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THE FAST AND SLOW GROWING HIERARCHIES
AND THE INDUCTIVE DEFINITIONS

Noriya Kadota

(8 ke, BRI R A E)

§0. INTRODUCTION

The aim of subrecursive hierarchy theory is to assign ordinal
notations to computable functions in such a way as to reflect
their computational complexity. We shall consider here, as the
complexity measure, the termination proofs of some aigorithms
for computing them, in particular, the proofs given in ID<m (=

U IDv; the theory of finitely iterated inductive definitions).
V<o

Then the function whose termination proof is given in ID<m is
called provably computable 1in ID<m.
On the relation between termination proofs and subrecursive

hierarchies, Wainer{15],[16] introduced a subrecursive inacces-

_sible ordinal t,-so_that for x > 0,
Ge(x) < F (x) g G (x+1)

where Gt and Fr are the slow and fast-growing functions at =,
respectively. This means that the slow-growing hierarchy catches
up with the fast-growing one at stage t. Then he stated that the
ordinal height of <t is sup{IIDvI:v<m} where IIDvl is the proof-
theoretic ordinal of IDv’ based on the results of Girard[8].

In this article, we shall demonstrate the following (I)=(III)
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on the relation between termination proofs in ID<m and the slow

and fast-growing hierarchies:

(I) We introduce an ordinal x' such that for x > 3,

G (x) < F_o(x) ¢ G (G . (X)),
This means also that the slow-growing hierarchy catches up with
the fast-growing hierarchy at t'. The reason why we change the

definition of t is to show the collapsing lemma in Section 5.

(ITI) For each o €< t', the function Fa is provably computable in
ID<m.

(III) 1If a computable function f:¢ — @ is provably computable
in ID<m’ then f 1is dominated by Fa for some a < t' (i.e.,

there 1s an m < @ such that f(x) < Fa(x) for x > m).

Our demonstration here is based on the results of Buchholz[4]
on the functions provably computable in IDv(vgm). On the other
hand, Arai[2] had already studied these functions by means of
the slow-growing hierarchy. Here we shall first prove the
relation of (I) which is a direct estimation of the fast-growing
function at t' by the slow- growing hierarchy at t', following
the idea of [16]; secondly, we shall prove (II) and (III) which
imply that t' corresponds to the proof-theoretic ordinal of ID<m'
Moreover, we shall consider only the case of IDv where v < g.
The author does not know how to construct t' which implies (I)

and corresponds to the proof theoretic ordinal of IDw'



8§1. A SUBRECURSIVE INACCESSIBLE ORDINAL t'

1A. In this section, we shall introduce a (tree-) ordinal <t'

and prove that
(1) Gt.(x) < Ft.(x) < Gt'(Gt'(x)) for x > 3.

The definition of t' is slightly changed from that of t in [15],
[16]. The reason why we change the definition of t is to apply
directly Buchholz' method in [4] to our case; We need this
change to prove the collapsing lemma of Section 5.

In the following, the letters k, m, n, p, X denote non-

negative integers.

1B. TREE ORDINALS AND (p)-BUILT-UPNESS., The hierarchies of
number-theoretic functions considered here are defined by re-
cursions over the set of countable ordinals which has an assign-
ment of fundamental sequences at limit stages. For a countable

limit ordinal Xx, we call <).[x]>x a fundamental sequence for x

<
when it satisfies:
(1)  x[0] < af[1] < a[2] < «++ < 1,
(i1) sup{x[x]:x < @} = x.
Following [6], here we shall define the set Q of countable tree-

ordinals which is constructed by assigning the arbitrary chosen

fundamental sequences at limit stages as follows:

DEFINITION 1.1 (Countable tree-ordinals). The set Q@ of the
countable tree-ordinals consists of the infinitary terms gener-

ated inductively by:
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(1) 0 € Q.
(ii) If ¢« € Q, then a+l € Q.
(ii1) If oy € Q for all x < w, then (ax)x<w € Q.

For a given a € Q such that o = (ax)x<m’ we call o 'limit'
and write a[x] for oy - According to the inductive definition of
Q, proofs and definitions will usually be by induction over the
well-founded 'sub-tree' partial ordering on Q which 1is denoted <
and defined as the transitive closure of |

(1) 0 ¢ 8,
(i1) B8 < B+1,
(111) B[x] < 8 for all x < o if B is limit.
In order to ensure that <{-predecessors of o« are linearly and

hence well-ordered, and to develop basic domination properties;

we need to restrict attention to tree-ordinals o possessing ad-

ditional structure.

DEFINITION 1.2 ((p)-built-up tree-ordinals). For a given
p < w, the subset Q(p)-bu c Q of (p)-built-up tree-ordinals

consists of those a0 € Q satisfying that:
Alx] <p x[x+1] for all limit x { « and X < o,

where the relation <p on Q is defined as the transitive closure

of (1) 0 §p B, (11) 8 <p B+1, (iii) B8[p]l < B if B8 is limit.

Built-upness and the other related notions on fundamental
sequences are studied in [1},[11]1,[12],[13}. In [16], Wainer

used the notion of structuredness (or niceness in [6]) as bases



to develop his theory of subrecursive 1inaccessible ordinals.
From the author and Aoyama's study of [11], we can prove the
same reéults to Wainer[16] when we use the notion of (p)-built-

upness instead of the structuredness.

LEMMA 1.3. Let p < @ and « € @P)"PY. Then the Following hold.
(1) If B < jxandpgm<n, then 8 < «a.
(2) If 8 < o, then 8 <m o for some m < w.

(3) Ifp

A

mand 8 < o, then B+1 & ., «.

Proof. By induction on o. See Lemma 2.3 and Cor.2.8 in [11].0

PROPOSITION 1.4 ([16]). For each p < © and o € Q(P)-bu e
get {y: v < a} i8 linearly and hence well-ordered by K.

Furthermore, if v < o then y+1 3 «.

Proof: If v € o and 8 < o, choose any m such that ¥y <m o« and
) <m o. Then we have y = 8§ or ¥y <m d or & <m Y. Hence we have ¥y

= 8 or vy < 8 or 8§ € y. Furthermore, if ¥y < «, then 7y <m o for

some m < @. Hence y+1 §m+1 o by 1.3. Therefore y+1 £ «. a]
1C. HIERARCHIES {Fa}aen’ {Ga}aEQ’ {F&}aeQ' We define the
fast-growing '{Fa}aeQ and slow-growing {Ga}aeQ hierarchies as
follows:

Fo(x) = x+1, Go(x) = 0,

_ X T
Fue1 (X)) = F (F (X)), Cyep(X) = G (x)+1,
Fax) = Froxp () 6y (%) = G, 1x1(¥)

where 1 is 1limit and the superscript x denotes iteration x-times
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of Fa(i.e.,if F:¢ — @ then Fo(x) = X, Fm+l(x) = F(F™(x))).

Moreover, we 1Introduce an auxiliary fast-growing hierarchy

{F' }

o wen as follows:

F'O(x) = X+1,
' - v X *
F a+1(X) = F a(F 0‘(x)).

F'A(X) = F ](x). where z = F'A[I](x)'

Alz
Then we have the following proposition which state that
these hierarchies indexed by (p)-built-up ordinals have

elementary properties on increase and domination.

PROPOSITION 1.5. For Some P < w, We assume o€ Q(p)_bu. Then

the following holds:

WA

(1) Fa(x) < Fa(x+1), Ga(x) Ga(X+1) and F'd(x) < F'a(x+1)
for p g x+1.
(2) If B < « for p < m, them Fg(x) < F (x), Gp(x) < G (x)

and F'B(x) < F'a(x) for x > m.
Proof. By induction on ¢. See Theorem 3.1 of [117]. o

1D. SUBRECURSIVE INACCESSIBILITY. Now let us define the sub-

recursive inaccessibility on these hierarchies:
DEFINITION 1.6. Let p < . We call o« € Q®) P gubrecursive
inaccesgible (or s—inaccessible for short) if for all x > p,

Gy (X) < Fo(x) g F' (X) £ G, (G, (x)).

This definition slightly differs from the original subrecur-



sive inaccessibility in [15]1,[16], but they have the same mean-
ing which the slow-growing function at o catches up with the

fast-growing one.

LEMMA 1.7. Let p < o and o € Q'P)~PY,

WA

(1) For all x > p, Ga(x) < Fa(x) F'a(x).

(2) If a is s—-inaccessible, then o is limit and Gi dominates

Al

every FB with B < oo (i.e., for all but finitely many x, FB(x) <

Ga(Ga(X)))'

Proof. (1) Induction on «. (2) Clearly o cannot be 0. For any

g+1 € @P)7PU ang x > p,

Ggep(X) = Gg(x)+1 < Fy(x)+1 g Fp(x+1) g Fp(Fg(x)) g FéX+1(x)

= Fé+l(x) B

Hence ¢ must be limit. On the other hand, we can prove that if

8 < o, then there is an m < @ such that 8 <m o¢ since o is (p)-

built-up. Hence, Fa dominates every FB with 8 < a. Therefore Gi

dominates every FB with 8 < «. o

PROPOSITION 1.8 ([16,p.215]1). Let p < @ and o € Q(P)7PU
satisfy that

Ga[n+1] = F&[n] for all n < o.

Then o is s—inaccessible and, if ol0] is finite (i.e., «al0] =

0+1+---+1), then no B < o 18 s—inaccessible,

Proof. 1f G = Fa[n] for each n and z = Fa[l](x)’ then

o[n+1]

Z = Far13) = Gara1(®) < Gupyy(x) = Gy(x)

alx o

for x > max(2,p). Hence we have that
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Fa(x) = F <

alz] %) = Ggrze11(¥) S Ga[Ga(x)](x)

_ _ R2
(Since o is 1imit and (p)-built-up, we have Ga(x) > X (x > p).)
So o 1s s-inaccessible. If also af0] is finite and 8 < o were

s-inaccessible then x[0] < B since 8 is limit. So

o[n] < 8 5 o¢[n+1] for some n. By 1.7, for sufficient large x,

2 _ o2 W X+1 _ 2
Carn+11¢¥) = Fon)(¥) £ Fan1(X) = Fopnpep (X)) < Ggx)
since «[n]+1 < 8. This is a contradiction, since 8 g «a[n+1] and
2 2 .
therefore GB(X) < Ga[n+1](x) for sufficiently large x. a

This proposition suggests a method for constructing a minimal

s-inaccessible which we shall denote

T = (t'[X])x<0-
First <choose <t' = 3 for which F3 dominates all functions
elementary in {FB:B < 3}. Then if x'[0],...,Tt'[n] have already
defined, choose x'[n+1] so that Gt'[n+1] = Fr'[n]'

1E. A MINIMAL S-INACCESSIBLE t'. We introduce a minimal s-
inaccessible ' as 1in [15],[18]. Just as the fast-growing
hierarchy wuses countable tree-ordinals o to name big number-
theoretic functions F&, we can use uncountable tree -ordinals o
to name big ordinal-functions ¢(a):Q — Q. These can be used to
name bigger number-theoretic functions Fé(a)(B) etc. This idea

leads to a collection of higher level fast-growing hierarchies

on(a):Qn —_ Qn where o ranges over the next higher tree class

Q

n+l’

DEFINITION 1.9 ([15]). The sets Qn of higher level tree-
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ordinals are defined by induction similarly to the case of Q:

(1) O € Qn.
(ii) If o € Qn, then o+1 € Qn.
(1ii) If ay € Qn for all y € Qk(k<n), then (aY)YGQkG Qn.
As 1in the case of Q, we call (o) 1imit and write clv]
vIveQ,

instead of uY. We shall identify QO with o, and Ql with @, in

the following.

DEFINITION 1.10 ([15,Definition 5]). The 1level n fast-

growing hierarchies of functions ¢n:Q xQn — Qn is defined by:

n+l
(1) 9,(0,8) = B+1,
(11) o (a+1,8) = o P(a.o (a.8)),

(k<n),

(iii) ¢n(1,8) (¢n(*[7]'8))yenk for x = (x[7r])

yer

(iv) wn(x,B) wn(xlz],B). zZ = ¢n(A[l].B) for A = (A[Y])Yegn

where ¢n8 denotes the iteration B8-times of wn(i.e.,if W:Qn+1xQn

— a_, then ¥2(,8) = 8, ¥l ) = v vi.8)), Wra.8) -

Alr] -
(¢ (a'B))YGQm for A = (A[Y])Yegm.

Note that, in the case n = 0, wo(a,B) = Fa(B) for « € Q, and

B € QO(= o). We define o, € Qn by 0 = (}')Y€Qk

(i.e., o lv] = 7).
DEFINION 1.11 ([15,Definition 71). The sets Tn (c Qn) of
named tree-ordinals are defined inductively by:

€T .

(1) 0, 1, @y, *++,@ 4 €T
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(ii) Tk c Tn for k < n.

14
(iii) If o € Tn+1 and B, vy € T, then e (e, 8) € T,-

THEOREM 1.12 (Collapsing theorem [15]). Let -x < w, o € T2

and B € Tl' Then

G¢l(a.8)(X) = Féa(GB(x)).

where the function ¢ (= cx) which collapses each Tn+l to Tn i8

defined by: ¢0 = 0, ecl =1, co, = X, Cop, = O
Y _ cyY Y _ Y .

c(oy,, (3,8)) = ¢, ""(cd,ck), c(9,7(8,8)) = ¢,°(8,8). Hence, in

particular, if o 18 generated in T2 without reference to @,

then, as GmO(X) = X, we have Gol(“'mo) = Fca'

We shall prove this theorem in Section 3 by using the strong
normalization theorem in Section 2. Together with Proposition

1.8, we <can construct a minimal s-inaccessible ordinal as

follows:

DEFINITION 1.13 ([15,Example 4]). We define t' = (t'[X])x<w

by setting <'[{0] = 3,

€' [n+l1l] = ¢1(...¢n(¢ (S.wn).m ) I

n+1 n-1 O)'

THEOREM 1.14. <t' {3 a minimal s—inaccessible tree-ordinal.

Proof. From Section 4, t' is (3)-built-up. Hence 1.8 and the

collapsing theorem(1.12) complete the proof. u]



§2. PROVABLE COMPUTABILITY OF Fd (¢ < ")

2A. In this section, we shall prove Theorem 2.10;

(II) for o < ', Fa and F& are provably computable in ID_

°
(For the definition of ID<m’ see Section 5.) As the corollaries
of this proqf,'we shall prove also that the collapsing theorem
in Section 3, and (3)-built-upness of t' in Section 4 which we
had used to prove (I) in Section 1.

To prove (II) above, we shall introduce the term structures
for the sets Tn (n<w). Then we shall prove the strong normaliza-
tion theorem for the structures. Our method here is the same as
that of {[4,Section 2] and our resuits of this section (and of

Sections 3,4 below) comes from those of [10].

2B, THE TERM STRUCTURES. We 1introduce term structures
<Tn.NTn,'[°],——*> (n<w) by considering each element in T, as a
finitary term and each defining equation of ®n (Definition 1.1Q)

as a rewrite (or reduction) rule of the terms. Let 0, 1, 0y, O,

R 61, ... be formal symbols.

DEFINITION 2.1. The sets Tn of terms are defined inductively
by:

(1)

(i1)

ol
=1
€
o
e
=
oy

=31

K c Tn for k < n.

(ii1) If a €T and b, c € T , then 6nc(a,b) €T,

n+1

Naturally, terms in Tn are interpreted as tree-ordinals by
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the function ord: Tn — T, such that (i) ord(0) = 0, ord(l) =

1, ord(a) = e, (i1) ord(p ®(a,b)) = wnord(c)(ord(a),ord(b)).

Abbreviations. ¢ (a,b) = anl(a,b), b+l =  (0,b).
DEFINITION 2.2 (Normal terms). The sets NTn of mormal terms

in T :; dom(a) g {¢,{0},T,,....T 4} and a[s] for a € NT , s €

dom(a) are defined inductively by:

(N1) 0 € NT,; dom(0) é.

{0}, 1[0] = 0.

(N2) 1 € NT_; dom(1)
(N3) 61 € NT_(i<n); dom(a,) = Ti, o,[s] = s.

(N4) NT, c NTn for k < n.

k

(N5) Let a € NT b,c € NT_ and A = anc(a,b). Then A € NT_

‘ n+1’
if one of the following holds:
(1) ¢ =1 and a = 0(i.e.,A = b+1l); dom(A) = {0}, A[s] =b.
(11) dom(e) = T, (k<n); dom(A) := dom(c), Als] = @ °[5)(a,b).
(iii) ¢ = 1 and dom(a) = Tk(k<n); dom(A) = dom(a),

Als] = o (a[s],Db).

Next we introduce a term-rewriting system(S) (see e.g.,
Dershowitz[7] as for the definition) so that, for every term in
Tn which is not normal, some rewrite rule in (S) is applicable

to it.

Definition of the reurite rules of (S): For normal a,b,c;

(R1) 3, °(a,b) — b, (R2) ¢ (1.b) — &

(R3) @, (a+1,b) — 3 °(a,p (a,b)),
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(R4) §,°"M(a,b) — § (2,3, (a,b)),

n
(R5) an(a,b) — an(a[z],b) with z = ¢ (a[1],b)
if dom(a) = Tn'

Evéry rule in (R1)-(R5) may be applied to a term A € Tn if A
contains a subterm of the left-hand side of the rule. Then the
rule is used by replacing the subterm to the right-hand side of
the rule. We write A —l» B to indicate that the term B is ob-

tained from the term A by a single application of some rule. We

have the following fundamental propositiqn.

PROPOSITION 2.3. (1) For every a € Tn, a € NT if and only

if there is no b € Tn such that a —— b.

(2y {4y Jf a € NT_ and a = b+l for gome b. then ordi{aj} =
ord(b)+1.
(i1) If a € NT  and dom(a) = Tk (k<n), then ord(a) =

(ord(a)[}’])},enk and ord(a[bl) = ord(a)lord(b)] for a € Tk' )

(111) If a € T and a L, b, then ord(a) = ord(b).

Proof. Induction on the length of a. o

2C. THE STRONG NORMALIZATION THEOREM. Now we say that a term A

€ Tn is sgtrongly mnormalizable 1if every derivation sequence
starting at A(i.e.,A —ia A’ —l» A" —l» +e+) 1is finite (cf.[9]).

Then we prove the following theorem:

THEOREM 2.4 (Strong normalization theorem[10,Theorem 1]).

Every term a in Tn ig sirongly normalizable.
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We can also show that the term rewriting system (S) has the
Church-Rosser property (i.e., if A = B and A = C, then there
is a D such that B = D and C = D, where a = b indicates that
b is obtained from a by a finite (perhaps empty) series of
reduction "—l»".). This can be shown by induction on the length
of terms A. However, we do not need this property in the article.

We devote the rest of this section to prove the strong
normalization theorem and, as a corollary, prove Theorem 2.10.

First, we 1introduce the subsets Wn of Tn which express all

strongly normalizable terms of Tn. Then we prove that Tn = W, in

ID<0.
DEFINITION 2.5. For n < o, the sets Wn (cTn) are defined
inductively by:
(W1) 0 € Wn.
(W2) If a € Tn is normal and als] € W for all s € dom(a),
then a € Wn.
(W3) If a € Tn is not normal and b € W for all b such that

a —lﬂ b, then a € Wn’

We <can easily show that every term in Wn is strongly
normalizable as follows. From the inductive definition of Wn’
the following partial ordering << on ngw Wn is well-founded: <<
is defined as the transitive closure of

(1) 0 << a,
(ii) als] << a where a is normal and s € dom(a),
(iii) b << a where a is not normal and a L b,

Hence, if A € Wn, there 1s no infinite sequence <A1:i<m> such



that A = AO’ A

is strongly normalizable.

i+1 << Ai‘ Thus, in particular, every term in Wn

We remark here that, as usual, we can extend << to the
lexicographic orderings << on wn+lan and Wn+1anan which are
also well-founded. To prove the strong normalization theorem, we

show the following theorem.
THEOREM 2.6. For each a € Tn, "a € Wn" i8 provable in ID<m.

LEMMA 2.7. (ID<m) Let a € Wn+1 and b, c € Wn. I1f @n(a.d) € Wn

- ¢
for all 4 € wn’ then_¢n (a,b) € wn‘

Proof. By induction on (a,b,c) € Wn+1anan over <<. Let A =

®_~(a,b). We have the following cases:

Case 1. A € NT  and dom(A) = {0}: Then A = 5n(5,b). By the
assumption, A € Wn.
Case 2. A € NT_ and dom(A) = Tk(k<n): Let s € Tk'

(i) dom(c) = Tk: Then c[s] << ¢. By I.H.(= induction
hypotheses), A[s] = Gnc[s](a,b) €W, .

(ii) ¢ = 1 and dom(a) = Tk: By the assumption, A € W . Hence
Als] € Wn by (W2). Hence, A € Wn by (W2).

Case 3. A € T \NT : Let A 1, B. We will show B € W

(1) A = éna(a,b).and B = b: Then B € W .
(i1) A = ¢ (a,b): Since A € W Dby the assumption, B € W_ by
(W3).
(11ii) A = Gne+1(a,b) and B = én(a,éne(a,b)): From e << e+l
and I.H., éne(a,b) € Wn. Hence B € Wn by the assumptioh.

(iv) In all other cases(e.g.,A = Gnc(a,b), B = 6nc(a'.b) and
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a 1, a'), B € Wn follows immediately from I.H. Hence A € Wn by

(W3). o
LEMMA 2.8, (ID<m) For a € Wn+1 and b € wn. wn(a,b) € wn.

Proof. By 1induction on (a,b) € W W over <<. Let A =

n+1x n
¢, (a,b).

Case 1. A € NT and dom(A) = {0}: Then A = Gn(ﬁ,b) and A[0] =
b € Wn. Hence A € Wn by (W2).

Case 2. A € NT, and dom(A) = Tk(k<n): Then dom(a) = Tn and

Als] = Gn(a[s],b) for s € dom(A). From a[s] << a and I.H., A[s]

e_wn. Hence A € Wn by (W2).

Case 3. A € Tn N NT @ Let A -1, B. We will show B € LA

(1) A = @ (a'+1,b) and B = ¢ °(a', @.(a',b)): By I.H.,
n n n
¢n(a ,d) € Wn for all d € Wn. Hence, wn(a ,b) € Wn and B € Wn by

2.7.
(ii) A = ¢n(a,b) and B = wn(a[z],b) where a € NTn+1' dom(a)

=T , z = én(a[ll,b): Since a € W

n n+l’ b € Wn and 1 € Wn, we have

all] € Wn+1 by (W2). So z € Wn from I.H. and a[l]_<< a. Hence

afz] € W by (W2). Therefore B € Wn from a[z] << a and I.H.

n+1
(iii) In all other cases (e.g.,A = én(a,b), B = Gn(a',b) and

a —le a'), B € Wn follows 1mmediately from I.H. Hence A € Wn by

(W3). o
- C
LEMMA 2.9. (ID<m) fqr a € wn+l and b,c € wn, ¢, (a,b) € wn.
Proof. Immediate from 2.7 and 2.8.

Proof of‘Theoren 2.6. By induction on the length of a € Tn.



Clearly, 0, 1, Wgseves® € wn and Wk c Wn for k < n. By 2.9,

n-1 -
- C
¢, (d,b) € Wn for d € wn+1 and b, ¢ € Wn. This completes the
proof. o
Proof of Theorem 2.4(Strong mnormalization theorem). From
2.6, we have Tn = Wn. Hence, 1if we consider the well-founded

ordering << on Wn defined above, it 1is also the well-founded

ordering on Tn.‘If there were an infinite sequence {ai}i<m such

that a, 1: a, 1: a, 1: ++¢, then it is an infinite descending

sequence on << such that --- << a2 << al << aO.

the well-foundedness of << on Tn' Hence the proof of the strong

This contradicts
normalization theorem is completed. o

THEQREM 2.10. For each o < ', Fgf and Fé are provably

computable in ID<0.

Proof. Let oo < t'. Then ¢ € t'[m] € T1 for some m < w. Hence

« € T, and there is an a € T, such that o = ord(a). From 2.9,

1
Vx(ao(a,i)ewo) is provable in ID_ where x is the numeral of x

(i.e., if X = 0, then x is the numeral of x (i.e., if x = 0 then

X = 0; if x = 1 then x = 1; if x > 1 then x = éo(o,x—l)). Hence

iny(éo(a,i)—iﬂ---—l4§) is provable in ID_ . On the other hand,

ord(@o(a,i)) = F&(x) and ord(y) = y. And we have that if b L, 4

then ord(b) = ord(d). Hence Vx3y(50(a.i) 1, ... 1:fr) equals to
Vx3y(F&(x)=y). Therefore F& is provably computable in ID<m.
Moreover, we have Fa(x) < F&(x). Hence VxHy(F&(x)=y) implies
Vx3y(Fa(X)=y) in ID<0. Therefore Fa is also provably computable

in ID<m' o
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§3. COLLAPSING THEOREM

3A, As a corollary of the strong normalization theorem proved
above, we shall prove the collapsing theorem(Theorem 1.12) used

in Section 1:

THEOREM 1.12 (Collapsing Theorem [15]). Let X < @, o € T

and B € T,. Then

Cp, (a,8)(X) = Fou(Gg(x)),

where the function ¢ (= ox) which collapses each Tn+1 to Tn is

defined by: ¢0

0, el =1, coy = X, c“k+1 = @y

Y - cY Y - Y .
e(oy,, (8.8)) = ¢, "(cd,c8), (9,7 (8,8)) = ¢,7(8,8). Hence, in
particular, if o is generated in T2 without reference tlo

then, as Gmo(x) = X, we have G¢1(d'mo) = Fca'

We introduce a function ¢ which represents the function ¢ on

the terms as follows: (for each fixed x < @) (i) 0 = 0, el =
1, cmo = X, cmk+1 = mk.
9 ae Y - 5 (35 3 5.7 -3y

where X is the numeral of x(i.e.,if x = 0 then x = 0; if x = 1

then x = 1; if x > 1 then x = Go(ﬁ,x-l) (= Xx-1+1)).

LEMMA 3.1. Let a é Tn and X < w. Then the following hold.

(1) If a = b+l for some b, then c(b) = cb+l.

(2) If a € NT_ and dom(a) TO’ then c(alx]) = ca and

ord(a[x]) = ord(a).

(3) If a € NT_ and dom(a) = T, for some k > 0, then
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ord(a[b]) = ord(a){ord(b)] and
ord(e(albl)) = ord(eca)lord(eb)] for b € dom(a).

(4) If a == b, then ord(a) = ord(b) and ord(za) = ord(ab).
Proof. (1)-(4) Induction on the length of a. o
LEMMA 3.2. If X < o and a € Tl’ then Gord(a)(x) = ord(eca).

Proof. From the strong normalization theorem(Theorem 2.4),
the proof 1is proceeded by transfinite induction on a over the
well-founded ordering << (where << on Tn is defined as the
transitive closure of (i) 0 << b, (ii) b[z] << b for normal b
with z € dom(b), (i1ii) d << b for non-normal b with b 1, d).

Case 1. a = 0. This case is trivial.

Case 2. a € NT1 and dom(a) = {0}. Then a = 1 or b+l for some
b € Tl. If a = 1, the assertion is trivial. If a = b+1l, then

Cord(a) (X) = Gopa(p)(¥)*1 = ord(eb)+1 = ord(ca)

by I.H. and 3.1(1).

Case 3. a € NT, and dom(a) = T.. By 3.1(2) and I.H.,

0
Cord(a) ®) = Cora(arxy) (X) = ord(e(alxl)) = ord(ca).
Case 4. a ==+ b for some b. By 3.1(4) and I.H.,
Sord(a) X = Corq(p) (X) = ord(eb) = ord(ca). o

Proof of the collapsing theorem(Theorem 1.12). For a € T}
and b € Tl, we have E(Gl(a,b)) = Go(éa,éb) and hence

ord(é(&l(a,b)) = ¢0(ord(5a),ord(éb)). Thus we have

S, (ord(a),ord(6))®) = Cora(a, (a,b)) ™

ord(é(al(a,b)) by 3.2
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Qo(ord(aa),ord(ab))
= Ford(aa)(ord(éb))

= F (G (x)) by 3.2.

ord(ea) ‘“ord(b)
For given o € T2 and B € Tl’ we choose a and b above such that
(1) ord(a) = «, ord(ea) = ex and (ii) ord(b) = B8 (we can choose

such a and b since the elements of Tn are constructed by the

same way as to the element in Tn). This completes the proof. (u]

We recall that (Definition 1.13);

t'[0] = 3, <'[n+1] = wl(.-.wn(w

11 (30,00 ), 0) .

We have the following figure from the collapsing theorem and

Proposition 1.8:

<'[0] = 3 ces e s G‘C'[O](X) = 3

t'[1] = (pl(s’wo) ......... Gt'[l](X) = F';:'[O](X)
T 2] = 01(0,(3,a;) @) o Grippy(x) = Flog (%)
T’ [3] Ceee e Gt'[3](X) = F%.[z](x)

d
1]

(TIxD) e, vt G (X) < F L (x) $ F'_,(x) g G2, (x)

(t is'minimal s~inaccessible) , (x > p).

Figure 3.1.



§4. (3)-BUILT-UPNESS OF <t'

4A. In this section we shall prove the following theorems:

THEOREM 4.9. Every element in TI i8 (k)-built-up for all k < w.

THEOREM 4.10. <' i8 (3)-built-up.

This corollary completes the proof of Theorem 1.14 that <t' is
minimal s-inaccessible.

The notion of built—upness of fundamental sequences 1is first
introduced by Schmidt[12] and the author and Aoyama[ll] studied
some other related notions of built-upness including (p)-built-
upness.

we shall also introduce the sets of T

0
ot
e
Q
=]

In this sec

(¢ T

mn

o e
=

c Tn) for the use of the next section. To begin with, we prove
the following proposition which is needed to prove our theorems

below.

PROPOSITION 4.1 ([10,Lemma 3.4]). Let o € Tn and o =

(a[Y])yeQm' Then olv] € T  for every v € T . Moreover, if v €

Tm\{O}, then aly] € Tn\{O}.

Proof. For a given o = (t:t[)’])},GQ € Tn' there is a normal a €
m

Tn such that ord(a) = o by 2.3(2)(iii) and the strong normaliza-
tion theorem. We fix such an a € Tn with the minimal length. The
proof of this proposition can be proceeded by induction on the

length of this term a for «. (u]
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It follows from this proposition that - we can use transfinite

induction on the terms in Tn (n<w) over the ordering < of Tn

which 1is defined in the same way as < in Q; i.e., < 1is the
transitive closure of (i) 0 ¢ «, (i1) o < a«+l,  (iii) alv] < «

for all y € Tn if o = (a[v])yeQn. Next we extend the relation <k

(k<w) on Q to higher level tree-ordinals from this proposition.

DEFINITION 4.2. The step-dowun relations ,<k (k<w) on un<an

are defined inductively as follows: For o, 8 € Tn,

o <k g if B # 0 and one of the following holds;

(1) a & 7 if 8 = v + 1,
(11) o §k BlKk] if 8 = (B[X])XGQO'
(iii) o <k Bly] for all y € Tm\{O} if g = (8[7])Y€Qm (m>0) .

where o ﬁk $§ means that o <k 5§ or o = §.
Note that if o, B8 € Tl then the relations <k defined above
are the same as ones defined in Definition 1.2.

Y
LEMMA 4.3. For x € T B € Tn and y € Tn\{o}, g <k ¢, (c,B).

n+l’

Proof. The lemma Immediately follows from the two claims. O
CLAIM 1. Let o € Tn+1 and 8 € T, - 175 8 <k ¢n(a.6) for all
Y
5 € Tn, then B <k ¢, (a,B) for v € Tn\{O}-

Proof of Claim 7. Transfinite induction on y € Tn'

Case 1. ¥ = n+l1. Then 8 §k @nn(a,B) <k on(a,¢nn(a.8)) =
o Y(2,8) by I.H.



Case 2. vy = (Y[x])xegg. Then 8 <, @nY[k](a,B) = @ny(a,B)[k]
by I.H. Hence 8 <k ¢n7(a.8).
Case 3. y = (Y[&])aenm(0<m<n). From 4.1, vy[8] € Tn\{O} for &

€ T,\{0}. Hence 8 <, o V% (a.8) = ¢ V(a.8)[8] for 5 € T \(0} by
I.H. Therefore 8 <k ¢n7(a,8). o

CLAIM 2. Let o € Tn+1’ Then B {k on(a,B) for all B € T, -

Proof of Claim 2. Transfinite induction on « €T ,q1-

Case 1. a = 0. Then 8 < 8 + 1 = ¢ (a,8).

Case 2. oo = 7y+1. Then & <k wn(?,a) for all & € Tn by I.H.
Hence, by Claim 1, 8 <k e (V.B) 3y ¢n8(7,¢n(v.8)) = ¢, (., B).

Casg 3. o = (a[rl)yegﬁ(m<n). rBy I.H., 8 <, ¢, (aly],8) =
wn(a,B)[y] for y € T . Hence 8 <k Qn(d.ﬂ).

Case 4. o = (a[Y])YGQn. By I.H., 8 <, ¢, (alz].8) = ¢ («,8)

where z = @n(a[ll,B)- o

LEMMA 4.4. let o € Tn+1 and B8, &, v € Tn' If v <k 8, then
Y )
?, (x,8) <k ®, (e, 8).

Proof. Transfinite induction on & € Tn'

Case 1. & = 0. This case 1is trivial.
- Y n
Case 2. & = n+1. By I.H. and 4.3, ¢, (e, B) ﬁk ¢, (ct, 8) <k

n _ é
wn(a,wn (a,B8)) = ®, (ax,B).

Case 3. & = (8[x]), o - By L.H., o ¥(a,8) & o 3% (a,8) -
0

) Y )
Py (a,B8)[k]. Hence @, (o, B) <k ®, (cx,B).

Case 4. & = (5[5])Eenm(o<m<n). Then ¢n7(a,8) <k ¢n5[€](a.8) =
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) Y 8
°, (e,B)[E] for £ € Tm\{O} by I.H. Hence ®, (a, 8) <k e, (x,8). DO

LEMMA 4.5. Let o, vy € T B € T \{0} and n > 0. If v < «,

n+l’
then ¢n(7,8) <k @n(a,B)-

Proof. Transfinite induction on o € Tn‘

Case 1. ¢ = 0. This case 1is trivial.

Case 2. o = p+1. By I.H. and 4.8, ¢n(?,B) <k @n(n.B) <

= k

Qns(n,wn(n,B)) @n(a.B) since 8 = 0.

Case 3. o

(cz[x])X€Q . By I.H., wn(v.B) <k wn(a[k],B) =
0

¢n(a.8)[k}. Hence ¢n(v,8) <k wn(a.B).

Case 4. o = (“[El)tenm(°<m<n)' By I.H., ¢n(7,8) <k wn(a[EI.B)

= ¢a(8)[§] for & e_Tm\{O}. Hence on(v,B) <k wn(a,B).

Case 5. a = (a[elzgegn. By L.H., o (v,8) < ¢ («lz],8) =

¢n(a.8) for B € Tn\{O} where z = ¢n(a[1],8). o

4B. THE SUBSETS T; OF T (n<w). We shall define the subset T;

+

1 is built-up.

for each n < w, and prove that every element of T

DEFINITION 4.86. The subset T_ ¢ Tn are defined inductively

+
n =
as follows:

+

(i) 0, 1’ ‘00’ Ql,....wn_l € Tn-
+

(i1) T, ¢ T  for k < n.

(iii) If ¢ € T

+ + Y +
n+1’ ¥ € T, and B € Tn\{O}, then @n(a.B) €T, .

Note that the definition of T; above differs from that of Tn

only in the restriction on 8 in (iii).



PROPOSITION 4.7 (cf.4.1). Let « € T, and @ = (x[¥]),q
m

Then oly] € T; for every y € T;. Moreover, if 7y € T;\{O}, then

xlv] € T,\{0}.

Proof. It is proceeded in the same way as 4.1. First, we

introduce the subsets T; c Tn of terms of T; as 2.1:

- - =+
o' @191 € Tn‘

€1

(i) o0, 1,

=+

(ii) T, ¢ T. for k <
k S

=}
=]

Tt mt =t = Y =+
(i11) If x € T v € T and 8 € T N0}, then wn(a.B) €T .

n+l’
Then we can prove that for each o € T;. there is a term a € T;
such that ord(a) = o. And the strong normalization theorem on T;

holds since if a — a' and a € T;, then a' € T;. Hence we can

preve this proposition in the same way as 4.1. o

THEOREM 4.8 ([10,Theorem 3]). Let o € T; and o = (al&]),eq -
m

If v, 8 € T and vy <k 8§, then alvy] <k als].

Proof. From the proof of 4.7., for a given o € T;, we can
take a normal term a € T; with the minimal length such that
ord(a) = « The proof of this theorem is proceeded by induction
on the length of this term a. We have the following cases:

Case 1. a = Em. Then o = o . We have aly] = v < & = al3].
Case 2. a = Gn(d,b) and dom(d) = Tm. Then « = ¢ (x,8) so that

A = (A[E])zegm = ord(d) and B = ord(b) € T;\{O} from the

definition of T; above and a € T;. Hence, by I.H. alv] < als]
and 4.5, ¢ (x,8)[v] = o (x[¥],8) <, o (x[8],8) = o (x,8)[3].
Case 3. a = Gne(d,b) and dom(e) = Tm' This case is treated

similarly to Case 2, using 4.4. o

101
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THEOREM 4.9. Each o € TI i8 (k)-built-up for all k < o.

+ + +
Proof. For each a = (a[y])yegm € Tn and y € Tm, oly] € Tn

from 4.7. Hence for each a € TI

Thus by 4.8, a[x] <k Alx+1] for all k, x < ¢ and limit 2 § o €

m
-3

and limit 2 £ o, we have

+
Tl' a]
The reason why we 1ntroduce the set T; is that (k)-built-

upness does not hold for some element in T1 since, if we put a =

¢l(mo,0), then al[x] = wl(x,O) = 1 for all x < a.
THEOREM 4.10 ([10,Corollary 3.11). =<' is (3)-built-up.

Proof. Let x < @. From the definition of «'(1.13), t'[x] € TI.
By 4.9, t'[x] 1is (3)-built-up. Hence it is sufficient to prove
that <'[x] <3 t'[x+1]. For this, we have

tix]l = e (... (3,0, 1)....04)

A

3 ¢1(...¢x(mo,mx_l)...,m0)

A

O (’1('"@x(¢l(zvmo)vmx_l)~'-1&)0)
where z = ¢2(...¢x(l,mx_1)...,wl)
= ¢1("'(px(wl’mx_l)o»-smo)

<o 0100, (0,(2"0.) 0 1) .. 00)

where z' = @2(...¢x(l,wx_l)...,wl)
= ¢ G (05,0, 4)...,04)
f :
= 9, -¢x(wx.wx_1)-...m0)‘
g 900, (0, ,1(30 )0, _1)...,04)
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= t'[x+1]

from 3 43 o, and from 3.5, 3.3. o

0

4C. THE SUBSETS T; OF T;(nﬁm). Here we shall introduce the

sets T; of terms which are used in the next section.

DEFINITION 4.11. The subset T, ¢ T, are defined inductively

as follows:

*
(1) 0,1, oy, @3,...,0, 4 €Ty
. * *
(ii) Tk c Tn for k < n.
* * * * 'Y *
(iii) If o € Tn+1’ Y € Tn and 8 € Tn\Tn—l’ then Qh(a,B) € Tn
where Ttl = {0}.
Note that similariy to the case of tThe =gets ng the

ik

definition of T; above differs from that of T; only in the

restriction on 8 in (iii). We can prove the same propositions as

the case of T; in the same way as the corresponding proofs.

PROPOSITION 4.12 (cf.4.1). Lel o € Tn and o = (a[Y]).YeQ
m

then

*

#* * . *
Then aly]l € T  for every v € T . Moreover, if v € T N\T ..

*

*
aly] € Tn\Tm_l.

DEFINITION 4.13 (cf.4.2). The step-down relations <§ (k<w) on

*

*
Un<an are defined inductively as follows: For o, B8 € Tn’

o <; 8 1if B # 0 and one of the following holds;

(1)015;‘)’ if B =9+ 1,
(11) & §; BIKk] if 8 = (BIx])y eq -
0
(1ii) o <; Bly] for all y € T;\(T;_lu{mm_l})
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if 8 = (Bl7]) (m>0) .

yeQm

*

LEMMA 4.14 (cf.4.3). For o € Tn+l'

B € T;\T;_l and vy €

T;\{O}, we have 8 <; wny(a.B).

*
n+l’

I7 v < 8. then o Y(x,8) < o (x.8).

LEMMA 4.15 (cf.4.4). Let o € T 5, vy € T; and B € T \T, _

1

*

LEMMA 4.16 (cf.4.5). Let o, y € Tn+1'

8 € T\\T) | and n > 0.

If v <; o, then ¢ (v,8) <; ¢n(a.8).

THEOREM 4.17 (cf.4.8). Let o € T; and o = (a(§])yeq - I v, 8
m

€ T; and y <; 5, then aly] <; al8].

The next lemma is used in the next section.

*

LEMMA 4.18. (1) If « € T

\N(Tiu{w_}), them o < « for all

k < o.

*

(2) k <k @ for k < a.

(3) @y <5 @, for 1 < n.

*
Proof. (1) If o € Tm+l
Yo

el ....wm)..). Hence 4.14 completes the proof. (2) Trivial-

*(T;U{mm}), then o is of the form:
4

for the definition of <;. (3) It 1is sufficient to prove that

*
. <0 @y ,1- By (1) we have o, <

*
i o & for all o e‘Ti+l\(Tiu{wi}).

i
From the definition of <8 and wi[a] = o, this completes the

proof. s



105

§5. PROVABLY COMPUTABLE FUNCTIONS IN ID o

BA. In this section we shall prove the following theorem:

THEOREM 5l1. If a ng -gentence VxIyA(x,y) (A € Zg) i8
provable in IDv(v<m). then there is an o < t'[v+1l] such that for

all n > 1, there i8 an k < Fa(n) A(n,k).

Clearly, this theorem implies (III) in Introduction. Here we

shall prove this theorem in the same way as Buchholz[4].

5B. THE SYSTEM IDv(v<m). We introduce the system IDv for v < o

following [4,Section 4].

=
[T
0
e
[®)
ot
]
+
v
»
o)
e
L1
tn
[as
I
0
3
[oN
D
-3

Preliminaries. Let language
consisting of the following symbols:
(1) the logical constants 1, A, v, ¥, 13,
(ii) number variables(indicated by x, y),
(iii) a constant 0(zero) and a unary function symbol
' (successor),
(iv) constants‘for primitive recursive predicates (among
them the symbol < for the arithmetic 'less' relation).
By s;t,to,... we denote arbitrary L-terms. The constant terms
0,0',0'',...are <called numerals; we identify numerals and
natural numbers and denote them by i,j,k,m,n,u,v,w. A formula of
the shape Rtl--~tn or thl---tn, where R is a n-ary predicate
symbol of L, 1s called an arithmetic prime formula (abbreviated
by a.p.f.).
Let X be a unary and Y a binary predicate variable. A

positive operator form 1s a formula ﬂy(X,Y,y,x) of L(X,Y) in
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which only X,Y,y,x occur free and all .occurrences of X are
positive. The language LID is obtained from L by adding a binary
predicate constant Pﬂ and a 3-ary predicate constant Pg for each

positive operator form I.

Abbreviations.
A Pl .. plU x 2
t € PS 1= Pst = P7st, t € PS S 1(t€Ps),
P tot, = Plstoty, 1 (X, %) := AX,PE_,s,x).

The formal theory IDv with v < o 1s an extension of Peano

Arithmetic, formulated in the 1language L byv the following

ID’
axioms:

U bl )|
(P%.1) Vny(ﬂy(Py.x) —_ xePy).

(Pﬂ-2)<v VX(ﬂu(F.X) — F(Xx)) — Vx(ng — F(x)), for each

LID-formula F(x) and each u < v.

| U
(P™.3) VyVXOVxl(P<yx0x1 — Xo <Y A xlero).

4C. THE INFINITARY SYSTEM @ID:w. As 1in [4,Section 4], the
infinitary system wID:w shall be formulated in the language
LID(N) which arises from LID by adding a new unary predicate
symbol N. This is ‘a technical tool which shall help us to keep
control over the numerals n occuring in 3-inferences A(n) F
IxA(x) Qf wID:w-derivations. Following Tait[14] we assume all
formulas to be in negation normal form, i.e., the formulas are
built up from atomic and negated atomic formulas by means of
A,V,Y,3. If A is a complex formula we consider -A as a notation

for the corresponding negation normal form.

Definition of the length |A| of a Lip(N)-foraula A
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1. |Nt|:= |aNt]:= 0.
2. |A|l:= 1, if A is an a.p.f. or a formula (1)Pgt.
U U
3. |P<St0t1|:= l_lP<St0t1|:= 2.
4. |AAB|:= |AvB|:= max{|A|,|B|}+1.
5. |vxA]l:= |3IxA|:=|A|+1.
PROPOSITION 5.2. |=A| = |A|, for each LID(N)-fOPHULa A.

As before we use the letters u,v to denote numbers < o.

Inductive definition of formula sets Posv(v<w)

1. All L{(N)-formulas belong to Posv.
2. All formulas Pﬁt, (1)Pgutot1 with u < v belong to PosV

(

, _ ) 9 o
A formulge 9P™r with u < v balon
" ,

=
.
"
ot

0 Pag

]

v
4. If A and B belong to Posv. then the formulas AAB, AvVB,

¥xA, 3IxXA also belong to Posv.
REMARK 5.3. If Pﬂt € Pos then also U (PZI t) € Pos
T u v u-u’ '

Notations

In the following A,B,C always denote closed LID(N)-formulas.

I'y,['',A denote finite sets of closed LID(N)—formulas; we write,

.., I'yA,A for TUVAU{A}.

- AN denotes the result of restricting all quantifiers in A to N.

0]

teN := Nt, t¢N:= -Nt.

As before we use the letters o,8,y,8 to denote elements of T;.

DEFINITION 5.4. v <r A Yy <k «,

where k:= max({3}U{3n:-Nn € I'}).
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PROPOSITION 5.5. (1) ¥y <r gand T c A= vy <A o. ((0)-built-
upness of all elements of T;: Theorem 4.17.)

Bastiec inference rules

(A) Ao’ A1 F AOAAl.

(v) A  AVB; B | AVB.

(v™) (A(n)) ¢, F VXA(X).

(3) A(n) F 3IxA(Xx).

(N) n € NFn' €N.

(Pfu) P?n - Pfujn, if j <u<o.

(1Pgu) 1Pgn F ﬂPgan, if j <u < .

Every 1instance (A I F A of these rules is called a basic

1)16

inference. If (A ieI A is a basic inference with A € Posv.

1)
then Ai € Posv for all 1 € I. This property will be used in the
proof of 5.10.

The system (pID:m consists of the 1language LID(N) and a
certain derivability relation Fﬁ ' ("I' is derivable with order «

€ T; apd cut degree m € ") which we introduce below by an

iterated inductive definition.

Inductive definition of Fﬁ r (aeT;, mew)
(Ax1) Fg 'y, A, if A is a true a.p.f. or A= 0 € N or A =
i
1P<ujn with u < J.
(Ax2) Fﬁ r,mA,A, if A=n € Nor A = Pgn.

(Bas) If (A I F A is a basic ihference with A € T and

i)ie
VieI(Fg FLA;), then kg*l r.



b o N, U )|
(Pu) Fm ', neN A ﬂu(Pu,n) and Pu

(Cut) Fﬁ r, 2C and kg I, C and |C|l<m = I__l(i::ll..

ner= 3,

dom(a) = Qu+1 and Fg[l]F,PEn and
o+1
) =

) z, U x[z]
VzeQu+1VAcPosu(FlA,Pun = Fh A, T)

Q41

B o
(<) bp T and 8 <p ¢ = H T.
LEMMA 5.6. (1) Fo T and m ¢ k, T € A = by 4.
(2) Ko T = KT . (e
3) Kir, 0o ¢N=> T,

¢g(0.7).)

Proof.(cf.[4,Lemma 4.2].) Induction on ¢ using 5.5 and the
relation that (y+a)[é] = y+a[d] for all & € Qk with o =

(a[a])_g_gq . a
baak . . : I

LEMMA 5.7 (Inversion). Let (Ai)iel F A be a basie inference

© U U o o
(A), (V ), (P<u). (P2 ). Then Fm ', A implies VieI(Fm r'Ai)'

<u

Proof. Similar to [4.Lemma 4.3] by induction on «. 8]

LEMMA 5.8 (Reduction). Suppose ko To, C and [|Clgm, where C
is formula of the shape AvB or 3IxA(x) or Pgujn or ngn or a

false a.p.f. Then Fﬁ I'n C implies Fﬁ+8 Fo, T.

Proof. Similar to [4,Lemma 4.4] from induction on B and the

relation that o+(B+1) = (x+B8)+1. o

*

THEOREM 5.9 (Cutelimination). k> el

m+1 vV <o, In>

Fand a € T

0 = kﬁ ' where z = @“ (1,90

v+1

v+1(1.¢5+1(2,wv))) for all k < o.

109
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Proof.(cf.[4,Theorem 4.5].) Induction on «. Let z =

(1, ¢ (1, @ (2, @, ))).

v+1 v+l v+l

1. Suppose o = P+1, A € T and ViEI(Fm+1F,Ai), where (Ai)ielkA

is a basic inference (#). Then by I.H. we have VieI(Fﬁr,Ai)
P 4 k k 8+1

where 8 = ¢v+l(},¢v+l(1.¢v+l(2,mv))). By (#) we have | "T and

then |—§lr since B+1 = ¢ . (0,8) <, o ,,(1,8) = z by 4.5,

v+l
I',c and |C| = m. Then by I.H.

v+l

2. Suppose o = Y+1, F F aC, Fh+1

we have Fﬁr,ﬂc and kir.c where B is as 1. We may assume that C

fulfills the condition of 5.8. By (<) and 5.8, we have pé8+1)*3r.
z _ B _ -

Hence Fmr since (B+1)+8 = ov+l(0.0v+l(0.8)) = ¢v+1(1.8) = Z.

3. Suppose o = y+3, Pgn € I' and FY F B with B = neNAﬂg(Pg.n).

Then by I.H. and (<) we have PﬁF,B where
B = zii(l ¢v+1(1 ¢v+1(2 ©,))). By (Pﬂ) we get kﬁ+3r and hence
F ' since 8+3 = ¢v+1(0.8) <2 ¢v+1(l ov+1(0 B)) = @v+1(1.8) = Z.

4. In all other cases the assertion follows from I.H. and the

fact that 8+1 = ¢ (0,8) <0 ¢v+l(1,8) = z as in 1 above. o

v+l

THEOREM 5.10 (Collapsing Lemma). FT Nand T c Posv, o € T;+2

= Ff I' where z = ¢ (a,wv).

v+l

Proof.(cf.[4,Theorem 4.6].) Induction on ¢.

1. Suppose o = (a[d]) ) k“[llr P ul and kl[Z]A I for all

S€Q

u+l
z il
Z € Tu+1' AC Posu with FlA,Pun. Then u < v.
Case 1. u < Vv. We have ov+l(u[z].mv) V+l(u o, y{z] for all
#*
Z € Tu+1' Hence the assertion follows by (Qu+1)'

|

Case 2. u = v. Then FU{Pﬁn} c Posu and by I.H. Fgr,Pun where 8

(x[1], o, ). Since B8 € T; we get Ff I where z =

V+1 +1
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¢, .1 (2lB],0,). But =z ¢v+l(a[8],wv) = ¢y, (x0,) from the
definition of ¢V+l (see 1.10).
2. In all other cases the assertion follows from the I.H. (u]

DEFINITION 5.11. L(N)+:= {A:A is a sentence of L(N) in which

N occurs only positively}. For I = {Al,....An} c L(N)+ we
define:
7 Ayv---VA  1s true in the standard model
Er(k) &
when N is interpreted as {i < w: 31 < k}.
F 1 ¢N i ¢N,T and T
1 16N, ... 1 ¢éN,T and o € 1
LEMMA 5.12. , = i=I"(Fa(n)).
r c L(N)+, n > max{3,311,...,3im}
Proof. ( cof. [4, Lemma 4.7}. ) Induction on «. Let Ty =
{11¢N,...,1m¢N} and k = max{3,311,...,31m} < n.

1. (Axl)kgro,r. The assertion is trivial for 0 < Fa(n).
2. (AXZ)FTFO,F. The assertion follows from n < Fa(n).
3. If F%Fo,r is the conclusion of a basic inference # (N),

then the assertion follows from the I.H. and the relation FB(D)

< FB+l(n)'

B
1

kFU{Nj}(Fa(n)). Then we have FB(n) < Fg(n) < Fg(n) < Fﬁ(n) <

4. Suppose o = B+1, N(j+1) € I', b, TIo,[,Nj. By I.H. we have

F*lony - F,(n). So, F

8 (n)+3 < Fa(n). Hence kF(FB(n)).

B

5. Suppose F{FO,F with 8 < . Then we have Fs(n) < Fa(n)

[oul
since n > k. The assertion follows from the I.H.

6. Suppose @ = B+1, FiTo.[ 106N and FP1o¢N,Io,I. Let i = F (n).
Then we have n < A < FB(ﬁ) = Fg(n) < F,(n).

~

6.1. n < 3iy,. From Fgro.r,ioeN we obtain by the I.H.
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FrU{io€N}(fi) and then Fr(i), since 7(3io<n). Using A < F, (n) we
get the assertion,.

6.2. 3ip < . From F§10¢N.r0.r and max{k,3ip} < fi we obtain by
I.H. FF(FB(ﬁ)) and then kI'(F (n)). o

THEOREM 5.13 (Bounding). If F} VxeN(3yeM)a“(x,y), uwhere
0 < a € TI, v <o, m>0 and A(X,y) a Zg-formula of the language

L, then Vn>1, 3k<Fa+1(n)(A(n.k)).

Proof.(cf.[4.Theorem 4.8].) From the premise we obtain
FY n¢N,3yeN(AN(n,y)) for all n < o. Then by 5.12 we get
h{ﬂyGN(AN(n.y)}(Fa(ﬁ)) for all n < o and all 1 > max{3,3n}.
Hence VnikkFa(3n+3)A(n.k). From 3n+3 < 4n+2 = F%(n) since n > 1.

2
We have Fa(3n+3) < Fa(Fl(n))

HA

3 n+1l _
Fa(n) < Fa (n) = F (n) since

o+l
1 51 o by 0 < ¢ and 1.3(3). : o

4C. EMBEDDING IDv(v<m) INTO QIDZQ. In the remaining part of
this section we show that IDv (v<w) can be embedded into wID:w
and finally we prove the theorem that if a ng-sentence
anyA(X,y)(Aezg) is provable in IDv(v<m) then there is an a < t'

such that yn>1 3k<Fa(n)(A(n,k)).

k+1

Abbreviations. k = ¢v+1(2,mv).

. *
o -->) 8 &= g, .. .0 (ag = 0 Ay = B A Vicn(og+l £, oy ).
LEMMA 5.14. (1) k™+1 <(‘; (k+1)7. (2) K7 -->g (k+1)",

- * oy
Proof.(cf.[4,Lemma 4.9]1.) (1) From ¢v+l(0,k ) <0 ¢v+1(2,k ) =

(k+1)~ by 4.5. (2) From the relation that, since 2 <; k™, k™+3
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* . * - * 2 - * 2 -~ *
3 - * .y -

LEMMA 5.15. F% 7A,A  where k = |A].

Proof. Similar to [4,Lemma 1.10]. o

(k~+1)+mv

LEMMA 5.16. | 9F(0), —VxeN(F(x)——F(x')), ng¢N, F(n)
where k = |F]|.

Proof. Similar to [4,Lemma 4.11]. o

DEFINITION 5.17. For A € »Posu let A" denote the result of

|

, L .
u in A by F(-). {Al,...,Am} =

replacing all occurrences of P

*

{Al,.

*
...Am}.

PROPOSITION 5.18. ToUr c Pos , a € Tﬁ}l(u+1§v), k = |F|,
F ro.m = BE D rg qovxen il (F,0—F(x))), T

Proof. Similar to [4,P.151 Proposition]. o

LEMMA 5.19. o € T" o c Pos, k = |F|, F* a, Pdh =

N : ) u+l’ u’ ! 1 ’ u
RE A (vxeN (8 (F,x)—F (x)), F(n).

Proof. From 5.18. a]

(kK7+1)+0
LEMMA 5.20. F u+l 1VxeN(ﬂ§(F,x)-—aF(x)).1Pgn,F(n)

with k = |F].
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Proof. Similar to [4,Lemma 4.13] from 5.19. o

THEOREM 5.21. If the sentence A is provable in IDv(v<w), then

there is8 a k < @ such that Fk A uhere 7 = ¢ (thv).

v+l

LEMMA 5.22. (1) (k™+1)+k™ -=>g (k+2)”~

(2) k~+4 <; (k+1)~.

Proof. (1) (kT+1)+k™ = @ (1,k7) <5 ¢, 1 (2,k7) = (k+1)7 -->4
k+2)™. (2) k74 = g (0.k)*3 <5 o5 (0,0, (0.k7)) =
9,1 (1.K) <5 (k+1)~. o

PROPOSITION 5.23. For every mathematical aziom A(V,,...,v.)
of ID,. there is a k < o such that KX A(1;.....1)N for all
il,...,im < o. (vl.vz,... denote variables of the language L.)

Proof. Similar to [4,p.152 Proposition 1] from the relations

(k”+1)+wv <0 (k+1)" = v+1(1 k™) < (k+1)~ -=>g (k+2)"~,
@01 50 o, and k~+4 <3 (k+1)~ -=>1g (k+3). o
PROPOSITION 5.24. By PL1 we denote Tait’s calculus for

first—-order predicate logic in the language LID (ef.[14)). If

r(vl,....vm) i8 derivable in PL1, then there i3 a k < w such
K™ o
that FO iléN,...,1m¢N.F(il,...,im) for all 11,....1m<m.
Proof. Similar to [4,p.152 Proposition 2]. o

Proof of Theorem 5.21. Suppose ID F-A (A closed). Then PL1 |
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1(A1A"°AAn),A where every A1 is the wuniversal closure of an

axiom of IDv' By 5.23 and 5.24, there is an m < ® such that

~ ~

k% (Al/\-'~AAn)N and FO T(AA e AA )N N, By a cut with cut
formula (AlA'-'AAn)N we obtain now Fﬁ N ~with k =
maX{I(AlA--°AAn)N|,m}+1. since Fﬁ 1 g F(k+1) B. o

Proof of Theorem 5.1. Suppose IDv F A (A closed). Then by

k
v+l

then by 5.9(Cutelimination) Fﬁ 1 AN where

5.21, Fﬁ AN where o = ¢ (2,mv) for some 0 < k < 0. If k > 1,

«' = v+1(1 ?,,1 (1, ¢v+1(2 0,))) = °v+1(1'¢v+1(1’“))
_ o k+l
\)+1(2 o) = ¢v+1(2.wv).

By iterating this argument, we obtain Fg AN where

B = k+m

v+1(2 o, ) for some m < @.

Then by 1iterating 5.10(Collapsingj we have F AN where

vy=09,0..9 (ov+1(2 0,),0,_1)....04).
And we have y < t'[v+1] since

Y = (’1("'(’ (wl‘iil‘{l-l(2)¢v+l(2,mv))omv_l)--"mo)
< wl(...¢ (¢v+1(2 ¢v+1(2.mv)).mv_1)....mo)
< ¢1(---¢v(¢8iiz’m°)(2 ?,,1(2,0,)),0, 1)...,04)

where z = ¢, (.. ¢v(¢v+l(2,¢v+l(2.mv)),mv_l)---.wl)

= (Pl(--'(P ((’v+1(2 0v+1(250v)))mv_1)-o-)w0)
<
< ¢1(...¢ (¢v+1(2,¢v+1(2,mv)).mv_l)...,mo)
=0 ho,(0,, 1B )0, ). h0)
= t'[v+l].

Hence y < t'[v+l] < t'. Also y+1 < <t'[v+l] since y € T, and

1
t'[v+l] 1is (0)-built-up. By - 5.13(Bounding) we have V¥n>1,

Jk<F (n) (A(n,k)). o

v+l
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