MONODROMY OF p-ADIC SOLUTIONS OF PICARD-FUCHS EQUATIONS
(Special Differential Equations)

Author(s)
STIENSTRA, JAN

Citation
数理解析研究所講究録 (1991), 773: 78-86

URL
http://hdl.handle.net/2433/82396

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
MONODROMY OF p-ADIC SOLUTIONS OF PICARD-FUCHS EQUATIONS *

by JAN STIENSTRA

Picard-Fuchs equations are differential equations coming from (algebraic) geometry. Classically their solutions can be written as period integrals for families of varieties. In this note we want to look at p-adic solutions of the same differential equations. In p-adic analysis we can not use period integrals to describe these solutions.

Katz-Oda construction of the Gauss-Manin connection

First recall the purely algebraic construction of the differential equations due to Katz and Oda. Let $S = \text{Spec} A$ an affine scheme which is smooth over an open part of $\text{Spec} \mathbb{Z}$. Let $f : X \to S$ be a projective smooth morphism. The Koszul filtration on the absolute De Rham complex Ω^\cdot_X is defined by

$$K^{i\cdot} := \text{image}(f^*\Omega^i_S \otimes \Omega^{*-i}_X \to \Omega^\cdot_X).$$

Then

$$K^{0\cdot}/K^{1\cdot} \simeq \Omega^{\cdot}_{X/S}, \quad K^{1\cdot}/K^{2\cdot} \simeq f^*\Omega^1_S \otimes \Omega^{*-1}_{X/S}.$$

The Gauss-Manin connection

$$\nabla : \mathcal{H}^m(X, \Omega^\cdot_{X/S}) \to \Omega^1_S \otimes \mathcal{H}^m(X, \Omega^\cdot_{X/S})$$

is the boundary map in the hypercohomology sequence associated with the exact sequence of complexes

$$0 \to K^{1\cdot}/K^{2\cdot} \to K^{0\cdot}/K^{2\cdot} \to K^{0\cdot}/K^{1\cdot} \to 0$$

*details for this note are presented in

From this we see in particular
\[
\text{image}(I^{m}(X, \Omega_{X}) \to I^{m}(X, \Omega_{X/S})) \subset \ker \nabla
\]
Let Diff_{S} denote the algebra of differential operators on A relative to Z and let Diff'_{S} be the subalgebra generated by the derivations of A. Then the Gauss-Manin connection defines a Lie algebra homomorphism
\[
\nabla : \text{Der}A \to \text{End}_{\mathbb{Z}}(I^{\ast}(X, \Omega_{X/S}))
\]
\[
\nabla(D) = (D \otimes 1) \circ \nabla
\]
which extends to an algebra homomorphism
\[
\nabla : \text{Diff}'_{S} \to \text{End}_{\mathbb{Z}}(I^{\ast}(X, \Omega_{X/S}))
\]
In other words: the Gauss-Manin connection makes $\text{End}_{\mathbb{Z}}(I^{\ast}(X, \Omega_{X/S}))$ a module over Diff'_{S}. Linear relations in this module are Picard-Fuchs differential equations.

For our treatment of p-adic solutions of we use the generalized De Rham-Witt complex \mathcal{W}_{X}. This complex can be constructed for every scheme X on which 2 is invertible. It is a Zariski sheaf of anticommutative differential graded algebras with the following structures and properties:

- all degrees ≥ 0.
 \[
 \mathcal{W}_{X}^{0} = \mathcal{W}_{X} \]
 is the sheaf of generalized Witt vectors on X

- For all $N \geq 1$ there is a graded algebra endomorphism F_{N} on \mathcal{W}_{X}^{\ast} (F for Frobenius). These satisfy
 \[
 F_{N}F_{M} = F_{NM} \quad \forall N, M
 \]
 \[
 dF_{N} = NF_{N}d \quad \forall N
 \]
 where d = differential of \mathcal{W}_{X}^{\ast}

- Let $\mathcal{W}_{X}^{\ast} := \bigoplus_{i \geq 0} \Omega_{X}^{i}/(i!\text{-torsion in } \Omega_{X}^{i})$ where Ω_{X}^{\ast} is the De Rham complex on X rel. Z. Then there exists a homomorphism of sheaves of differential graded algebras
 \[
 \pi : \mathcal{W}_{X}^{\ast} \to \mathcal{W}_{X}^{\ast};
 \]
 such that $\pi : \mathcal{W}_{X} \to \mathcal{O}_{X}$ gives the first Witt vector coordinate.
\[\forall a \in \mathcal{O}_X \quad \exists a \in \mathcal{WO}_X \text{ s.t. } \pi a = a \]

\[F_N a = a^N \quad \forall N, \quad a \cdot b = ab \quad \forall a, b \]

Because of \(dF_N = N F_N d \) we have a homomorphism of differential graded algebras

\[F_N : \bigoplus_i \mathcal{WO}_X^i[-i] \to \mathcal{WO}_X^*/N \]

equal to \(F_N \) in each degree. This fits into the following commutative diagrams

\[
\begin{array}{ccc}
\bigoplus_i H^{m-i}(X, \mathcal{WO}_X^i) & \xrightarrow{F_N} & H^m(X, \mathcal{WO}_X^*/N) \\
\downarrow \tau_N & & \downarrow \pi \\
H^m(X, \Omega_{X/S}/\mathcal{N}) & \xrightarrow{\nabla} & \Omega_S^1 \otimes H^m(X, \Omega_{X/S}/\mathcal{N})
\end{array}
\]

\[
\begin{array}{ccc}
H^m(X, \mathcal{WO}_X) & \xrightarrow{F_N} & H^m(X, \mathcal{WO}_X^*/N) \\
\downarrow F_N & & \downarrow \\
H^m(X, \mathcal{WO}_X) & \xrightarrow{\nabla} & \Omega_S^1 \otimes H^m(X, \Omega_{X/S}/\mathcal{N})
\end{array}
\]

Assume:

\[\text{Assume:} \quad S = \text{Spec}A \text{ smooth over open part of Spec}Z[\frac{1}{2}] \]

\[f : X \to S \text{ projective smooth morphism, relative dimension } r \]

all \(H^i(X, \Omega_{X/S}^i) \) are free \(A \)-modules, \(H^r(X, \Omega_{X/S}^r) \cong A \).

Then \(\pi : H^m(X, \mathcal{WO}_X) \to H^m(X, \mathcal{O}_X) \) is surjective. Choose:
\{\omega_1, \ldots, \omega_h\} \text{ basis of } H^m(X, \mathcal{O}_X)\\
\{\check{\omega}_1, \ldots, \check{\omega}_h\} \text{ dual basis of } H^{r-m}(X, \Omega_{X/S}^r)\\
\tilde{\omega}_1, \ldots, \tilde{\omega}_h \in H^m(X, \mathcal{W}\mathcal{O}_X) \text{ s.t. } \pi \tilde{\omega}_i = \omega_i

Define for \(N \in \mathbb{N} \) the \(h \times h \)-matrix \(B_N \) over \(A \) by

\[\pi F_N \underline{\tilde{\omega}} = B_N \underline{\omega} \]

where \(\underline{\omega} \) = column vector with components \(\omega_1, \ldots, \omega_h \); similarly for \(\underline{\tilde{\omega}} \).

\(B_p \mod p \) for prime \(p \) is known as the Hasse-Witt matrix of ...

Theorem. Suppose \(P_1, \ldots, P_h \in \text{Diff}_S \) are such that

\[\nabla(P_1)\check{\omega}_1 + \cdots + \nabla(P_h)\check{\omega}_h = 0 \]

in \(H^{2r-m}(X, \Omega_{X/S}^r) \)

Then one has the following congruence differential equation

\[P_i B_{N,i1} + \cdots + P_h B_{N,ih} \equiv 0 \mod N \]

for all \(N \in \mathbb{N} \), for \(i = 1, \ldots, h \).

Idea of proof: for every derivation \(D \) on \(A \)

\[\langle \tau_N \tilde{\omega}_i, \check{\omega}_j \rangle \equiv B_{N,ij} \mod N \]

\[\nabla(D)(\tau_N \tilde{\omega}_i) = 0 \]

\[D(\tau_N \tilde{\omega}_i, \check{\omega}_j) = \langle \tau_N \tilde{\omega}_i, \nabla(D)(\check{\omega}_j) \rangle. \]

Hypergeometric curves

Let \(0 < a, b, c < n \) be integers with \(\gcd(n, a, b, c) = 1 \). Let \(X = X_{n;a,b,c} \) be the smooth projective model, over \(A := \mathbb{Z}[\mu_n][\lambda, (n\lambda(1-\lambda))^{-1}] \), of

\[y^n = x^a(x-1)^b(x-\lambda)^c. \]

The cohomology \(H^1(X, \mathcal{O}_X) \) can be calculated as \(\check{\text{Cech}} \) cohomology with respect to covering of \(X \) \(X_1 = \{x \neq \infty\}, X_2 = \{x \neq 0\} \). For a detailed description we need:

\[\alpha = a/n, \quad \beta = b/n, \quad \gamma = c/n, \]
\[\langle l \rangle = -\langle l\alpha \rangle - \langle l\beta \rangle - \langle l\gamma \rangle \in \{0, 1, 2, 3\} \]
\[\mathcal{J} := \{(l, j) \in (\mathbb{Z}/n\mathbb{Z}) \times \mathbb{Z} \mid 0 < j < \langle l \rangle \}; \]

\[\text{[] and } \langle \cdot \rangle \text{ are the usual integral and fractional part functions.} \]

For \((l, j) \in \mathcal{J} \) define
\[v_l = y^\tilde{l} x^{-\langle l\alpha \rangle} (x - 1)^{-\langle l\beta \rangle} (x - \lambda)^{-\langle l\gamma \rangle} \]
\[\omega_{(l,j)} = \text{coho class of Čech 1-cocycle } x^{-j} v_l \]
\[\tilde{\omega}_{(l,j)} = n^{-1} x^{j-1} v_{\tilde{l}}^{-1} dx \]
\[= n^{-1} x^{j-1-\langle l\alpha \rangle}(x - 1)^{-\langle l\beta \rangle}(x - \lambda)^{-\langle l\gamma \rangle} dx \]

with \(\tilde{l} \in \mathbb{N}, l \equiv \tilde{l} \mod n \). Then
\[\{\omega_{(l,j)}\}_{(l,j) \in \mathcal{J}} = \text{basis of } H^1(X, \mathcal{O}_X) \]
\[\{\tilde{\omega}_{(l,j)}\}_{(l,j) \in \mathcal{J}} = \text{dual basis for } H^0(X, \Omega^1_{X/S}) \]

Lift \(\omega_{(l,j)} \) to \(\tilde{\omega}_{(l,j)} \) in \(H^1(X, \mathcal{W}\Omega_X) \) as follows. \(x^{-j} v_l \) is section of \(\mathcal{W}\Omega_X \) over \(X_1 \cap X_2 \). The Čech cocycle condition is trivially satisfied! Take
\[\tilde{\omega}_{(l,j)} = \text{cohomology class of the Čech 1-cocycle } x^{-j} v_l. \]

Then
\[\pi F_N \tilde{\omega}_{(l,j)} = \text{cohomology class of the Čech 1-cocycle } (x^{-j} v_l)^N \]

Recall the definition \(\pi F_N \tilde{\omega} = B_N \tilde{\omega}. \) Thus, indexing the rows and columns of \(B_N \) with elements of \(\mathcal{J} \), one finds
\[B_{N,(l,j),(l',j')} = 0 \]
if \(l' \neq lN \), whereas for \(l' = lN \)
\[B_{N,(l,j),(l',j')} = (-1)^L \sum_k \binom{[N <l\beta>]}{L - k} \binom{[N <l\gamma>]}{k} \lambda^k \]

here \(L = j' - jN + [N <l\alpha>] + [N <l\beta>] + [N <l\gamma>]. \)

Then one easily checks the following congruence differential equation
\[\nabla(P_{(l',j')}) B_{N,(l,j),(l',j')} \equiv 0 \mod NA \]
where $P_{(l',j')}$ is the hypergeometric differential operator, with $\Theta = \lambda \frac{d}{d\lambda}$,

\[
\Theta(\Theta - j' + \langle l'\alpha \rangle + \langle l'\gamma \rangle) - \\
- \lambda(\Theta + \langle l'\gamma \rangle)(\Theta - j' + \langle l'\alpha \rangle + \langle l'\beta \rangle + \langle l'\gamma \rangle))
\]

We now turn to p-adic solutions, p prime > 2. Our method is based on the commutativity of the diagram

\[
\begin{array}{ccc}
H^m(X, \mathcal{W}\mathcal{O}_X) & \xrightarrow{F_p} & H^m(X, \mathcal{W}\mathcal{O}_X) \\
\downarrow & & \downarrow \\
\downarrow F_{p^{r+1}} & & \downarrow F_{p^r} \\
\downarrow H^m(X, \mathcal{W}\Omega^\bullet_x/p^{r+1}) & \rightarrow & H^m(X, \mathcal{W}\Omega^\bullet_x/p^r) \\
\downarrow & & \downarrow \\
\downarrow H^m(X, \Omega^\bullet_x)/p^{r+1} & \rightarrow & H^m(X, \Omega^\bullet_x)/p^r \\
\downarrow & & \downarrow \\
\downarrow H^m(X, \Omega^\bullet_{x/S})/p^{r+1} & \rightarrow & H^m(X, \Omega^\bullet_{x/S})/p^r \\
\downarrow \nabla & & \downarrow \nabla \\
\Omega^1_S \otimes H^m(X, \Omega^\bullet_{x/S}/p^{r+1}) & \rightarrow & \Omega^1_S \otimes H^m(X, \Omega^\bullet_{x/S}/p^r)
\end{array}
\]

In the limit for $r \to \infty$ it gives

\[
\lim_{r \to \infty} H^m(X, \mathcal{W}\mathcal{O}_X) \to (H^m(X, \Omega^\bullet_{x/S}) \otimes \mathbb{Z}_p)^\nabla
\]

and thus we try to find p-adic solutions of Picard-Fuchs equations by "lifting against Frobenius". This amounts to solving algebraic equations!

Vectors fixed by Frobenius

Assume $\det B_p \not\in pA$. Let

\[
A^0 = A[\det B_p]^{-1}, \quad A_0 = A^0/pA^0, \quad A^\wedge = \lim_{n} A^0/p^n A^0.
\]

A_0 is a direct product of domains. Fix one such component and let R be its inverse image in A^\wedge. Then R is complete and separated in the p-adic topology and $\det B_p$ is invertible in R.

Let P be the set of primes $\neq p$. For every scheme Y such that every $l \in P$ is invertible in \mathcal{O}_Y one can use the idempotent operator $E_p :=$
\[\prod_{l \in P} (1 - l^{-1} V_l F_l) \] on \(\mathcal{W}O_Y \) to split off the sheaf of \emph{p-typical Witt vectors} on \(Y \).

\[\mathcal{W}O_Y = E_p \mathcal{W}O_Y \]

There exists a \(\mathcal{I}_p \)-algebra endomorphism \(\sigma \) of \(R \) such that

\[\sigma(x) \equiv x^p \mod pR \quad \forall x \in R \]

There are many such \(\sigma \). Given a choice for \(\sigma \) there is a unique homomorphism of rings

\[\lambda : R \to \mathcal{W}(R) \]

such that \(\pi F^n \lambda = \sigma^n \quad \forall n \in \mathbb{N} \); here \(\mathcal{W}(R) \) is the ring of \(p \)-typical Witt vectors over \(R \) and \(\pi : \mathcal{W}(R) \to R \) is the projection onto first coordinate.

Notations:

\[\sigma(x) = x^\sigma, \quad F = F_p; \]

for a matrix \(M = (m_{ij}) \)

\[M^{(p^r)} = (m_{ij}^{p^r}), \quad M^{\sigma^r} = (m_{ij}^{\sigma^r}), \quad \lambda(M) = (\lambda(m_{ij})), \quad \underline{M} = (m_{ij}); \]

for \(A \)-algebra \(A' \)

\[X \otimes A = X \times_{\mathcal{S}} \text{Spec} A'. \]

\textbf{Theorem}

\[\exists H \in GL_h(R) \ s.t. \ B_{p^{r+1}} \equiv B_p^\sigma H \mod p^{r+1} \quad \forall r \geq 0. \]

\[\exists \hat{\omega}_1, \ldots, \hat{\omega}_h \in H^m(X \otimes R, \mathcal{W}O_{X \otimes R}) \ s.t. \ F\hat{\omega} = \lambda(H)\hat{\omega} \text{ and } \pi \hat{\omega}_i = \omega_i, \]

\[\hat{\omega} = \text{column vector } (\hat{\omega}_1, \ldots, \hat{\omega}_h)^t. \]

Fix an algebraically closed field \(\Omega \supset R/pR \) and define

\[(R/pR)^{\acute{e}t} := \lim_{\overset{\longrightarrow}{B \in \mathcal{B}}} B. \]

where \(\mathcal{B} \) is the set of finite étale extensions of \(R/pR \) in \(\Omega \). For every \(B \in \mathcal{B} \) there is a unique finite étale \(\tilde{B} \) over \(R \) such that \(B = \tilde{B}/p\tilde{B} \). We define

\[R^{\acute{e}t} := \text{the } p\text{-adic completion of } \lim_{\overset{\longrightarrow}{B \in \mathcal{B}}} \tilde{B}. \]
$(R/pR)^{\text{et}}$ is an infinite étale extension of R/pR and $R^{\text{et}}/pR^{\text{et}} = (R/pR)^{\text{et}}$. The algebraic fundamental group $\pi_1(\text{Spec}(R/pR), \Omega)$ is by definition the Galois group of $(R/pR)^{\text{et}}/(R/pR)$. It acts on R^{et}. σ induces an endomorphism σ of R^{et}.

$$(R^{\text{et}})^{\sigma} = \mathbb{Z}_p, \quad (R^{\text{et}})^{\pi_1} = R.$$

Proposition \(\exists C \in GL_h(R^{\text{et}}) \) s.t. \(C^{\sigma} H = C \).

idea of proof: The system of equations

\[
\begin{align*}
C_0^{(p)} H - C_0 &= 0, \\
\delta \cdot \det C_0 - 1 &= 0, \\
C_{i+1}^{(p)} H - C_{i+1} + p^{-1}[C_i^{(p)} - C_i] H &= 0 \quad (i \geq 0)
\end{align*}
\]

can inductively be solved with \(h \times h \)-matrices C_i over R^{et}. Then $C := \Sigma_i p^i C_i$ is a solution.

$R \hookrightarrow R^{\text{et}}$ induces $H^m(X \otimes R, \mathcal{W}\mathcal{O}_{X \otimes R}) \hookrightarrow H^m(X \otimes R^{\text{et}}, \mathcal{W}\mathcal{O}_{X \otimes R^{\text{et}}})$.

Define

$$\xi_1, \ldots, \xi_h \in H^m(X \otimes R^{\text{et}}, \mathcal{W}\mathcal{O}_{X \otimes R^{\text{et}}})$$

by

$$\underline{\xi} = \lambda(C) \underline{\hat{\omega}}.$$

Then

$$F \underline{\xi} = \underline{\xi}, \quad \pi \underline{\xi} = C \underline{\hat{\omega}}.$$

Proposition

$H^m(X \otimes R^{\text{et}}, \mathcal{W}\mathcal{O}_{X \otimes R^{\text{et}}})$ is a free $\mathcal{W}(R^{\text{et}})$-module with bases \(\{\xi_1, \ldots, \xi_h\} \) and \(\{\hat{\omega}_1, \ldots, \hat{\omega}_h\} \).

$H^m(X \otimes R, \mathcal{W}\mathcal{O}_{X \otimes R})$ is a free $\mathcal{W}(R)$-module with basis \(\{\hat{\omega}_1, \ldots, \hat{\omega}_h\} \).

\(\pi : H^m(X \otimes R^{\text{et}}, \mathcal{W}\mathcal{O}_{X \otimes R^{\text{et}}}) \rightarrow H^m(X \otimes R^{\text{et}}, \mathcal{O}_{X \otimes R^{\text{et}}}) \) restricts to an isomorphism \(\pi : \Lambda \simeq \pi \Lambda \) on

$$\Lambda := \ker(F - 1 \text{ on } H^m(X \otimes R^{\text{et}}, \mathcal{W}\mathcal{O}_{X \otimes R^{\text{et}}})).$$
Write Λ resp. ξ instead of $\pi\Lambda$ resp. $\pi\xi$.

Theorem. Λ is a free \mathbb{Z}_p-module with basis $\{\xi_1, \ldots, \xi_h\}$.

$$H^m(X, \mathcal{O}_X) \otimes^\Lambda R^{et} = \Lambda \otimes_{\mathbb{Z}_p} R^{et}$$

$$\xi = C\omega, \quad \nabla\xi = 0$$

Thus the rows of C satisfy the same differential equations as $\{\tilde{\omega}_1, \ldots, \tilde{\omega}_h\}$.

$\pi_1 := \pi_1(\text{Spec}(R/pR), \Omega)$ acts on R^{et}. By functoriality this induces an action of π_1 on $H^m(X, \mathcal{O}_X) \otimes_A R^{et}$ and on $H^m(X \otimes R^{et}, \mathcal{W}\mathcal{O}_{X\otimes R^n})$. Since F and π are π_1 equivariant we obtain the **p-adic monodromy representation**:

$$\mathcal{M}: \pi_1(\text{Spec}(R/pR), \Omega) \rightarrow \text{Aut}_{\mathbb{Z}_p}(\Lambda)$$

$$\mathcal{M}(\tau)\xi = C^\tau C^{-1}\xi \quad \text{for} \quad \tau \in \pi_1.$$

$\xi = \text{column vector } (\xi_1, \ldots, \xi_h)^t$

The **p-adic monodromy group** $\mathcal{M}(\pi_1)$ for the hypergeometric curve $y^5 = x(x-1)^2(x-\lambda)^3$.

is computed in J. Stienstra, M. van der Put, B. van der Marel, *On p-adic monodromy*. It turns out to be conjugate to:

case $p \equiv \pm 1 \text{mod } 5$

$$\begin{cases}
\begin{pmatrix} \eta a & \eta^2 b & 0 \\ \eta^2 b & \eta^{-2} b & 0 \\ 0 & \eta^{-1} a & \end{pmatrix}
\end{cases} \begin{array}{c} a, b \in \mathbb{Z}_p^*, \\
\eta \in \mu_5 \end{array}.$$

case $p \equiv \pm 2 \text{mod } 5$

$$\begin{cases}
\begin{pmatrix} \eta a & 0 \\ \eta^2 a^\sigma & 0 \\ 0 & \eta^{-2} a^\sigma & \eta^{-1} a \end{pmatrix}
\end{cases} \begin{array}{c} a \in \mathcal{W}(\mathbb{F}_{p^2})^*, \\
\eta \in \mu_5 \end{array}.$$