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Projective manifold with the ample vector bundle A TX

By Koji Cho and Eiichi Sato

Our aim is to consider the following

Conjecture. Let X be a smooth projective variety over C.

2
Assume that A TX is ample. Then X is isomorphic to a projective

space or a smooth quadric hypersurface.

Mori proved that smooth manifold with the ample tangent bundle is
a projéctive space, Siu-Yau [S-Y] independently proved the Frankel
conjecture that an n-dimensional compact Kaehler manifold of
positive bisectional curvature is biholomorphic to the projective
space. Here we must notice that the positivity of besectional
curvature implies the ampleness of the tangect bundle. Next we
have an interesting problem of determining the structure of variety
with semi-ample tangent bundle. In differential geometry Mok [Mok]
showed that if X 1is a compct manifold carrying_a Kaehler metric with
non-negative besectional curvature, then the universal covering is a
product of Ck, projective space and Hermitian symmetric manifold of

rank = 2. Here we have to have in mind that the non-negative

besectional curvature implies semi-ampleness of tangent bundle.
In this meaning it seems to us that the above conjecture has
significanse for the next step to study manifold with semi-ample

tangent bundle.

In this paper noting that X in the above conjecture is a Fano
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variety, we investigate the structure of a Fano variety with
folléwing condition which appears as most important and complicated

case 1in the conjecture. (see Proposition 1.6)

Main Theorem. Let X be an n-dimensional smooth projective Fano
manifold over the complex number fields. Assume that for any
*
extremal rational curve C on X, v TX is isomorphic to

n-2 @ 0 1 where V:Pl —— C 1is the normalisation
P

0 ,(2) 0 (1)
pl ®0.

of C. Then if n 2 2; X 1is a quadric hypersurface.

The outline of proof of Main theorem 1is as follows.
First we study the behavior of extremal rational curves in X and
construct the parameter space Y of the extremal rational curves in X

and its universal space Z which is Pl—bundle Z —— Y. Next we

see that Z is naturally contained in P(¥X) by virtue of Theorem due
to Fulton-Hansen. Moreover we find that the trace consisting of
extremal rational curves in question through a point in X becomes
a divisor and particularly it is a cone over an {(n-2)-dimensional

smooth quadric hypersurface. Therefore we get a conclusion.

We work over the algebraically closed field of zero characteristic.

We use the customary terminology of algebraic geometry.

)® a 1

0(a) denotes the line bundle 0 1(1 on P°., For a vector bundle
P

E on a scheme S, EY denotes the dual vector bundle of E.
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§.1 Preliminaries.

Throught this paper let X be an n-dimensional smooth Fano

variety.
Take an extremal rational curve C0 on X and the normalization
@ P1 — CO' Moreover we let H be an irreducible compoment of

the Hilbert scheme Hom(Pl, X) containing the morphism ¢.

We assume

*
(1.1) for every v in H, v TK is generated by global sections.
*
Thus noting Hl(Pl, v TY) =0,
we have following the property.
1) H is smooth.
2) X is swept by rational curves of H..
Let G be Aut Pl. Since the natural action of G

on Homk(Pl,X) induces the action ¢ of G on the connected

component H,

o : GXH —— H , ofg,v)x =v(g"lx), g € G, vée V, xe€ Pl,
G also acts on H X Pl:
t: G XHX Pl — H X Pl, t(g,v,x) = (o{g,v),gx).
Let Chode be the Chow variety parameterising l-dimensional
effective cycles C of X with C. Kx_l = . d. Then we
have a morphism o: H — Chome with v(Pl). KX—l =m (v e H).
Then in the same way as Lemma 9 in [Mo2], we can show

Proposition 1.2.

1) o 1is a free action.
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2) (Y,r') is the geometric quotient of H by in the sense of [Mu]
where Y is the normalization of the closure of a(H) in Chow™X.

Thus H is a principal fiber bundle over Y with group G and

Y is a non-singular projective variety.

Now the following is studied before the claim 8.2. in [Mo2].

Under the above notations, we have a G-invariant morphism:

F: H X Pl — Y X X, F(v,x) = (I'(v),vix)), veH,hk x € Pl.

Let Z = SpecY X X[(F*OH X Pl)G]. Then Z is the geometric

quotient H X Pl / G and 1is a P1 -bundle q : Z — Y in the etale
topology. Moreover let ©p: Z — X be a natural projection.

Hereafter we use the morphisms p, q very often.

In the above, we fixed an extremal rational curve CO on X and

studied a family of rational curves on X "which CO vields.

Next we fix a point P on which the curve C0 is smooth and
investigate a family of rational curves through the point P which CO
induces. We let i: o ——P(€X) be a map with a point o in Pl and
consider a Hilbert scheme Hom(Pl, X:4i) which is reffered in [Mo].

Then Hom(Pl, X:4) 1is a closed subscheme in,Hom(Pl,X). Now we take an
irreducible component HP of Hom(Pl,Xzi) containing ¢. Let GP =
{v € Aut Pliv(o) = 0o}, Then at the point P we consider the same

situation as in 1.1
. 1,1 % —
Since H (P ,v TXQ)O(—l)) = 0, we have

(1.1P) HP is smooth.
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Moreover we obtain

Proposition 1.2.P.  Let op: GP X HP — HP be a canonical
action induced by the action o. Then we have
1) I9p is a free action.
2) (Y(P),FP) is the geometric quotient of HP by in the sense of
[Mu] where Y{(P) is the normalization of the closure of a(HP) in
Chow™X. .

Thus H, is a principal fiber bundle over Y(P) with group G, and

P P

Y{(P) is a non-singular projective variety.

Remark 1.3. By the above argument, we get a canonical morphism
GP:Y(P) —— Y whose degree is one.

To show that every Fano variety is algebraically simply connected
we have

Proposition 1.4. Let Z and U be smooth projective varieties
and f: U --=-» Z an étale finite morphism. Assume that x(U,OU) = 1.
Then, f 1is an isomorphism.

*
Proof. The assumption says that £ Tz = TU.

Thus, Hirzebruch Atiyah—Singer Riemann-Roch theorem implies that
deg f X x(Z, UZ) = x(U,OU) = 1, Hence f 1is a isomorphism.
q.e.d.
Corollary 1.4.1. Any smooth projective Fano variety Z defined
over the complex number field is algebraically simply connected.
Proof. Let f: U —— Z be a finite etale morphism from a

algebraic scheme. Then we see that U 1is a smooth projective variety.



106

* ‘
Since f KZ = KU’ U 1is a Fano variety. Hence by virtue of

Kodaira's vanishing Theorem, we get Hl(Z,UZ) =0 forl < i< dim 2

-1. Thus, Proposition 1.4 asserts that f is an isomorphism.

qg.e.d.

E 3
Finally in this section we study the type v TY of the ample
2

vector bundle A TX for each point v in H.

Proposition 1.5. Let X be a smooth projective variety . Assume
that A TX is ample. Then we have
1) X 1is Fano variety.
2) Let C be'an extremal rational curve on X with v P1 — C

%
the normalisation of C. Assume additionally that n > 5. Then v TX is

one of the following:

«) 0(2) ®o(1)®1

8) 0(3) @ 0(1)% 2 g ¢.

y) 0(2)® 2@ 0(1)® 3 g 0.

5) 0(2) ® 0(1)¥2 @ y. |
2 2

Proof. Since A TK is ample, so is deg A TX which is

. . *
- (n—l)KX. Thus we get the first part. Next letting v TX = C)O(ai)

with ay 2 a9 2 ...z a,, we have a; = 2.
*2
Noting v A TX =i§j (.a.l @'aj) and it is ample, we see a, + aj
*
is positive. By virtue of Theorem 4 in [Mo2], deg v TX < n + 1.

Thus we get the remainder.

q.e.d.
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2 The property of singular curves tv.

Let us maintain notations CO’ X, Z, Y y,p and q stated in §.1

y*

In this section we study how many curves in the set {éyl y € Y}
extremal rational curves on X are singular and what the type
the singularity is.

First let us begin with the definition with respect to singular

curves.

A nodal (or, cuspidal) curve means the one imaged by a rational

singular curve C with only one node (or cusp) point P via a

birational morphism v. Moreover the point v{(P) of the curve v(C)

is

{y

said to be nodal (or, cuspidal) point respectively.

Let XN Dbe a set {y € Y| ly is a nodal curve} and ¢ a set

e Y| {V is a cuspidal curve}. Moreover . let Ng be N n €.

Remark, 2.1. The set N U € 1is the closed subset in Y and there

14

is closed.

In order to investigate how many nodal curves exist in X, we

need several results. First let us state a condition.

(2.

2) Let E Dbe a direct sum of line bundles Ll @ L2 on an

irreducible reduced curve C. Set P(E) as S and the section

P(Li) as C.. Now let ¢ be a morphism from S to a variety so

1

that a fiber of a canonical projectionn : S —— C goes to a

curve via ¢. Then we have
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Lemma 2.3. Under the above condition 2.2, let M be a

~quotient line bundle of E which yields a section 03 of m. Assunme
that @(Cs) is a point andvdim @(S) = 2 . Then the morphism ¢ is
obtained by .a linear system of the line bundle (OP(E)(l) ®>n*(—M))® a
with some positive integer a. Moreover L1 Q M—1 and L2<E M_1 is
semi-ample and either of them is ample.
Proof. Let Op(p)(a) ® n'N (= W) be a line bundle which gives the
morphism ¢ where N is a line bundle on C. First since

¢(a fiber of n) is a curve, a is positive. Moreover since

we have N = -aM. Hence we infer that
® a _ ® a
= OP(E(—M))(I) . On the other hand

is (L, ® w 1@ a

W|C3 = 0o

W= (0pgy(1) @ x"(-M))

ch is semi-ample by the assumption. As WIC

i i
Li & M_1 is semi-ample. Moreover dim ¢{(S) = 2 implies that the
X2 (2 a% 2 deg(L,@M™)) is

self-intersection of (OP(E)(l) ® n*(-M))
i

positive. Thus we get the last part.

q.e.d.

Lemma. 2.4. Let the condition be as in 2.2. Assume that @(Ci)

is a curve for i =1, 2. Then ¢ is a finite morphism.

Proof. Assume ¢ is not finite, in a word, there is a point t in
@®(S) such that w—l(t) contains a curve D projected to the curve
C by nrn.

First we consider the case that D 1is a section of n. Then E

has a quotient line bundle M on C corresponding to the section D.

Let E' = E(-M) and Li = Li x® M_l. Since w(Ci) is a curve, WIC
: i
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in the previous lemma is ample, which implies that Li is ample. Thus

we get a contradiction that E’ has a quotient trivial 1line bundle
which induces D.

Next let us consider the general case.

Let D be a curve in ¢ “(t) and let us consider the fiber product

D XC P(E) = X’. Then D yields a section of the canonical projection

X' —— D. Since X’ =~ P(f*E) with f = T pr We get the same
setting as the first case. Thus we are done.
q.e.d.
Corollary.2.5. Lét the condition and assumption be as in Lemma

2.3. Assume Cl 8] C3 = ¢. Then @(Cl) is a curve and 02 = C3.

Proof. Assume that w(Cl) is a point. Then by Lemma 2.3, we see

that M = L1 and L2 Q Ll—l is ample. Moreover C1 and C3 belong

to the member of the complete linear system of the line bundle

) X
OP(E)(I)tﬁ n (—Lz). Thus Cl.C3 is deg (L1 - L2). On the other

hand the intersection C1 and 02 is zero. Therefore we have a

contradiction. Next assume 02 = C3. By the same argument as the
above we infer that w(Cz) is a curve. Thus Corollary 2.4 implies
that ¢ 1is finite, which contradicts to the assumption.

q.e.d.

Proposition. 2.6. Let M be a smooth projective variety,

n: S —— C a Pl~bundle over an irreducible projective curve C and
f: S = M a morphism with dim f(S) = 2. We assume that

1). For each point ¢ in C, n “(c) is transformed to a curve.

2)., f is not finite.

Then we have
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1) The set {s € f(S)|dim f_l(s) 2 1} consists of only the point A,
2) one dimensional part of f_l(A) consists of only one rational

section of n.(Here a'fational section D of ‘7t means that nlD : D

—— C 1is of degree one.)

Proof. By taking the normalisation C of the curve C and by

the base change of C X S, we can suppose that € 1s smooth. There

C

is a point A in f(S) so that f_l(A) contains an irreducible

component D which is of one-dimension. Now assume that D 1is not

a section of . Let D be the normalisation of D . Then a
canonical morphism j: D —— C induces a Pl—bundle n: D XCS (=S)
—— D and a section D1 of n. Letting h: S ——S the morphism

induced by the morphism j, h_l(Dl) has another irreducible curve

D2 (= Dl) and the image of D1 and D2 by hf: S —— M is the same

point A. Now note that f 1(A) yields another curve D3 in S
which intersects with neither D1 nor D2. Therefore by
Corollary 2.5. we have a contradiction.

Next we assume that the set {s € f(S)| dim f—l(s)-z 1} consists

of more than one elements. Then we can find threé sections which are
disjoint with each other (by suitable base change). Thus we have a
contradiction by 2.5. Thus we complete the proof of 1).

q.e.d.

The above results provide us with the following

Proposition 2.7. (chark = 0) Let n: T =——— V be a Pl—bundle over a
smooth projective variety V and ¢: T —— U a morphism. Assume

that
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1) every fiber of n goes to a curve via ¢

2) there is an irreducible divisbrlD of T which collapses to a point
A in U via ¢. »

3) the restriction of the morphism ¢ to T - D -~ is quasi-finite.
Then D is a section of n. Moreover if the characteristic of the
ground field of zero, there is an ample line bundle M on V so

that T =~ P(0 & M) and P(0) corresponds to a section D.

Proof. The assumption 1) implies that the morphism n‘D is

finite. By 2) in Proposition 2.6 and Zariski Main Theorem

we infer that D is a section of m.

Thus the section D gives a rank-2 vector bundle E on V and the
quotient line bundle M with an exact sequence on V:

0 » M » E —_— 0 — 0

where P(0) determines a section D canonically.

By the proof in Lemma 2.3, we infer ¢ is obtained by
high power of OP(E)(l). Thus E corresponds to an element ¢ in
Hl(V,M). Now take an irreducible divisor G of T which does not
intersect with D and if G is singular, make the desingularization
f: G —— G of G. Then the‘fiber product P(E) XV G  has another
section G which does not intersect with the section induces by G.
Thus f*E splits to 0 & f*M . This says that there is a canonical
homomorphoism f*: Hl(V,M)  — Hl(a,f*M) with f*o = 0. By
Proposition 4.17[F], we have ¢ = 0 (in characteristic zero). Since
OP(E)(l)IP(M) ~ M, the remainder is trivial. Thus we get the proof.

q.e.d.

Therefore we have an important
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Sublemma. Let €, N be as above. Assume that there is a point P
in X and a curve T in XN so that for each y in T, {y passes
through the point P. Then T Nn ¢ is not empty.

Proof. We suppose the contrary. Then for every point y in T

every iy has no cuspidal point. Letting g: C —— C the
normalisation of C, we see that the smooth ruled surface

c X C q_l(C) has two sections Cl,c2 which do not intersect
and moreover it has another section 03 which goes to the point P,

Thus the ruled surface 1is isomorphic to P(L1 @ LZ) with two line

bundles L1 L2 on C so that each line bundle Li corresponds to
the section Ci‘ Since ¢ is finite on each Ci’ @ is finite by
Lemma 2.5. Thus we get a contradiction.

qg.e.d.

Corollary. 2.12. Let X be a Fano variety enjoying the assumption

1.1. Suppose that € is empty. Then dim ¥ < n - 1. Namely, there is
an open subset U in X such that for every vy in Y, Ly is

smooth in U.

Proof. If dim ¥ < n-1, there is nothing to prove.
Assume that dim ¥ 2 n. Then by Corollary 2.11, we have a

contradiction.
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Proposition 2.8. Let X, Y, p and q be as in § 1 and let
Ly: pq—l(y). Then for every point P in X, the set {y e Y | P
is a nodal point of Ly} is a finite set.

Proof. We have this proposition by 2) of Proposition 2.6.

(2.9) We study the dimension of ¥ and € in terms of the length

i{< n+l) of the extremal rational curve CO in §.1,
First we have

Proposition.2.10. Assume that X (or, €) is not empty. Then

if the length of C0 is i, N 1is of at least i - 1 dimension.

Morever assume that X¢ is not empty. Then if the length of

C0 is i, N¢g is of at least max {i - n , 0} dimension.

Proof. Let C be a curve with only one node. Theﬂ
dim Hom(C, X) = n x(C,UC) + (- KK' C) = 1. Moreover since
Hom(C,X) has a CX -action, this is done. Since Aut(Pl, 2(o0),») is a

finite group and the Euler-Poincare characteristic of a rational
curve with only two double points is -1, we get the latter part.

qg.e.d.

Corollary.2.11. Assume that dim ¥ = n. Then € is not empty and
g N X 1is not empty. Here for a subset A in Y, A denotes the

closure of A,

Proof. We have only to show the following:
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*
§. 3 Fano variety X where v TX is O(Zfa a@)0(1)© b @ 0@ €

~and the morphism g: Z — P(QX)
We maintain notations H, Y, Z, HP, Y(P) defined in §.1.

(3.1) Assume that for every element v in H,

0@ c

V*TX is 0(2)@ a@ 0(1)@ b @ ,namely the set ¢ in §.2 is empty.

Under the assumption we show in this section that the induced

morphism g: Z —— P{Q,) 1is a closed embedding and ,moreover, we
X

study the basic property of X obtained in case of a = ¢ = 1 and

b =n- 2.

First let us begin with the observation of the morphism p:Z —— X

below Proposition 1.2.

Proposition 3.2. Let us maintain the assumption 3.1. Then the
morphism p: Z ——X is smooth. Moreover every fiber of p is
irreducible.

Proof. By Proposition 1.2, it suffices to show that the

morphism: s: P1 XH - X 1is smooth, namely the induced

* X
homomorphism sg T 1 —_— s TX is surjective. Since v TX is
P X H

generated by global sections for every point v in H , the

. . . * . .
canonical isomorphism between HO(Pl,v TX) and the Zariski tangent

provides us with the surjectivity s, on P1 X {v}, which

space T "

H,v
yvields the desired fact. Thus since p:Z —— X 1is smooth, take the

L

Stein factorisation P SpecX P*OZ —— X of p. Then it is a finite

etale morphism. Since X is a Fano variety, the morphism p’ is an



isomorphism one by Corollary 1.4.1. (char k = 0)

q.e.d.

The Pl-bundle Z —— Y yields an exact sequence

. i *
0 —— T*——l—a TZ—-p qTY —_— 0.
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On the other hand the morphism p: Z —— X gives a homomorphism

*
p*:TZ — p TX' Thus we consider the composite homomorphism ip*

%

Thus since the above situation 3.1 means that for any point

in H

v

(3.4)‘the morphism v: P1 —— X is unramified, the homomorphism f in

3.3 is injective as a vector bundle on Z. Hence we get a

morphism g :1Z2 —— P(QX) satisfying the following diagram:

(3.4.1) z £, p(n

where n is a tautological line bundle of TX and g*n o Ti

Now we show that the morphism g is a closed embedding.

First we prepare notations.
-1

(3.5) For a point x in X, let YX = qp (x) and Zt = q—lqp~1(x).

- -1 -
Moreover let Ly = q (y) and £y = p(Ly).

Hereafter till the end of this paper, these are used very often.

Now if we recall Proposition 2.8 and 3.4, we have a
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Remark 3.5.1. For every point x in X there is a point y 1in

Y so that ty is smooth at the point x.

(3.6) Now let us study the property of

the morphism g on p_l(x), written by gx. Proposition 3.2 says
that p—l(x) is smooth and irreducible. On the other hand

GX(Y(X)) (see Remark 1.3) contains q(p_l(x)) by the construction of
Y and Y(x) and the dimmension of these two subvariety coincide

-1 -1

with each other. Thus since q: p (x) — qp (x) 1is finite and

birational, ther is a natural isomorphism: p_l(x) —_ Y(x).

Thus let us study the morphism gK.

Let Hx be as in §.1 and let us define a morphism

d Hx —_— V(QX,X)

induced by the canonical morphism : Hx X Pl — X
d .

Hy V e—— dv*’o( ag) € V(QX,X)

where t is a local parameter of Pl at the fixed point o.
Now hereafter we assume that
*

(3.7) n=4, b >c and for each point v in Hx’ v TX is
isomorphic to 0(2) &® 0(1)® b 6)d$ <.

Now let us show that the morphism gx is unramified.
First wv: P1 e V(Pl) is umramified. Thus we see that
the image Q(Hx) is contained in V(QX x) - {0}, which induces

, :

n-1

morphism Hx —_— P(QX,X) ~ P Since this morphism is

Gx—invariant, we have the induced morphism Y(x) — Pn—l, which
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is Jjust the morphism g2, itself by the construction of the
morphism.
: %
Now by the assumption 3.7, v TK ® 0(-2) is isomorphic
4y

to 0®0(-1)% ® @& 0(-2)® © and therefore, dim H(P!, viT, @ 0(-2))

= 1. Thus dimvm_lm(v) < 1. On the other hand the algebraic group
Gx acts on Hx and dim HO(Pl, T 1‘@'0(—2)) = 1, and therefore
N P
. -1 . 0,.1 * . . .
d1mv ® "@®(v) = 1. Noting that H (P, v TX ® 0(-2)) is the Zariski

tangent space of ®—1®(v) at v we infer that m-lm(v) is smooth and
therefore every fiber of @& is smooth. Thus we see that gy is
umramified.

Thus we have

Proposition 3.7.1. Under the notation 3.4, assume 3.7.

Then g is of maximal rank on every point v in Z. Moreover,
for each point x in X, gx is a closed embedding.

Proof. The former is shown.

The latter ié due to the following Theorem by W.Fulton anf J.Hansen.

Theorem (Proposition 2 [F-H]) Let V be an irreducible variety
of dimension n, h: V —— P™ an unramified morphism with m < 2n.
Then f is a closed embedding.

q.e.d.

Moreover we get

Corollary 3.8. Let the notation and condition be as in 3.4.

~ Assume 3.7. Then g 1is a closed embedding.

Proof. For each point x in X, the restricted morphism of g
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p_l(x) —_ P(Qx'x) is also of maximal rank at every point 2z
. ’

in pal(x). Thus gy is a closed embedding by virtue of

8
Hulton-Hansen’s Theorem in Proposition 3.7.1, which implies that ¢
is injective. Since g is a finite morphism, it is a closed embedding.

q.e.d.

Now to study the structure of ZK, we prepare a notation.

(3.9) ' Let oL B(X,x) —— X be the blow up of X with the
point x as the center. For a subvariety W in X, ox-l[W]

denotes the proper transform of W by Iy

Now by Corollary 2.12 and 3.1, we take

(3.9.1) a point A in X so that {y is smooth at the point A for

. -1
any y in aqp " (A).

Let us consider the morphism p:Z -—— X restricted to 2 which

1

A$

(A) 1is a Cartier divisor in Z

is written as Py Noting that pA_ A’

by the universality of blowing-up we get

(3.10) a morphism m: ZA ~—— B(X,A) with m g, = Py
and m(p, 1(A)) = o (A) n o [X,].
= -1 _ -1
Set XA = O, [XA], F = =\ (A).

Now let us study the behavior of the morphism m on pgl(A).

Take a point y in YA. Let Zy be the proper transform of ¢
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by o, and h: P_1 — Ey the normalisation of (.

(3.11) First we remark that fgdr each point y in YA

1) m_l[iy] intersects with F transversally,

* .
2) Since p Tle is isomorphic to 0(2) @ 0(1)(B b @ 0€7c’
Yy

m*TB(X,A)ILy is isomorphic to 0(2) @)0@>b d;‘)U(-—l)@C .

To show this, it is sufficient to use the following result in

Appendix B.6.10. in [H]

(#) Let X ¢ Y and Y c¢ Z be regular imbeddings. Let Z be
blowing-up of Z at X, Y the blowing-up of Y at X and E the
exceptional divisor of X via the morphism f: Z ——44 Z. Then

*
Ng 3 =f Ny, 7 @ 03(-E).

3) oA_l(A) n oA_l[XA] is a smooth hypersurfaée in . oAhl(A) (= Pn_l)

and it is canonically isomorphic to p—l(A).

We study the morphism ZA _— m(ZA). By (2) of 3.11, m is

of maximal rank at each point 2z in 2 Precisely speaking,

A"
%
the homomorphism m*:TZ —m TB is injective as a vector bundle.
i A
-1, -1 -1 . ~1
Moreover we see that m (oA (A) n T, [XA]) is p “(A). Thus the
morphism m is isomorphism around p—l(A).
As a result summarizing the above, we get

Proposition 3.12. Let the notation as in 3.9.1. Then
ZA _— m(ZA) and ZA —_— pA(ZA) are birational morphisms. More
precisely, there is an open neighborhood U (o p_l(A)) in ZA so

that m: U ——m({(U) is an isomorphism and Py is an immersion on
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U - p_l(A). Moreover ZA - p—l(A) —_— p(ZA) - {A} is finite,

Proof. We have only to show the last part. If there exists a
point x{ # A) such that dim pxl(x) > 1, take a curve C in ZA
with pA(C) = x. Setting C’ = q(C), we see that for any y in ¢!
ty passes through A and x, which yields a contradiction by the

argument in Theorem 4 [Mo] because such a {Y is extremal rational

curve.

q.e.d.

Now recalling the set € of our Fano varity X in question is empty

and combining Corollary 2.12 and Proposition 3.2, we get

Corollary 3.13. Let A be a point in 3.9.1. Then YA is

a smooth subvariety in Y, ZA a Pl-bundle over YA and p-l(A) is

a section in 2Z More precisely there is an ample line bundle M

K
on YA so that ZA ~ P(0 @ M), the restricted morphism of p to
ZA is given by the tautological line bundle of 0N® M and P(UY )

‘ ’ A
is p_l(A).

Finally we assume that b = n-2 and ¢ = 1.

Then we show that
(3.14) There is a point A in U (3.9.1) so that p(ZK) is a normal
Cartier divisor with only one isolated singularity A. Then

a natural map ﬁzz ZK - p_l(ﬁ) —_— p(ZK) - A is an isomorphism,

For a variety T, Sing T denotes the singular part of T.

Assume that (#) for every point A in U, p(Z,) is non-normal

A
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equivalently, codim. Sing p(Z,)= 1 Dbecause p(Z,) is a Cartier
" »p(ZA) A A

divisor 1in X.

Thus for every point x in X, codim Sing p(ZK) =1,

p(Z_)

X
First the induced morphism ZX‘— p-l(x) —_— p(ZK) by p is

- quasi-finite and birational.

Let §(Zx) be a set {z € le there is a point z'{# z) such that p(z)

= p(z')} and S(Zt) the closure of §(ZK) - p_l(x) {note if q(z) =
] .

q(z )’zq(z) is a nodal curve at p(z)).

Then we have the property:

1) For a point x in X, Sing p_l(x) is a finite or empty set

and therefore so is S(Zx) N p-l(x).
2) If A is a point in U, S(ZA) N p_l(A) is empty. Therefore
(Sing p(ZA))— {x}= p(S(ZA)) (note that pnl(A) is smooth and

-1
p {(A)X YZ o ZA).

Now take an irreducible divisor J (c Z) in the closure of

h“l(sing h(Z)) - a.

Let ©p :p_l(x) X YZ —_ Zx be a canonical morphism (note that

X
EA is a isomorphism for A in U). . Then EX(J N p_l(x)X YZ) is

contained in §(Zx)

Now let z be the fiber product Z X v Z of Z and 2Z over Y
and A the diagonal of Z. Then there is a canonical morphism h: Z

— X x X by (z,z2') — (p(x),p(x’)).
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NYM

Then we can easily show that

1) Z is U pﬂl(x) X v Z as a set,
x€eX

2) A0 (Z, X {x}) ~ p Yx) X {x}
- canonically

3) dim (J n AN (Zx X {x}) =0 or -1.

Now we get

Proposition- A Nn J is empty.

Proof. AN Jn (ZA X {A}) is empty by the assumption of A.
Note that codim 7 J =1 and moreover that A n J is empty
or its codimension in Z is of < 2.

Thus we are done.

q.e.d.

Now since the diagonal A is a section of b, we have an exact

sequence on Z:

0 0 » E » L » 0

with a rank-2 vector bundle E on Z and a line bundle L on 2

where Z and A are canonically isomorphic to P(E) and P(L)
respectively.
Now take the desingularisation J of J

and consider the fiber product J X 7 7 (~ JX 7 P(E)). Then A

and J yield disjoint two sections with respect to the

Pl-bundle b in the above fiber product. In the same way as in
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Corollary 2.7, wé ihfer that E splits to 0 + L by virtue of
Proposition 4.17 [F]. . Now restrictihg the Z-isomorphism

P(0 & L) = 7Z (with respect to the mofphism b) to qgl(y), we get
an isomorphism P(O ® Llpl) o P1 X P1 and therefore Llpl ~ 0.

Thus taking the direct image ROqZ* of '0 @@L , we get

a rank-2 vector bundle 0Y<§>N where N 1is a line bundle q2*L on Y.

Thus we infer that P(UY @ N) =~ Z, Hence since ZA ~ P((0 E)N)Y |
A
P(O0,, ) 1is a unique section in Z and M ~ N by Corollary 3.13.
‘YA A IYA
which contradicts to the fact that Z = U p_l(A).
AeX

Hence we proved 3.14.

Finally in this section we state

Proposition 3.15, For x and x’ in X, p(Zx) is linearly

equivalent to p(ZX,) and the line bundle is base point free.

Proof.‘ Let D be p(2Z

< ). Then we see easily that {Dxl x € X}

x
is an algebraic family, and therefore these element are linearly
equivalent to each other because X is a Fano variety.

Assume there is a base‘point P of the line bundle. By the definition
of Dx’ we immediately infer that {y rasses through the point P
for every element y in Y, in a word X 1is swept out by these
curves £y. This implies that for an element v in the variety H

*
v TX ® 0(-1) is generated by global sections, which yields a

contradiction to the definition v in H.
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8.4 The proof of Main theorem (n = 4)

First in case of n = 2, X 1is a Del Pezzo surface. Moreover
the assumption implies that the surface has no exceptional rational

curve of first kind. Thus we infer X is a smooth quadric surface.
Next assume n = 3. Then we need

Theorem [W2] Let X be a Fano manifold and ¢(X) min{—KK. C|
C is a rational curve on X}. If £(X) > dim X / 2 + 1, then Pic X =~ Z.
Thus we see that X is a Fano manifold of first kind. Hence X 1is

the desired thing thanks to Corollary 2.6 in [will.

First we state a well-known result

Lemma 4.1. Let V be an effective ample divisor on an
irreducible projective local complete intersection W. Assume that-
W has at most rational singularities. ' The canonical map

Pic W —— Pic V is isomorphism if- dim W 2 4 and

Pic W —— Pic V has torsion free cokernel if dim W = 3.

For the proof see Lefschetz theorem of Hamm [H] and

Lemma 0.3.2. in [F-So].

(4.2) Now we study the structure of p(ZR) in 3.14 ,written by
D. We see easily that D has at most rational singularities.
For the purpose we state the property of D. Since ZK ~

P(OY_ @ M) by 3.13, we have
A

1) Pic D =~ Z OD(S) where S is the image of the section P(M) via p

2) The canonical homomorphism Pic X ~ Pic D by Lefschetz’'s
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Theorem.'
3) The canonical homomorphism Pic D ~ Pic S by Lefschetz’of

"Hamm [H].

Note that p—l(K) (~ S) is a smooth hypersurface of degree d in

p(QX,A) .
Thus let f be a homogenuous polynomial in k[xo,...,xn_ll where
S =~ Proj k[xo,...,xn_l]/ (f) in Pn-l and the weight of 'xi =
1 for every 1i.

Hereafter before having an argument in case of n = 4, we treat
the case n = 5.

Remarking Pic S = Z7Z (dim S = 3), we have

Proposition. 4.3. Let OD(S)lS be Os(c). Then c =1.
Namely, D 1is a hypersurface in Pn which is isomorphic to
Proj k[xo,...,xn]/ (f) in P® where the weight of 'xn = 1, f is

. _.d d-1

a homogeneous polynomial (= X, + an—lxn S alxn + f) of
degree d , a, a homogeneous polynomial of degree d - i -in
k[xo,...,xn] and f(xo,...,xn_l,O) = f,

Proof, The former is trivial by 1) and 3) of 4.2. The latter
is obtained by virutue of Theorem 3.6 in [Mol].

q.e.d.

Therefore we see that the above S 1is an intersection of D and a

hyperplane in p"

Next the intersection number of the fiber of q and P(M)in ZR is
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one. Since Pz is birational,

(4.4) the image Ly of any fiber of q: ZK —_— YK via p is a

line (¢ D) in Pn+1.

Now using Theorem 3.6 in [Mol] again, we see that X is isomorphic
to Proj k[xo,...,xn+1]/ (F) in the weighted projective
space Q(1,...,1,c) where F 1is a weighted homogeneous polynomial

_ e e-1 = .
(= Xn+1+ be-lxn+1 + ...+ blxn+1 + f) of degree d in
k[xo,...,xn+1] (= ce), bi a homogeneous polynomial of degree d-ic
in k[xo,...,xn] and F(XO""’xn’O] = f. Moreover by virtue of
Theorem 3.7, Pix X =~ ZL with the ample generater L.

On the other hand we know

(4.5) KX = (d - (n+ 1 + ¢c))L by virtue of Proposition 3.3 in [Mol].

Now we show

(4.6) - KX = nL.
In fact let -Kk = aL.Thus
n = ({y. —KX) = ({y.aL) = a(£y.LD)D = a by 4.4.
Hence combining 4.5 and 4.6, we have ¢ =1 and e = d = 2.

Thus we are done,
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§.5 The case n = 4.

First let us consider the case that S is a surface of degree d
in P3.
> -al,

and UX(D) = ¢cL. with some positive integers a , ¢. Then we infer

Since Pic X ~ 2 L by Theorem due to [W2] stated in § 4, K

that

(5.1) the canonical sheaf @y of D 1is (c - a)LD and KS =

(c - a + 1)LD|S'

Thus, letting 0 S(u)IS = Os(u), we can show
P

Proposition. 5.1.1. Assume d = 4. Then LDIS = OS(l).

Proof. Note that K, = 0{(d-4). Since ' the cokernel C‘ of

S
0 — ZOS(l) ——— Pic S

is torsion free by Lefschtz’s Theoren, KS vields a zero element

in C and therefore. so does by 5.1. Thus we infer that

Lois
LD[S = OS(h) with some integer h. Moreover by Lemma 4.1 we get

q.e.d.
Hence, we see that D is a hypersurface in P4 and X a

weighted hepersurface in P(1,1,1,1,1,c) in the same way as in § 4.

Thus we can get the desired result in case of n =4 and d # 4.

Finally we consider the case of d = 4. Consequently we show

that this case does not occur.

Now take a point A in U in 3.9.1. Then letting D be p(Zy),
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D 1is a cone with at most one isolated singular points at A.

Let N be the normal bundle of S in D.

Now recall that a smooth variety which is a cone over a smooth

is a projective space. Thus if D were P3, KD is —4LlD and

therefore KX is -bL with b = 5 by adjunction formula, which

implies that the intersection of _KK with extremal rational curve

is not less that 5. This is a contradiction to the assumption of

Main Theorem.

Hence we study the cone singularity (D,x). For the purpose let
{R,m) be the local ring OD,X‘ Letting T =€£bHO(S, tN), R 1is the
localisation of T at T0 where TO = @)HO(S, tN).

t=1

Here D 1is a Cartier divisor with isolated singularity in
4-dimensional smooth variety X. Hence we have a property
(5.2) dim B°(S,N) < dimm / m® = 4.

From now on let us determine the value ¢ with OX(D) = ¢ L.

Since N (= NS/D) is ample on K3 surface S,
hO(S,N) = N2/2 + 2 by Riemann-Roch Theorem. Thus by proposition
5.2, we get N2 = 2 or 4. Remarking that N2 = (Ss)D = L3.D = cL4
and a=c+ 1 by 5.1, we have a table
(5.3) N2 2 4

c 1 2 1 4
L4 2 4 1
a 2 3 2 5
Since a(L.Ly) = - KX' {y = 4 by our assumption, the case of ¢

= 2, 4 1is ruled out.
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Thus we have onebpossibility.

(5.4) c =1, in a word OX(D) ~ L, Thus OX(D) has base point

free by Proposition 3.15.

Now we have two exact sequences on D and X:

(5.4.1) 0 » Op Lp N > 0
(5.4.2) 0 0y » L » Ly 0

Now we show

C . 1 1

Proposition 5.5. H (D,OD) = 0 and H (X,OX) = 0.

Proof. Hl(X,OY) = Hn—l(X,Kx) = 0 by Serr’s duality and
Kodaira’s vanishing. We have another exact sequence:

0 — 0‘(—D) — 0X » UD — 0
Again Kodaira's Vanishing Theorem yields Hl(X,OY(—D)) = 0 for i
= 1,2. Thus we get the remainder.
q.e.d.

Thus two exact sequences yields
0

{S,N) ——— 0

(5.6.1) 0 —n——aHO(D,OD) - HO(D,LD) —_—H

0

(5.6.2) 0 ——u%(x,0,) —— 1%x,1) —— #°%(p,1p)
Since OX(D) has base point free by Proposition 3.15.
the ample line bundle N on S 1is base point free. Hence we study a
morphism h: § —— P(HO(S,N)).
Now we recall

Proposition 5.7.(Proposition 2 in [Mal])

Let L be an invertible sheaf on a K3 surface F such that L‘has
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non-zero section with Lz = d > 0 and such that L has no fixed
components. Letting g the rational map induced by |L},
" then {L! has no base point and either

1) g:F — P(HO(F,L)) is a birational map onto a projectively
normal surface of degree d or
2) g:F ————— P(HO(F,L)) is a rational map of degree 2 onto a

projectively rational surface of degree d / 2.

We devide into two cases: o) N2 = 4 8) N2 = 2,

Let us consider the case a).

Thus applying the quartic surface S +to 1) in 5.7, we see

that the morphism h: § —— P(HO(S,L)) (c PS) is a finite birational

morphism onto a projectively normal surface and therefore h is an
isomorphism and h(S) 1is a quartic surface. Consequently X isvén
quartic smooth 4 fold. Noting L = 0p5(l)|x ’KX =  =-2L and that a
line £ on X 1is a extremal rational curve we have —KX. { = 2, which

vields a contradiction to our assumption.

Next by 5.7, we infer h is a double covering'from

S to normal gqguadric surface. Consequently we have a double covering

f: X — @ with a normal quadric hypersurface Q@ in P5. Now we

have K = f*mQ + R with the branched locus R. Then we see that R

X
= 2L and therefore f(R) is a complete intersection of Q and

another quadric hypersurface Q' in P5. Thus we can take a line ¢

in f(R). Letting C the inverse image of ¢ via f, we infer that
C 1is an extremal rational curve. On the other hand he see that

*
KX.C = f OQ(—4).C + R.C = -2. This induces a contradiction.



131

Consider the case B).
In case 1) in 5.7, h: § — Pz. is finite birational morphism
and therefore an isomorphism which contradicts N2 = 2.

Next h:S —_— P2 is a double covering and consequently X 1is

a double covering f: X —— P4. Hence we have an equality:

*

KX = f K 4 + R with the branched locus R. Thus we see that f(R)
P

-is a cubic 3-fold. Now take a line £ in f(R). In the same way as

*
in case o), for the inverse image C of <, KX'C = f @0 4(—5).0
P

+ R.C = -2. This yvields a contradiction.

Thus we could show that the case that S 1is a quartic surface

does not occur.
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