let n be the number of vertices. Then $n < k_s \cdot \left((k-1)/(k-2) + (\ell+1)(k-1) \right).$

Proof. Since $n = k_0 + k_1 + \cdots + k_d$, we evaluate k_i 's using the property,

$$b_{i}k_{i} = c_{i+1}k_{i+1}$$
.

For $i \le s$, since $c_i = 1$ and $k = b_0 \ge b_1 \ge \cdots \ge b_s > 1$, we have $k_{i-1} = k_i / b_{i-1} \le k_i / b_s \le k_{i+1} / b_s^2 \le k_s / b_s^{s-(i-1)}$.

Hence

$$k_{0} + k_{1} + \cdots + k_{s} \le k_{s} \left(\left(1 / b_{s} \right)^{s} + \left(1 / b_{s} \right)^{s-1} + \cdots + 1 \right)$$

$$= k_{s} \cdot \frac{b_{s}}{b_{s} - 1} \left(1 - \left(1 / b_{s} \right)^{s+1} \right)$$

$$< \frac{b_{s}}{b_{s} - 1} \cdot k_{s}.$$

Obviously, it holds that

$$k_{s+1} = k_{s+2} = \cdots = k_{s+\ell} = b_s k_s$$
.

For i \geq s + ℓ + 1, since \mathbf{b}_i = 1 and 1 < $\mathbf{c}_{s+\ell+1} \leq \cdots \leq \mathbf{c}_d$, we have

$$k_{s+\ell+j} \le k_{s+\ell} / (c_{s+\ell+1})^{j}$$
.

Hence

Therefore we get

Note that $(\ell + 1)x + \frac{x}{x-1}$ is increasing if $x \ge 2$.

Lemma 8. Suppose $\ell \geq 5$ and $k \geq 5$. Then $s \leq \alpha(k-3)$.

Proof. Let $\alpha' = \ell - 1$ in Proposition 4 and u = s + 1. Since $\alpha' \ge 4$, $\alpha \ge 5$. Let

$$\alpha_i = \ell$$
 (1, i, k - i - 1).

Then $\alpha_0 = \alpha$ and $\alpha_{k-2} = \ell$. Note that $\alpha_1 = 0$ by Lemma 6.

By Proposition 5, $\alpha_1 \leq 2$.

By Proposition 4.(3), $\alpha_i \leq \alpha - 2$ $i = 2, \dots, k - 3$.

Therefore we get

$$s \le \alpha + \alpha_1 + \alpha_2 + \cdots + \alpha_{k-3}$$

 $\le \alpha + 2 + (k - 4)(\alpha - 2)$
 $= \alpha(k - 3) - 2(k - 5)$
 $\le \alpha(k - 3)$ as $k \ge 5$.

Now we start the proof of Theorem.

By Proposition 1, there exists an eigenvalue θ of A such that

$$k - b - c + 2\sqrt{bc} \cos(3\pi/\ell) < \theta < k - b - c + 2\sqrt{bc} \cos(\pi/\ell)$$
.

Since b = c = 1, it holds that

$$k - 2 + 2 \cos(3\pi/\ell) \ge k - 2 + 2\left(1 - \frac{1}{2}(3\pi/\ell)^2\right)$$

= $k - (3\pi/\ell)^2$.

Thus we have an eigenvalue θ of A such that

$$k - \delta < \theta < k$$
,

with
$$\delta = (3\pi / \ell)^2$$
.

By Proposition 2, $v_s(x)$ is positive for

$$x \ge k - b_s - c_s + 2\sqrt{b_s c_s}$$
, while
$$k - b_s - c_s + 2\sqrt{b_s c_s} = k - \left(\sqrt{b_s} - \sqrt{c_s}\right)^2$$
$$= k - \left(\sqrt{b_s} - 1\right)^2$$
$$\le k - \left(\sqrt{2} - 1\right)^2$$

Hence we get

$$v_s(x) > 0$$
 for $x \ge k - \left(\sqrt{2} - 1\right)^2$(1)

Now assume that $\ell > 46\sqrt{k-3}$. Since $\ell \geq 3\pi \left(\sqrt{2} + 1\right)$,

$$\theta > k - \left(\sqrt{2} - 1\right)^2$$
 and so $v_s(\theta) > 0$.

Let $m(\theta)$ be the multiplicity of θ in A.

By Biggs' formula [1, page 72], it holds that

$$m(\theta) = n / \sum_{i=0}^{n} \{ v_i(\theta)^2 / k_i \}. \qquad (2)$$

Since $\ell \ge 3\pi \left(\sqrt{2} + 1\right) > 2$, $a_1 = 0$ by Lemma 6.

Hence we can apply the Terwilliger bound (Proposition 3)

$$m(\theta) \ge k(k-1)^{r-1}.$$
 (3)

We shall find an upper bound of m(0), and by comparing it with (3), we shall prove that ℓ can not exceed $46\sqrt{k-3}$.

Applying Lemma 7 to (2), we have

$$m(\theta) \le n \cdot k_s / v_s(\theta)^2$$

$$\leq \left(\ k_{\rm S}/v_{\rm S}(\theta) \right)^2 \cdot \left((\ k - 1\)/(\ k - 2\) \ + \ (\ \ell + 1\)(\ k - 1\) \right).$$

Let λ_1 , λ_2 , \cdots , λ_s be the roots $v_s(x)$.

By (1), we may assume

$$\theta \, \rightarrow \, k \, - \, \left(\, \sqrt{2} \, - \, 1 \, \, \right)^2 \, \rightarrow \, \lambda_1 \, \rightarrow \, \lambda_2 \, \rightarrow \, \cdots \, \rightarrow \, \lambda_s \, .$$

Since $(k - \lambda_i)/(k - \theta) = 1 + (k - \theta)/(\theta - \lambda_i)$ increases

with λ_i , it follows that

$$\frac{k - \lambda_{i}}{\theta - \lambda_{i}} < \frac{k - \left\{k - \left(\sqrt{2} - 1\right)^{2}\right\}}{\theta - \left\{k - \left(\sqrt{2} - 1\right)^{2}\right\}}$$

$$= \frac{1}{1 + \left(\theta - k\right)\left(\sqrt{2} + 1\right)^{2}}$$

$$\langle \frac{1}{1-\delta(\sqrt{2}+1)^2}$$
 as $k-\delta < \theta$

So we have

$$\frac{k_{s}}{v_{s}(\theta)} = \frac{v_{s}(k)}{v_{s}(\theta)} = \prod_{i=1}^{s} \frac{k - \lambda_{i}}{\theta - \lambda_{i}} \left\{ \frac{1}{1 - \delta(\sqrt{2} + 1)^{2}} \right\}^{s},$$

$$m(\theta) \left\{ \frac{(k - 1)/(k - 2) + (\ell + 1)(k - 1)}{\{1 - \delta(\sqrt{2} + 1)^{2}} \right\}^{2s}.$$
(4)

Since r = [(α + 1)/2]. $\alpha \leq$ 2r and it follows from Lemma 8 that

$$s \le \alpha(k-3) \le 2r(k-3).$$
 ... (5)

By (3), (4) and (5), we have

$$k(k-1)^{r-2} < \frac{1/(k-2) + (\ell+1)}{\{1-\delta(\sqrt{2}+1)^2\}^{4r(k-3)}} \cdots (6)$$

while 0 < 1 - $\delta(\sqrt{2} + 1)^2$ < 1 by $\ell \ge 3\pi(\sqrt{2} + 1)^2$ and

$$\delta = (3\pi / \ell)^2.$$

Since $\ell + 1 \le \alpha \le s$ by Proposition 4.

[the right hand side of (6)]

$$\leq \frac{1/(|k-2|) + s}{\left\{1 - \delta\left(\sqrt{2} + 1\right)^2\right\}^{4r(k-3)}}$$

$$\leq \frac{s+1}{\{1-\delta(\sqrt{2}+1)^2\}^{4r(k-3)}}$$

$$\leq \frac{2r(k-3)+1}{\left\{1-\delta(\sqrt{2}+1)^2\right\}^{4r(k-3)}}$$

$$\left\{ \frac{2rk}{\left\{ 1 - \delta \left(\sqrt{2} + 1 \right)^2 \right\}^{4r(k-3)}} \right.$$

Hence

$$log k + (r - 2)log (k - 1)$$

$$(\log 2 + \log r + \log k - 4r(k - 3)\log \{1 - \delta(\sqrt{2} + 1)^2\}.$$

$$... (7)$$
We want to show that (7) does not hold for large ℓ .

Namely we shall show the opposite inequality for $\ell \ge 46\sqrt{k - 3}$:
$$(r - 2)\log (k - 1)$$

$$\ge \log 2 + \log r - 4r(k - 3)\log \{1 - \delta(\sqrt{2} + 1)^2\}.$$

$$\le \log 2 + \log r - 4r(k - 3)\log \{1 - \delta(\sqrt{2} + 1)^2\}.$$

$$\le (\ell + 1)/2 \ge \frac{-46\sqrt{k - 3} + 1}{2} \ge \frac{-46\sqrt{2} + 1}{2}.$$

$$[the left hand side of (8) 1 - [the right hand side of (8)]$$

$$= (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k - 3)\log \{1 - (3\pi / \ell)^2 \cdot (\sqrt{2} + 1)^2\}$$

$$\ge (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k - 3)\log \left[1 - \left(\frac{3\pi}{46\sqrt{k - 3}}\right)^2 \cdot (\sqrt{2} + 1)^2\right]$$

$$> (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k - 3) \cdot \left[-\frac{(3\pi/46\sqrt{k - 3})^2 \cdot (\sqrt{2} + 1)^2}{1 - (3\pi/46\sqrt{k - 3})^2 \cdot (\sqrt{2} + 1)^2}\right]$$

$$(by \log (1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots (for 0 < x < 1)$$

$$> -x - x^2 - x^3 - \cdots$$

$$= -\frac{x}{1 - x}$$

$$= (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k - 3) \cdot \left[-\frac{(3\pi/46)^2(\sqrt{2} + 1)^2/(k - 3)}{1 - (3\pi/46)^2(\sqrt{2} + 1)^2/(k - 3)}\right]$$

$$> (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k - 3) \cdot \left[-\frac{(3\pi/46)^2(\sqrt{2} + 1)^2/(k - 3)}{1 - (3\pi/46)^2(\sqrt{2} + 1)^2/(k - 3)}\right]$$

$$> (r - 2)\log (k - 1) - \log 2 - \log r$$

$$+ 4r(k-3) \cdot \left[-\frac{0/2447/(k-3)}{1-0.2447/(k-3)} \right]$$

$$\left(\text{ by } (3\pi/46)^2 \cdot \left(\sqrt{2} + 1 \right)^2 \approx 0.244668445 \right)$$

$$= (r-2)\log(k-1) - \log 2 - \log r$$

$$- 4r \times 0.2447 \times \frac{k-3}{(k-3)-0.2447}$$

$$\geq (r-2)\log 4 - \log 2 - \log r - 4r \times 0.2447 \times \frac{2}{2-0.2447}$$

$$(\text{by } k \geq 5)$$

$$\geq \left(\frac{46\sqrt{2} + 1}{2} - 2 \right) \log 4 - \log 2 - \log \left(\frac{46\sqrt{2} + 1}{2} \right)$$

$$- 4 \times 0.2447 \times \frac{46\sqrt{2} + 1}{2} \times \frac{2}{2-0.2447}$$

$$\left(\text{as it is increasing with } r, \text{ where } r \geq \frac{46\sqrt{2} + 1}{2} \right)$$

$$\sim 43.01243307 - 0.69314718 - 3.497322742 - 36.83329505$$

$$> 43.01 - 0.70 - 3.50 - 36.84$$

$$= 1.97 > 0.$$

This proves the theorem. \square

Acknowledgement

The author would like to thank Prof. T. Ito and Dr. H. Suzuki for valuable suggestions and comments.

References

[1] E. Bannai and T. Ito: Algebraic Combinatorics I,

Benjamin/Cummings Lecture Note Series (1984).

- [2] E. Bannai and T. Ito: On Distance-Regular Graphs with Fixed Valency, Graphs and Combinatorics, 3 (1987), 95-109.
- [3] N. L. Biggs, A. G. Boshier and J. Shawe-Taylor: Cubic distance-regular graphs, J. London Math. Soc., (2) 33 (1986), 385-394.
- [4] E. Bannai, T. Ito and K. Nomura: In preparation.
- [5] P. Terwilliger: Eigenvalue Multiplicities of highly symmetric graphs, Discrete Math., 41 (1982), 295-302.
- [6] H. Suzuki: On a Distance Regular Graph with $b_e = 1$, Preprint.
- [7] A. Hiraki: An Improvement of the Boshier-Nomura Bound, Preprint.