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A SPECIAL FUCHSIAN SYSTEM CONNECTING SOME HILBERT PROBLEMS
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0. INTRODUCTION

This survey draws an ipvestigation line ftom a special Fuchsian
system of differential equations to special diophantine equations.
'E. PICARD. [26) began to study more intensively the following spe-

cial system of differential equations:

| Y L
(0.1) D Flu,v) = 0 on €~ [Z=w™ A,
(1,3) = (1,1),0(1,2),(2,2) ,
Y e i 2 2
Dy, = ‘:F + [9(u—1)u(v—u)] {3(-5u +4gv+3u—2v)§;+3(v—1)v5;+(u—v)},
1 ‘ '
L) -1.9 9
D,, =- + [3u-v)] {7 - 55},
'bl 1t 9«19\/ -4 du ov 3

D= =< + [9(v-1)v(u-v)] (3(u—l.)u——+3(—Svl+4uv+3i/—2u)§\7r(u-v)}‘
12.. DV,' ) ) . (9U

A= v e of; uvlu-1) (v-1)u-v) £ 0),
A%; := six lines in WL thfough pairs of four points in general

position.

PICARD conjectured that the solutions of (1) should have an arith-
metic . meaning comparible with the role of elliptic inteéials for
plane cubic diophantine equations.

Fortunately D. HILBERT observed carefully the work of PICARD.
We want to use some of the celebratgd 23 problems of HILBERT
(10) as an intuitive guide for a deeper arithmetic study of the
solutions of (1). Via actual work of PARSHIN and VOJTA we discover

at the end an interesting connection with FERMAT's equations.
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Notations

—

’ Y ' alyebeuic
C, R, QV{'Z : complex, real, rationé%(numbers,vintegers;

IPN : (complex) projective space of dimension N;
PN(L) : Points of w” with coordinates in the field L £ C;
V(L) = anPN(L), V a subvariety of P”;
Gl:(R)_: elements of 61,(R) with positive determinant;
P6l, : the projective group €1, /61, ;
PG : the image of G in P61, , G a subgroup of €l,;
ul((2,1),a) : the unitary group of a hermitean form of signature
. (2,1) with coeffiéients in the ring A € € closed under coﬁplex
‘conjugation;
OL : ring of integers in the number field L;
(= U((2,1),UL) the full PICARD modular group of ﬁhe‘imaginary
quadratic4number field L;
K = g({=3) = Q(g) : the field of EISENSTEIN numhers, 9 a primitive
third unit root;
N e e

. . ¢ 1} .the standard complex 2-ball;
jlg) = g% + 744 + 196884 + 21493760gY + ... , g = exp(2Tiv)

BY= ((z,,2

the elliptic medular function defined on
W= {Te  ; InT > 0} the POINCARE upper half plane;

IH?= {Z ¢ Gl‘}(ﬂZJ; 2 =t Z, Im Z > 0} the generalized SIEGEL upperxr

half plane;

Sp(2g,A) : symplectic group acting cn ®,, A =R or 7;

?’
‘ﬂ»- = Sp(Zz,Z’)\KH?: the (non-compact) moduli space of g-dimensional

¥

(principally) polarized abelian varieties.

?f(:.,vl}- WW% Ew ?MZU’ .S"-LI
shoulel  be @vL :



1. Thé Central Problem
A central role in HILBERT's program plays the following

12-th HILBERT PFOBLEM (Ex;ension of Kronecker's thecrem to arbi-

"... to find and discuss

trary algebraic domains of rationality):
thoselfunctiods>playing for arbitrary algebraic number fields the
same role as the exponential function for the field of racional
nuwbers and tre ei;ibtic medular function for imagirary quadradra-
“tic fields". |

et - - . . 4 :
We remember ‘to the eliiptic modular functier j3: [ —> P . Ch

r‘

. A, e e . - gy e \ .

B acts 617 (R), P” is the corgaccirication oi W/81, 1Z) = € and 3

g 3
describes the guctient map. We call ¥ Ha s inguilar-x

£

module , if it is an isclated fixed point of (a g € ) %1, {(D;.

1.1 Theorer. Lect ¥ be a point of W{T). Then

[n)

(1) - jlg) iz a trarscendent nurber iff T is neot a sing:lar wmodule:
(ii) If © is a singular reduie ther j{T) is a classz Iieid (aheliian

extensior, ray claszse ileid) of the imafyirary giadratic fie.d Oi¢:

it is the EILSEFT class Dfieid (rarimal wnraritied sbelian eroen-

sion of Tiw:. if #1 + Yo iz & Iraccional iéeal of T,

e

(D]
=
-
n
2
w
o
]
1]
v
i

The transcendence preci is.due to SITGEL i 3§

tengier of the S-th FILEEFT ZeTILEN asking {00 ohe frarscendernos
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138]. It is.a part of KRONECKER's JUGENDTRAUM claiming the explicit
construction.of'ai; abelian extensions of imaginary quad:&tic num- .
kber\fiélds.by'méﬁnsiof‘special‘values‘transcendendent fun;tiohs.
The JUGENDTRAUM appears as KRONECKER;S problem in the fitst part
~of the 12-th HTLBERT PROBLEM..Tt has been solved by. TAKAGI_. [38] in
1921. Nowadays its(solution is known as Main Theorem of Comﬁlek

Multiplibatioh, see [21].
2. ' . - Ball Uniformization of Surfaces

Let X be an algebraic surface dvei C, compact for a moment,‘with
at most duoiﬁent or ball -c usp s i n g u lba f it icé s . For
‘a pre‘ciSe definition and classi«ficétionl of -these si.ngularitigs ve
refer to [16]. In this paper é special class of algebraic cycles
ris definea.cpnéisping 6f~weigted irreducibﬁe curves_and«points\on
X. The weight$ are natural numbers §r ¢r;>Finitely weighted ﬁéints
are q votient poi nt.s. Infiﬁitel?’%eightéd curves of
points aré c u s p  curv é S Oor cCcu é p vﬁ 0 i n‘t s, re;
‘spectively. For.a'precise definition/claéSification we refer to
1161 again. We .call'tv}'lese' 'speci‘al cycles /o‘r b it al "c y c-
les (on.X). A pair X = (x,p);'g an orbital cycle on X,lis cal-

'léd'ap. orbital surface.

2.1 Example; Let X = @L, QA'Q;'Oi'QH four points on P% in general

posiﬁion, L:37='L3; the line through Q;,0j. By abuse of notaticns
we define an,orbital cycle by D = Z: 3L.. +. Zo-0 , where the
. . Aélljéh %) o K - oo



. ' s » , 1 A s
weights appear az coefricients. The pair (P, D) is an orbital

surface.

2.2 Remark. If X iz a multi-blowing up of P" and D is supported by

lines, then HIRZIESRUCH callied O a (linear) arrangement. 3ee | 3].

If we omit on X and D all infinitely weighted curvez and pointz.

-

then weget an open orbital surface (¢ = (%, D¢ )

It

,.T; actz an the z-ball e ¢ p*

[y

2.3 Main example. The group W{(Z,
via projective tranzrormationz. Let I be an arithmetic subgroup

of UK (2,1),T). Then the quotient-xé

it
173
~
o~
[N
n
w
o
D
S
D
~
L[]
—
-
]
0
L]
tD
3

algebraic zurface. ihe irreduciblz curvez of zhe bhranch loous of
the covering 2 —— BT and th2 images of
. are endowed with the correzponging ramification indices as weights
(for a point after biowing up itz preiwmages!. Derore the correspor-

ding (oper) orbitai ovele by :+. Then Y, = (X .D

points of the Raiiy-Sorel opmpactificzation §7F o the "cliazure”
A _ n oA
Q% of Q¥. The pairz (X 2{) or :xe.:;J are zalizt o p = r or
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tant partial answer to the 22-nd HILBERT PROBLEM entitled "Unifor-.
mization of analytic relations by means of automorphic functions".

In order to find a constructive answer we introduced in [16]
successively some invariants called (1 ocal)and gl obal)
orbi t‘a 1 heights (respectively):

h, ho {orbital curves}

> 0,

He'Hf: {orbital surfaces} —> 0 .
Orbi tal curves are defined to be irreducible 1-
dimensional components C of (embedded !) orbital cycles D (with all

weight informations of D along C). We give an implicit definition:

If everything is smooth, compact and has trivial weight 1, then

hy (C) = he(C) = —(Euler number of C),

hr(g) = ht(c) = —(selfintersection index of € ¢ X},
He(z) = He(X) = Euler number of X,

He(X) = H_(X) = signature of X.

If £f: X —> X', C —> C' are finite coverings, then the
following degree formulas hold:

H(X) = deg(fJH(X') , h(C) = deg(f|C)h(C'), H = H K

e h=h ,h_

T’ ¢’
Roughly spoken, a finite covering £ is a usual fi-
nite covering f: X —> X' compatible with weights in the sense of
Galois theory. The definition restricts to orbital curves. Proofs

of existence via explicit definitions can be found in [13] and

the related literature.

2.4 Theorem ([16]). If X = (X,D) =B/[ is an orbital ball quo-

-

tient, then it holds that



(2.5) B (X) = 3E_(X) >0 , hy(C) = 2n(0) >0, Ce D.
The discrete subgroup frlof PU((2,1),€C) is uniguely determined up
to conjugation by thé'orbital surface X.

So we found effective necessary conditions for an orbital sur-
face to be a ball quotient. R.KOBAYASHI [20] gave sufficient con-
ditions in anﬁther ianguage.'Until now there is no proof of the
equivalence of Kobayashi's and our conditions. The following con-

‘Siderations indicate that they cannot be far away from each other.

Thé relations (2.5) can be understood as a system DIOPH(X,D) of
diophantine equations and inequalities, if we write it down ex-
plicitly with all weights as variables. The coefficients depend
onlyion geometric data of the supporting surface X and the suppor-

ting cycle D. It turns out that

2.6 Theorem ([16]). For any (admissible) pair (X,D) the system
"DIOPH(X,D) has at most finitely many solutions. These solutions

can be calculated in an effective manner.

So a ball uniformization of a surface X with given branch locus
D can only happen, if we find a solution of DIOPH(X,D) and there

are, up to isomorphy, at most finitely many possibilities.

2.7 Corollary. If we fix infinite weights at the four triple points
. ' ‘ ,

of Z¥5~C P~ defined in (0.1), thenADIDPH(PL,é%§) has exactly one

solution. The corresponding orbital surface @Y, &) coincides with

that of Example 2.1.

35
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one variable, "_..to show that in any case there exists a linear
differential equation of the FUCHSian class with given singular
locus and prescribed monodromy group”. The final solutiﬁn of this
HILBERT PROBLEM has been given by H. ROEHRL [27]. We change over

and restrict ourselves to the second dimension.

3.1 Theorem (M.YOSHIDA [38]). Let X = (X,D) be an orbital surface
uniformizable by the ball with quotient map p: B ——> X. Then the
inverse p'_'l of p is a (multivalued) developing map of a FUCHSian

system of linear partial differential equations.

It means that there is locally a fundamental system of solu-

tions .11, extending analytically to X~ D, such that the mul-
tivalued map

(I,:I,0 I): XND ——> B ¢ et
P > (IQ(P):Iq(P):IL(P)), coincides with p-,| on X~ D. The
FUCHSian system is called the uni formizing eqgua-
t i o.n of the orbital surface and the uniformizing group U is

the monodromy group of the system. Via solutions

one gets a unitary representation of the fundamental group

ﬁ,l(x \ D) > PT ¢ PCL, (€).
YOSHIDA [38] found an effective method in order to determine

a corresponding Fuchsian system. Together with 2.8 one gets

3.2 Theorem. The system (0.1) is a uniformizing eguation of the
orbital surface (@1,é§%9_ Its monodromy group is the PICARD modu-

lar grovp (Y=3).



Now"one can check KOBAYASHI's conditions to see that the ball

uniformization of GPi,égk) really exists. In [11] we proved more:
. —

2.8 Proposition. Let [ ({=3) ¢ UK(Z,I),Uk), K = 0(V-3), be the con- .

/3
en/

gruence subgroup corresponding to the ideal (1-q), 9 = , of

Uk. Then the orbital surfaces B/ (J=3) and ﬂPb,é%g).coincide.

For a proof it is convenient to use the following

2.9 Theorem ([16]). For the c, ~volume ci(T) of a fundamental do-
main of a ball lattice [ it holds that

(2.10) cl(f) = H, (B/7) , CL(‘-)/3 = H_(B/I).

In [15] we presented an effective formula for Cl(rh), M an
imaginary quadratic number field, in terms og?gpecial value of L-
series using arithmetic-geometric methods in the proof. Then one
gets H, (8/C ({=3)), B_(8/r( =3)), the Chern numbers c, (B/r(y=3)) = 3,

el NS AR

/\
0108/7(4—3)) = 9 after classification of elliptic points and cusps,
n

and finally B/T({=3) = wl'by the theory of surface classification.
3. Ball Uniformization and Differential Equations

In [38] M.YOSHIDA succeeded to solve a higher-dimensional ver-
sion of the RIEMANN-HILBERT problem. The background is HILBERT's
21-st PROBLEM "Proof of the existence of linear differential equa-

tions with prescribed monodromy groups" set up for functions of

37
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4. "GAUSS-MANIN Connection

YOSHIDA's general approach lifting the Gauss-Schwarz of
FUCHSian equations to higher dimensions has a classical origin
in the work ofvPICARD and APPELL. Especially for linear arrange-
ments of low-dimensional projective spaces a more immediate result
known és PTDM-Theorem (due to PICARD, TERADA, MOSTOW, DELIGNE)
would be sﬁfficient for our purposes. We refer to [38], [ 3] and
further literature given there. But we prefer to change over from
the analytic viewpoint to an algebraic-geometric approach in order
to find "algebraic solutions” of special FUCHSian equations repre-
sented by integrals on algebraic curves along cycles depending on
on parameters u,v. The general framework of the corresponding al-
gebraic theory is known as Gauss-Manin connec -
t i on of algebraic families of algebraic manifolds. For more
details we refer to [11] in order to understand the rather expli-
cit theory of algebraic families of curves involving differential
equations.

Let ¢ /T be a smooth algebraic family of smooth algebraic va-
rieties a;l defined over the complex numbers, say. The relative
DE RHAM complex is a sequence

s, d 4 d : 4
Lot 6 T gy — gy —

Using open (affine, say) coverings one defines the ZecH complexes
., '~A9 ) o ] a( A 1 J L 4
L) Clllgp) = () —— che L, )

in the usual manner. Taking the limit along refihements of open

coverings one gets the CECH - DE RHAM bicomplex C“(_fl%y The

T).
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DE RHAM Cthmology‘gr'qups IH_IA‘;R‘( ‘C/T)lof the family e /T are the,
hypercohomo;ogy g;oups of C’ (_QLQHJ'definéd as cohomo;ogy~gnoups
of the,cdrreSponding total_ééchA—'de Rham complex Cfat(.llffr).
'The construction applies to ail restricted families }Qi/U, U'an_
open part of T. On this way one gets £he ':D E RH A M coho-
homology sh e.a ve s j&;uf*e/T) on T.

We resﬁrict ourselves now to cufve families € /T. For our purf'
" poses it suffices to,aésume that T is an affine part of a projec-
tive space-PN- Let.fD_T be the .sheaf of differential ope;ators.oh T.
Then the de Rham cohomology sheaf 3€;R(f /T) is not only aﬁ Qf—

module’but also a BT—module sheaf. Looking for a family with a

section o in 35; (€/T) satisfying the differential equations

R
(0.1) with © instead of F-6ne can take the PICARD cur -
v e .f amily
/PN A s Y2 = X(X-1) (X-u) (X-v)

Vand > represented by the differential form & = dx/y depending
on u,v. Tékiﬁg integrals along-cyclés one gets. an "algebraic"” fun-
damental system of- solutions
(4.1)

f ' .

I = ) ue), k=123 t= (wv)er A, = dx/y
)

Altogether we found the developing map of the FUCHSian system (0.1)

in an explicit and algebraic manner. Looking back t6 the geometric .

S{‘Qv\:ius (’oiw‘.’ avd
. to the results of the earlier sec-

‘tions we receive



4.2 Theorem. The guotient map p: B — Té‘with covering group
T(Jy=3). is inverted by (IO:IR:IL):\P*T\ A —— B onkt N\ A
with .cycloelliptic integrals Ik(t) described in (4.1) along line-

arly independent cycle families do(t),-«A(t}, db(t).-

4.3 Remark. Historically p"l was first known [26]. The monodrdmy
group was known to be a sublattice of T({=3) generated by five

elements, see [ 1].
5. ’ , Moduli Space of PICARD Curves.
5.1 Definition. A PI CARD curve is an algebraic (com-

plex compact) curve isomorphic to one of the following plane'cur—

ves of eguation type

(5.2)
3 h u L : “
¥ = TW(X-e.) =X +6X +6,X+06 (affine),
i=a 4 L 3 “
z :
wy? = (X - eLW)"= x4 GLWLXL + szzx + GHWH (projective),

=4
Y
Notice that = e, = 0.
[
One proves that the normal form (5.2) of a PICARD curve

C is well-defined up to a common factor of the e;'s, if C is

smooth, that means e; # e; for i # j, see [14]. In other words:

5.3 Proposition-Definition. The modwl i space of
) : . i : s
smoo-th PICARD curvesis (P~ \ ZE&)/SH. The moduli

Space of PICARD curves is PL/SQ.,



6. " The Relative SCHOTTKY Problem

Smooth ?ICARD curves C have genus 3. The Jacobian ‘(variety) of
C is denoted by J(C) and Jac(C) denotes' the canonically polarized
Jacdbian>6f C. The correspondence C > Jac(C) induces_-a biratio-
: -, ™ o4 7. < .
nal map jac: P /Sq . —9Lﬂ3, where Jg.ls the moduli space of prin-
’ IR
cipally polarized abelian threefolds. Its restriction to R \ é¥§
is anAoped embedding by TORELLI's Theorem and 5.3. We want to uni-
formize the map jac in an effective manner, that means we look for

a commutative diagram

1B f_._ik.___) lH;
. tw
(6.1) r 3¢ ;\1_ SP(‘>|Z)
S \?\
1 o>7
S —
JO-C

The vertical arrows denéte guotient maps by the arithmetic groups
= UK(Z,l),GQ or Sp(6,%), respectively. The r e lative
SCHOTTXY p.r oblem for PICARD curves asks for the
explicit knowledge of * in terms of period matrices.
The new ball B.c WL qorresponds to the hermitean (2,1)-metric
0 07
on cz defined by | 0 1 0]; <, > denotes the hermitean product.
g 0 0

Now we define successively the maps

41



(6.2)

3 3

%: € ——> €”, (A,B,C) =——> (A,B,~7A,(,§B,5C) ,
N

. S .

P: C xC xC —> Mat.s%

(© , (a0 —>| x& |,
g;;b
0 : the restriction of P to triples with the conditions:
.<.@,ov>'< 0, &lov, rla, | vé,'lf lineafly independent;
*x: B ———~§ Hy , Po—> Gl$(C)\JR}a” £, 4)>
The imagés of T (or x) are called typical period,

‘matrices (podint s). The orthogonality conditions .

come from the RIEMANN period telations.

6.3 Theorem ([14]). A prindipally polarized abelian threefold is
the Jacobian of a PICARD curve if and only if it corresponds to a

typical period.point in H;.

.The proof needs the construction of t y pical symplectic
’ . 1
bases of H, (C,Z) and the use of GALOIS-invariant bases of H°(C,.O.C)

on smooth PICARD curves C due to PICARD [26].
7. Effective TORELLI Theorem

We would like to make TORELLI's Theorem for PICARD curves ef-
fective by means of transcendent functions in analogy to the el-
liptic modular function j. Our problem is to find for given ©Te B

(or *T & %B fC_‘le) the normal equation (see (5.2J) of. a PICARD cur-
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ve C. corresponding to the moduli point p(t) e Y. In other words
we look for an explicit analytic description of the quotient maps

in diagram (6.1).

7.1 Definition. a holomorphic function f: B —> € is called a

PICARD modular form ((">-form) of wei ght

-

m, if there is a sublattice ' of'a PICARD modular group such that

. M

(7.2) {’\((f)‘ = j-£ for all e,

where jxlfﬂ is the JACOBI determinant of y at © e B.

7.3 Theorem ([11]). There is a basis t4,tL,t3 of the space of
ST(F3)-forms of weight 1 such that
v > (t, (@)t (o) tfe) st ()

with t + bt b 4 by = 0 is the gquotient map p: B —> e
A : .

The proof goes through the fine surface classification of

. . L ) ) ele —
X = B/ST({-3) and identification of the modular forms with see-

ek o
£iens of Ho(iib(mmr + mT), X the minimal smooth compactification

and T the compactifying curve. The surface X is described by the

weighted homogeneous equation

3

(7.4) s ), wt(SC) =1, wt(S) = 2.

l 1 L v z b 5
= (Sz_“ s,)(s, - S, )(s, - s,
This is a nice example fitting in the 22-nd HILBERT PROBLEM again,

see section 2. Namely, the ring of $T({-3)-forms is C[so,s4,s s]

L'
with generators satisfying the same relations as described in
(7.4) The'compactificétion theory of BAILY-BOREL [ 2] is the ge-

neral framework of salution of HILBERT's 22-nd PROBLEM, by means



of,éutomorphic‘ f.orms, but the explicit sclution remains to be a
case-by-case problem.

We change over from the left to the right quotient map -in dia-
qram (6.1) and ‘quess that the theory of theta.functioné is help-
fui to ldéscribe the modular forms tI in 7.3 more explicitl§ in
“terms of Fourier series as it is kno.wn for the elliptic iuoduiar
function j(¢), see e;g. [21].

Theta functions l\j‘[g‘] with characteristics a},b e g% are holvo—
morphic functions on c?xm%. Explicitly the theta functiﬁns

D {_‘;} et @, ——> ¢
aré'defined by
.D;‘_t](z,ﬂ.) = Z% exp{n’it(n-ra).ﬂ.(rua) + qui"-(n+a)(z+b)}

wed

The restrictions. D | 0% lH?

Bl3Ycoy = (8]0, )

are called theta constants (with characteristics).

7.5 Theorem (Feustel [ 6] , Shiga [3¢]).

Let e‘;(SL) = /3’; (0,£), 1 = 0,1,2, be the theta constants on tH3

restricting the theta functions

0 1 O :
’o‘k 2(0’ [V3 4/: ‘C/g ](Z,.Q—) , k=20,1,2, z & Cg..

Set ' _
3Nt 3 3 3 3
(7.6) Th(l = 30 +61 + GL . Th =-30 + 9,1 + 92 ,
_ 3 3 3 _ 3 L 3
Th = 90 -'36,I + OL , Th = _90 + 94 39: .
_a-n?é— Tlhew
{7.7) th.(¥) = Th.(¥T), i-=1,2,3,4, <e B,



is aspecial choice of §T(J=3)-forms inverting PICARD's integral

map I:'P \&-—-—»B as descrped in 7.3.

exe Qv e

7.8 Remark. The sr({:§)—forms th- are normalized tobe

compatible with the actdion. of f‘/sr({") = 8,x(2/31), sy symmetric
group, 1n the follow1ng sense (see [12] or [.61): »
Up to a character the group qu(Z/3Z)<acts on {th,, ..., th)

via permutations of indices.

7.9 Corollary “Each PICARD curve C has a .normal form

11 .
(7:10) ¢: Y2 = T (X - th; (7)) = x" + 6, (@)x" + 6, (T)X + G ()

LZa

for a suitable Te B.

FEUSTEL's proof of Theorem‘7;7 needs preperatory work of RIE-
MANN (RIEMANN constaﬁts), PICARD [26], ALEZAIS [ 1], MUMFORD [24],
SHIGA's preperatory work for [8Q] and HOLZAPFEL (11]. The idea is
to show that some theta candidates coming out directly from PICARD
curves satisfy all the. functional equatiens defining | -forms of
Nebentypus described in (7.2) and 7.8. Since generators

of { are explicitly known, this is an effective finite problem.
. 8. Special Values of the PICARD Modular Theta Function
- 8.1 Definition. A singular module onBis an isola-

"ted fixed point of (anAelement) of m((2,1),X). If the Jacobian

Je = J(Ct),'tc B ‘can be decomposed up to isogeny into simple abe-

45



lian varieties with cbmplex multiplication, then & is called a

:“CM - ‘module ( ‘D ecowg ocLD( Co..., PICY ﬁuu“eli(ahoé) ~

8.2 Proposition (FEUSTEL,’unpublished; maybe to read off. from [ 9]
with some effort). The point véIB is singular module iff it is a

" DCM-module.

We denote the preimage of égs.along p: B —> P% by & . ‘It con-

sists of infinitely many discs in B (see [11])7

8.3 Theorem
(A) ([14]). If éf-B is a singular module, then
(8.4)  th@) = (th,(¢):th (¢):th,(ef:th (o))
is an algebraic point of Pr. _
(T) ([30),[34]). If T€ B(D) \ 4, tHen th(g) is a transcendenﬁ

point of PL, this means that thic) & © (D).

The first part is an appliqation of the Theorem of SHIMURA-TA-
NIYAMA stating the algeb;aicity of moduli points of (polarized)
abelian CM-varieties. The second part comes out from WUESTHOLZ'
transcendence theory; see [38], as announced in [14]. Conjectural-
ly the exclusion of & in (T) can be omitted by the method of jum-
ping to elliptic curves used in [14] for the complete proof of (A).

Using more.carefully the SHIMURA-TANIYAMA theory of gomplex mul-
tiplication of abelian varieties one discovers a strong quality

of Special values th(¢) in the case (A) fitting in HILBERT's 12~th
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PROBLEM.

8.5 Theorem (Explicit construction of SHIMURA class fields of cubic
extensions of EISENSTEIN numbers by special values of Theta con-
stants (see . [18]). Let & be a singular

é}fﬁ,’dﬂ_\&L——% Was comelu w oltighcetion
With—simpte'Jd en «

7 Then we have, with the notations below, a

module
tower of algebraic number fields

wt ' 5'4(«) 1 .

F_(tht¢)) / F"(th(e))"/ Fo / X,
where the middle extension is abelian (SHIMURA class field), which

is unramified, if the additional ideal condition (I) is satisfed.

8.6 Notations (see [38] or [22]). The endomorphism algebra F, =
End(Jc)@ 0 is the cubic extension X(g) of K. Its reflex field is
 is denoted by Fl. We set

Fe(th(e)) = FI(...,th (e)/th; (¢),...) , 1 & 1,3 ¢ 4
in the ?arantheses. The symmetric gfoup acts on the generators
?h;(‘y/thj(f) via permutation of indices. All such permutation,
which are extendable to an automorphism of F'(th(F))/F’ form the
the group Sq(r)' Let (F¢,<bt), @r :Z g. with field embeddlngs
g F —=> C, be‘the type of Jac(C_). Thgﬁﬁgﬁbé C /’¢ (Zﬂ ) for
a suitable Z—latticé(%} F. . The ideal condition in 8.5 is:
(I) M _ is a (fractional) ideal of F.

o

3. Connection With FERMAT Equations

FREY [ 7] discovered a deep connection between FERMAT's Last
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Theorem and the arithmetic of elliptic curves. PARSHIN [25] joint

it with the BOGDMOLOV-MIYAOKA-YAU inequaliﬁy ﬁransfered to arith-
métic.surfaces;‘rhe co:responding inequality fbr~invarian£s‘df
arithmetic éurfaces is not proved until now. We will §all it the
PARSHIN problem (PAR), see below. PARSHIN.p;oved the folléwing re-

markable

9.1 Theorem. ({'9]). If the PARSHIN probl~m has an affirmative
answer, then the statement of FERMAT’S Last Theorem 1s true for .

almost all FERMAT equations xf + ¥P = zf.

"Almast all"'means; all up to a finite number. The conclusing
statement of 9.1 is also known' as "Asymptotic FERMAT Theorem”.
Since the proef goes tﬁroﬁgh eilipéic curves, ﬁe asked for a-simi-
lar connéction‘with Ficard curves. Surprisingly we found a figorous

reduction of PARSHII's Thecrem 9.1, which cowld be ugeful for a

more effective aporcaci. %We snnolnce

9.2 Theorem (119}). If the FERSEIN proklém hae ar s7¥irmetive
ouly : .

answerYfor asrithmetic sutfaces of KODZIRI-FIJARD type, then the

asymptotic ¥EPMaT Treorel nolds

We finish with the preseniation of same necessary detinitions
and hings for the proof. Tue best reference is 1ANG's book [13].

et X/S be an aritwwetic surface B = Spec O) U= 0, . La
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number‘fieldf We say that X/B is o f KODAIRA - PICARD tyope,
"if the general fibre X, is a PICARD curve or a smooth biquadratic
covering of a smooth PICARD curvé branched over exactly one point.

PARSHIN'S problem is to prove

- (ap depeﬁding on the

'(PAR) There are universal constants a,,a
genus g of general fibre) such that for all semistable arithmetic
surfaces X/B it holds that

(Ar.BMY) (o." ) < ay Zor ta, (2g- 2)log|D | + a,.

X3 v&hL Lﬂ2

' . , ' Vg the discriwimant
' (
(o ) is the selfintersection of the relative canonical sheaf,

X/p
Mt_is the set of all (finite and infinite) places of L. For Jv we

refer to .[{5]. The most complicated contributions JV' v e M, are
described in terms of special values of Theta constanté in the
framework of FALTINGS' basic'theofy‘of arithmetic surfacéé [ 51.

For the proof of 9.2 we followed the';ine of VOJTA's redudtioq
in [3%] of PARSHIN's Theorem 9.1 to KODAIRA-PARSHIN covers of the
FERMAT curve of genus 3.

Untilvnow an explicit calculation of (global and local) inva- .
riants of arithmetic surfaces needed in (Ar.BMY) seems to be only
possible.for the elliptic cass ([ 5]) and genus 2 ([ 4]) because
of a good knowledge of the connections with modular forms A rush
to the KODAIRA—PICARD -types would accompllsh one side of the deep
mathematical thinking and feeling of the 0ld masters -PICARD and

HILBERT.
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