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Vortex stretching is one of the most fundamental mechanisms in
huge Reynolds number flows. Although its mechanism is &et to be
clarified owing to 1its essential nonlinearity, substantial
understandings have been obtained in recent physical, numerical
and mathematical studies!’-4!'. Here we are particularly
interested in two of its fundamental aspects.

One of them is that the vorticity is likely to align with
an eigenvector of rate-of-strain tensor, as revealed in a recent
numerical simulation of turbulence4!’. This suggests that such
alignment is effective for vortex stretching.

Another issue concerns totélly inviscid fluid. In this case
vortex stretching is considered to bring out an outstanding
result. More précisely, it is conjectured that there are some

smooth velocity fields with finite energy which blow up at a

finite time3’. In spite of many studies, this remains an open
problem.
As for the latter problem, some blow-up solutions can be

constructed if we release the constraint of finite energy. An
example of such solutions cited by Rose and Sulem®’, which is

attributed to Childress and Spiegel, is’
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u= (X2 +X3 ,X3 +X1 ,X1+Xe ) /{t-te ), (1)

p=-(X12+Xp22+X32)/(t-te)?,

where te is an arbitrary parameter. This certainly satisfies the
three-dimensional Euler equations together with the

incompressible condition
Ju/9t+(u+v)u=-vp, : (2)
Ve.u=0.

Here x=(x;,X2,x3) denotes the spatial coordinate, wu=(u;,uz,us)
the velocity, p the pressure, and 9=(3/8x:1,9/3X2,3/9xs). This
example blows up at a finite time at all the points in space. We
note that the solution 1is irrotational qu=0!

The purpose of this article is to present a class of solutions
with uniform vorticity in which vorticity is an eigenvector of
the rate-of-strain tensor.

A form of solutions in which velocity derivative tensor
R;;=9:iu; is independent of spatial coordinates can be obtained as
follows3’ . In this case the governing equations for vorticity
6(t)=Yxu=(w1 ,w2 ,03s) become the following linear ordinary
differential equations (summation implicit for repeated indices

J=1~3)
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doi (t)/dt=S;; (t)ew; (t), (3)

where S;;j=(Ri;+R;;)/2 is the rate-of-strain tensor (S;: (t)=0).

Once eq.(3) is solved, the velocity field can be given by
Ui (X,t)=1/2¢i;vw; (E)Xe+S;; (L)X; ' (4)

where €ijx is the fully-antisymmetric tensor of the third rank.
It can be shown from (4) that the corresponding
du/dt(=3u/9t+u-vu) is a curl-free vector and the existence of the
pressure is guaranteed.

Because S;; (t) is a real symmetric matrix, we can choose a

coordinate system in which it is diagonal at t=0:

Si;(0)= [a O O

where we assume a2f#2y and a+f+y=0. For simplicity we consider
solutions whose S;;(t) remains diagonal for t>0 and assume the
following forms for the vorticity and the rate-of-strain tensor,

wi (t)=f(t)w: (0), (5)

Si;(t)=g(t)Si; (0), (8)
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with f(0)=g(0)=1.
Substituting (5) and (8) into (4) and setting

' (t)/{eg(t)f(t)}=x1 (constant), we obtain

Sij(0)w; (0)=Aw;: (0). (7)
Thus, finding solutions of the forms (5)-(8) is equivalent to

an eigenvalue problem of traceless real symmetric 3x3 matrices.

Therefore w;(O)'S»are mutually orthogonal and each will be taken

as a unit vector in the i-th direction. Here the two functions

f(t) and g(t) are related as

f(t)=exp{Afotg(s)ds}, (8)

for A=a,f, and y. The velocity is then given by

ui (x,t)=1/2¢i;vw; (0)xcexp{Afatg(s)ds}+g(t)S:; (0)x;. (9)
The corresponding pressure, when A=a for example, 1is explicitly
given by

P(xX,t)=-(ag' (t)+a2g(t)2)x12/2-(Bg" (t)+p2g(t)2-1/4-T(t)2)x22/2

-(rg' (t)+r2g(t)2-1/4-T(t)2)xs2/2.

Due to arbitrariness of g(t), we have an infinity of solutions

for a particular initial condition. Physically speaking, this
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is due to the fact that no boundary condition is imposed on the
velocity field. Some particular cases of the class of solutions

(9) are noted below.

i) Constant strain : g(t)=1 for t20.

In this case we have f(t)=exp(At). The vorticity increases
(decreases) exponentially according as X 1is positive(negative).
The characteristic time scale associated with this solution is
[X]-'. A special case of these solutions is known as a swirling

~drain3®’ .

ii) Blowing up strain : g(t)=(1-xt)-¢ with x,8>0.

This strain blows up at a finite time t¢c=Xx"!'. For 81, we have

f(t)=expl[(8-1)-1{(1-at)1-6-1}].

Therefore, for 0<8<1, the vorticity approaches a finite value
wi (0)exp{(1-38)-'} even though the strain becomes infinite as
tate .

The case &8=1 deserves special attention. In this case, we have
g(t)=f(t)=(1-at)-!, that is, the vorticity blows up at a finite
time 1in exactly the same manner as the strain. The critical time
is  equal to the reciprocal of eigenvalue of the rate-of-strain
tensor. This case includes the solution (1) as a particular
example.

For 6>1, the vorticity blows up at a finite time more rapidly.
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It should be noted that the vorticity and the strain are not
nonlinearly coupled. The c¢ritical time ¢t 1in case ii) 1is
therefore determined solely by the strain, réther than by the
competing interaction between the vorticity and the strain.

Concerning three-dimensional ideal flows, there is another
blow-up problem, namely, that of passive scalar gradient6?.
Consider a passive scalar 6(x) subject to the velocity u(x),

whose gradient v8=(9:8)=(P: (t)) is governed by

d/dtP; (t)=-Ri; (t)P; (t). (10)

Assuming P; (t)=h(t)P; (0), we obtain from (10)

Rij (£)P; (0)=={h' (t)/h(t)}Pi (0). (11)

Thus the dynamics of a passive scalar in this case 1is also
reduced to an eigenvalue problem. Note that (11) depends on
R;; (t) explicitly rather than only on its symmetric part S;;(t).
Bccausc-m;(o) is an cigenvector for Ri; (t) with eigenvalues

rg(t), we have a solution
Pi (t)=wi (0)exp{-Afotg(s)ds}. (12)
Note that ®; (0) depends on Xx. In this solution, the passive

scalar gradient aligns with the vorticity. According to a

numerical simulation of turbulence4’, the scalar gradient is



188

likely to align with the most compressible strain direction and
the vorticity with the second expanding direction. The
configuration between the vorticity and scalar gradient 1in the
solution (12) is qualitatively different from that observed in a
simulation of turbulence. Furthermore, the scalar gradient
increases{(decreases) when the vorticity ﬁecreases(increases)
and they never blow up simultaneously.

Several comments regarding the class of solutions (9) are 1in
order.

We recall that Vieillefosse’?’ -8’ proposed a kind of Lagrangian
model for three-dimensional Euler equation by assuming the
isotropy of the pressure. In his model the vorticity blows up as
1/(te-t) aligning with the second eigenvector of the strain
tensor. The present solution is reminiscent of his model, because
his limiting velocity field also depends linearly on the spatial
coordinates. However, it should be stressed that in the present
solutions the vorticity can equally be the first and third
eigenvector.

Incidentally, the Euler equations are invariant under ‘the
scaling transformations®’ x » ux, u > uhu t = wu'-ht for
arbitrary p(>0), h. The present class is invariant with a scaling
exponent h=1, which is different from the value h=1/3 expected
for huge Reynolds number turbulence. This suggests that the blow-
up observed in the present solutions is not a physical one.

Finally we note that the present class also satisfies the

Navier-Stokes equation. TFor the solutions to the Navier-Stokes
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equation with finite energy a theorem states that the dimension
of the set in (3+1)-dimensional space where velocity becomes
infinite is not greater than unity!®’. The present. solutions are
not at variance with the theorem since the Biot-Savart law is not
applicable to them.

In summary, even though the present class is not physically
meaningful owing to the ill-behavior at large distances and to
the lack of spatial structure in the vorticity, it retains the
fundamental aspects on vortex stretching. First, it mimics the
local behavior of alignment between vorticity and strain observed
in a numerical simulation of turbulence.4’ Furthermore it shows
that the blow-up of vorticity is associated with that of strain

(in the sense of [etg(s)ds). This is reminiscent of the rigorous

results that if 3D Euler flows with finite energy lose
regularity, the maximum norms of vorticity!!’ and strain
tensor! 2? increase without bound. Actually, exact blow-up

solutions with non-uniform vorticity are known both in three!?3?
and two!'4?’ dimensions. But unfortunately all of them blow up
cverywhere in the space under consideration as does the present
class of solutions. More physically meaningful ‘solutions in
which blow-up occurs locally, and hopefully with finite energy,
are eagerly awaited to elucidate the inertial subrange structure

in huge Reynolds number turbulence.
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Addendum

After publiéation of the paper!s?’, it came to the author's
attention that a class of solutions (9) was described in 16) (its
Eqs.(4.2) and (4.3b)). Though neither blow-up of solutions nor
passive scalar dynamics was in the scope ofA16), it gave a more

general class of solutions as

ui (x,t)=1/2¢ijvw; (L)xe+Si; (L)x;, (13)
©; (t)=0; (0)exp{fetA; (s)ds} (no summation) (14)
for the diagonal rate-of-strain tensor Sij(t)=8:i;xi(t)

(i xi (t)=0). Here, 8i; denotes the Kronecker's symbol. In these
solutions, the vorticity is not necessarily an eigenvector of
the rate-of-strain tensor.

We also note that the irrotational case of (9) was described

in 17).
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