土橋宏康

Simple K3 singularities which are hypersurface sections of toric singularities.

Hiroyasu TSUCHIHASHI 東北学院大学

Let N be a free **Z**-module of rank n+1. Let \mathfrak{F}^n be the set of pairs (σ, u_0) consisting of an (n+1)-dimensional cone in $N_{\mathbb{R}}$ and a point u_0 in σ satisfying the following conditions (G) and (E), respectively.

- (G) There exists the point $v(\sigma)$ in N^* such that σ is generated by finite elements in { $u \in N \mid \langle v(\sigma), u \rangle = 1$ }.
- (E) dim $\Delta_{\sigma}(u_0) = n$ and $v(\sigma) \in Int(\Delta_{\sigma}(u_0))$, where $\Delta_{\sigma}(u_0)$ is the convex hull of $\{v \in \sigma^* \cap N^* \mid \langle v, u_0 \rangle = 1\}$.

Note that if an (n+1)-dimensional cone σ in $N_{\mathbb{R}}$ satisfies the condition (G), then the point $v(\sigma)$ is unique and σ is strongly convex rational cone. Let (σ,u_0) be a pair in \mathfrak{F}^n and let $f = \sum_{v \in \Delta_{\sigma}(u_0) \cap N} c_v z^v + \text{higher term } \in \mathbb{C}[\sigma^* \cap N^*]$, for certain non-zero coefficients c_v . In the previous paper[2], we show that if f is non-degenerate and the hypersurface section $X = \{f = 0\}$ of $Y = \text{SpecC}[\sigma^* \cap N^*]$ defined by f has an isolated singularity at $y := \text{orb}(\sigma)$, then (X,y) is a purely elliptic of (0,n-1)-type singularity (for the

definition, see [3]). Especially, when n=3, (X,y) is a simple K3 singularity. We also show in [2] that ε^3 is a finite set, where ε^n is the set of equivalence classes of pairs in $\widetilde{\varepsilon}^n$ by the following equivalence relation. $(\sigma,u_0)\sim (\sigma',u_0')$ if and only if there exists an element g in GL(N) such that $g_{\mathbb{R}}\sigma=\sigma'$ and that $g_{\mathbb{R}}(u_0)=u_0'$. In this paper, we show that ε^n is a finite set for each integer n greater than 2.

Let $\mathfrak{F}^n = \{ (\sigma, u_0) \in \mathfrak{F}^n \mid u_0 \in \mathbb{N} \}$ and let \mathfrak{F}^n be the set of the equivalence classes of the pairs in \mathfrak{F}^n .

Proposition 1. There exists a map π from ϵ^n to \mathfrak{Z}^n such that $\pi^{-1}(\alpha)$ is a finite set for each α in \mathfrak{Z}^n .

Proof. Let (σ, u_0) be in $\widetilde{\mathcal{E}}^n$. Then u_0 is in $N_{\mathbb{Q}}$, by the condition (E). Hence the module $N(u_0)$ generated by N and u_0 is also a free \mathbb{Z} -module of rank n+1. Therefore, there exists an isomorphism g from $N(u_0)$ to N. First, we show that the pair $(g_{\mathbb{P}}\sigma, g(u_0))$ is in $\widetilde{\mathcal{F}}^n$.

Since $\langle v(\sigma), u_0 \rangle = 1$, $v(\sigma)$ is in ${}^tg(N^*) = N(u_0)^* = \{ v \in N^* \mid \langle v, u_0 \rangle \in \mathbb{Z} \}$. Hence ${}^tg_{\mathbb{R}}^{-1}(v(\sigma))$ is in N^* . Therefore, $g_{\mathbb{R}}\sigma$ satisfies (G) and $v(g_{\mathbb{R}}\sigma) = {}^tg_{\mathbb{R}}^{-1}(v(\sigma))$. Since $\{ v \in \sigma^* \cap N^* \mid \langle v, u_0 \rangle = 1 \} = \{ v \in \sigma^* \cap N(u_0)^* \mid \langle v, u_0 \rangle = 1 \} = \{ v \in \sigma^* \cap N(u_0)^* \mid \langle v, u_0 \rangle = 1 \} = \{ v \in \sigma^* \cap N(u_0)^* \mid \langle v, u_0 \rangle = 1 \}$

 $\Delta_{g_{DO}\sigma}(g(u_0)) = {}^tg_{\mathbb{R}}^{-1}(\Delta_{\sigma}(u_0)).$ Hence $g(u_0)$ satisfies (E).

we easily see that if $(\sigma, u_0) \sim (\sigma', u_0')$, then $(g_R \sigma, g(u_0)) \sim (g_R' \sigma', g'(u_0'))$, for any isomorphisms $g: N(u_0) \simeq N$ and $g': N(u_0') \simeq N$. We denote by π , the map from ε^n to \mathcal{F}^n thus obtained. Next, we show that $\pi^{-1}(\alpha)$ is a finite set for each eqivalence class α in \mathcal{F}^n .

Let $m{\beta}$ and $m{\beta}'$ be elements in $\pi^{-1}(\alpha)$, let (σ, u_0) , (σ', u_0') and (τ, t_0) be representatives of $m{\beta}$, $m{\beta}'$ and α , respectively. Then there exist isomorphisms $g:N(u_0)\simeq N$ and $g':N(u_0')\simeq N$ such that $g_{I\!\!R}\sigma=g_{I\!\!R}'\sigma'=\tau$ and that $g(u_0)=g'(u_0')=t_0$. Assume that g(N)=g'(N). Then the map $h:=(g')_{I\!\!g}^{-1}(N)\cdot g_{I\!\!N}$ is in GL(N), $h_{I\!\!R}\sigma=\sigma'$ and $h_{I\!\!R}(u_0)=u_0'$. Hence $(\sigma,u_0)\sim (\sigma',u_0')$. On the other hand, $(v(\sigma),g_{I\!\!R}^{-1}(u))=(t_0')_{I\!\!R}^{-1}(v(\sigma))$, $u>=(v(\tau),u>=1)$ for primitive elements u in all 1-dimensional faces of τ . Since $g_{I\!\!R}^{-1}(u)$ are generators of 1-dimensional faces of σ , $g_{I\!\!R}^{-1}(u)\in N$, by the condition (G). Hence g(N) contains the module N' generated by primitive elements in all 1-dimensional faces of τ . Since τ is an (n+1)-dimensional rational cone, N' is also a free $I\!\!R$ -module of rank $I\!\!R$ -therefore, $I\!\!R$ -theref

Note that { $u \in Int(\sigma) \cap N \mid \langle v(\sigma), u \rangle = 1$ } = { u_0 } for any pair (σ, u_0) in \mathfrak{F}^n (see [2, Proposition 1.8]). Hence we have an injective map from \mathfrak{F}^n to $\mathcal{T}^n := \widetilde{\mathcal{T}}^n/\sim$, where $\widetilde{\mathcal{T}}^n$

is the set of n-dimensional integral convex polytopes P in \mathbb{R}^n with $\operatorname{Int}(P)\cap \mathbf{Z}^n=\{0\}$ and $P\sim P'$ if and only if there exists an element g in $\operatorname{GL}(n,\mathbf{Z})$ such that $\operatorname{g}_{\mathbb{R}}P=P'$. Hence if \mathcal{T}^n is finite, then \mathcal{E}^n is also finite, by the above proposition.

Proposition 2. \mathcal{I}^n is a finite set.

Proof. There exists a real number L such that vol(P) < L for any P in $\tilde{\gamma}^n$, by [1]. Let S be the set of simplices $\overline{0v_1v_2 \dots v_n}$ spanned by 0, $v_1 = t(p_{11}, 0, \dots, 0)$, ..., $v_j = {}^{t}(p_{j1}, ..., p_{jj}, 0, ..., 0)$... and $v_n = {}^{t}(p_{n1}, ..., p_{nn})$ in \mathbb{Z}^n such that $0 \leq p_{jk} < p_{jj}$ for j = 1 through n and for k = 1 through j-1 and that $p_{11}p_{22} \dots p_{nn} < n!L$. Clearly, S is a finite set. Let P be in $\widetilde{\mathcal{P}}^n$. Then P contains n vertices u_1 , u_2 , ... and u_n which are linearly independent. There exists an element g in $GL(n, \mathbb{Z})$ such that $g(u_j) = (p_{j1}, ..., p_{jj}, 0, ..., 0)$ ($0 \le p_{jk} < p_{jj}$ for k= 1 through j-1). Since $vol(\overline{0u_1 \dots u_n}) \le vol(P) < L$, $g(\overline{0u_1 \dots u_n}) \in S$. On the other hand, each point u in P is a linear combination $a_1u_1 + a_2u_2 + \dots + a_nu_n$ of u_1 , u_2 , ... and u_n . If $a_j \neq 0$, then $L > vol(P) \ge$ $vol(\overline{0u_1...u_{j-1}uu_{j+1}...u_n}) = |a_j|vol(\overline{0u_1...u_n}) =$ $la_{j}lp_{11}p_{22}...p_{nn}/n!$. Hence g(P) is contained in the compact set $C := \{ a_1 g(u_1) + a_2 g(u_2) + \dots + a_n g(u_n) \mid |a_j| \le 1 \}$

 $n!L/p_{11}...p_{nn}$ }. Since the set of integral convex polytopes contained in C is finite, \mathcal{I}^n is also finite. q.e.d.

Thus we obtain:

Theorem 3. ε^n is finite.

References

- [1] D. Hensley, Lattice vertex polytopes with interior lattice points, Pacific J. of Math. vol. 105, no. 1 (1983), 183-191.
- [2] H. Tsuchihashi, A classification of toric singularities with simple K3 singularities as hypersurface sections, Suuri kaiseki kenkyujo kokyuuroku vol. 742 (1991), 111-125.
- [3] K. Watanabe, Minimal resolution of a quasi-homogeneous simple K3 singularity, in this volume.